Combinatorial metabolic engineering of Bacillus subtilis for menaquinone-7 biosynthesis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: United States NLM ID: 7502021 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0290 (Electronic) Linking ISSN: 00063592 NLM ISO Abbreviation: Biotechnol Bioeng Subsets: MEDLINE
    • Publication Information:
      Publication: <2005->: Hoboken, NJ : Wiley
      Original Publication: New York, Wiley.
    • Subject Terms:
    • Abstract:
      Menaquinone-7 (MK-7), a form of vitamin K2, supports bone health and prevents arterial calcification. Microbial fermentation for MK-7 production has attracted widespread attention because of its low cost and short production cycles. However, insufficient substrate supply, unbalanced precursor synthesis, and low catalytic efficiency of key enzymes severely limited the efficiency of MK-7 synthesis. In this study, utilizing Bacillus subtilis BSAT01 (with an initial MK-7 titer of 231.0 mg/L) obtained in our previous study, the glycerol metabolism pathway was first enhanced to increase the 3-deoxy-arabino-heptulonate 7-phosphate (DHAP) supply, which led to an increase in MK-7 titer to 259.7 mg/L. Subsequently, a combination of knockout strategies predicted by the genome-scale metabolic model etiBsu1209 was employed to optimize the central carbon metabolism pathway, and the resulting strain showed an increase in MK-7 production from 259.7 to 318.3 mg/L. Finally, model predictions revealed the methylerythritol phosphate pathway as the major restriction pathway, and the pathway flux was increased by heterologous introduction (Introduction of Dxs derived from Escherichia coli) and fusion expression (End-to-end fusion of two enzymes by a linker peptide), resulting in a strain with a titer of 451.0 mg/L in a shake flask and 474.0 mg/L in a 50-L bioreactor. This study achieved efficient MK-7 synthesis in B. subtilis, laying the foundation for large-scale MK-7 bioproduction.
      (© 2024 Wiley Periodicals LLC.)
    • References:
      Alvarez, A. F., Rodriguez, C., & Georgellis, D. (2013). Ubiquinone and menaquinone electron carriers represent the Yin and Yang in the redox regulation of the ArcB sensor kinase. Journal of Bacteriology, 195, 3054–3061.
      Berenjian, A., Chan, N. L.‐C., Mahanama, R., Talbot, A., Regtop, H., Kavanagh, J., & Dehghani, F. (2013). Effect of biofilm formation by bacillus subtilis natto on Menaquinone‐7 biosynthesis. Molecular Biotechnology, 54, 371–378.
      Berenjian, A., Mahanama, R., Talbot, A., Biffin, R., Regtop, H., Valtchev, P., Kavanagh, J., & Dehghani, F. (2011). Efficient media for high menaquinone‐7 production: Response surface methodology approach. New Biotechnology, 28, 665–672.
      Bi, X., Cheng, Y., Xu, X., Lv, X., Liu, Y., Li, J., Du, G., Chen, J., Ledesma‐Amaro, R., & Liu, L. (2023). et I Bsu1209: A comprehensive multiscale metabolic model for Bacillus subtilis. Biotechnology and Bioengineering, 120, 1623–1639.
      Cluis, C. P., Ekins, A., Narcross, L., Jiang, H., Gold, N. D., Burja, A. M., & Martin, V. J. J. (2011). Identification of bottlenecks in Escherichia coli engineered for the production of CoQ10. Metabolic Engineering, 13, 733–744.
      Cui, S., Lv, X., Wu, Y., Li, J., Du, G., Ledesma‐Amaro, R., & Liu, L. (2019). Engineering a bifunctional Phr60‐Rap60‐Spo0A quorum‐sensing molecular switch for dynamic fine‐tuning of Menaquinone‐7 synthesis in Bacillus subtilis. ACS Synthetic Biology, 8, 1826–1837.
      Cui, S., Xia, H., Chen, T., Gu, Y., Lv, X., Liu, Y., Li, J., Du, G., & Liu, L. (2020). Cell membrane and electron transfer engineering for improved synthesis of Menaquinone‐7 in bacillus subtilis. iScience, 23, 100918.
      Deng, Y., Sun, M., Xu, S., & Zhou, J. (2016). Enhanced (S)‐linalool production by fusion expression of farnesyl diphosphate synthase and linalool synthase in Saccharomyces cerevisiae. Journal of Applied Microbiology, 121, 187–195.
      Di, X., Ortega‐Alarcon, D., Kakumanu, R., Iglesias‐Fernandez, J., Diaz, L., Baidoo, E. E. K., Velazquez‐Campoy, A., Rodríguez‐Concepción, M., & Perez‐Gil, J. (2022). MEP pathway products allosterically promote monomerization of deoxy‐D‐xylulose‐5‐phosphate synthase to feedback regulate their supply. Plant Commun, 4, 100512.
      Ding, X., Zheng, Z., Zhao, G., Wang, L., Wang, H., Yang, Q., Zhang, M., Li, L., & Wang, P. (2022). Bottom‐up synthetic biology approach for improving the efficiency of menaquinone‐7 synthesis in Bacillus subtilis. Microbial Cell Factories, 21, 101.
      El Asmar, M., Naoum, J., & Arbid, E. (2014). Vitamin K dependent proteins and the role of vitamin K2 in the modulation of vascular calcification: A review. Oman Medical Journal, 29, 172–177.
      Ferland, G. (2012). Vitamin K and the nervous system: An overview of its actions. Advances in Nutrition, 3, 204–212.
      George, K. W., Thompson, M. G., Kim, J., Baidoo, E. E. K., Wang, G., Benites, V. T., Petzold, C. J., Chan, L. J. G., Yilmaz, S., Turhanen, P., Adams, P. D., Keasling, J. D., & Lee, T. S. (2018). Integrated analysis of isopentenyl pyrophosphate (IPP) toxicity in isoprenoid‐producing Escherichia coli. Metabolic Engineering, 47, 60–72.
      Gu, Y., Lv, X., Liu, Y., Li, J., Du, G., Chen, J., Rodrigo, L.‐A., & Liu, L. (2019). Synthetic redesign of central carbon and redox metabolism for high yield production of N‐acetylglucosamine in Bacillus subtilis. Metabolic Engineering, 51, 59–69.
      Hädicke, O., Von Kamp, A., Aydogan, T., & Klamt, S. (2018). OptMDFpathway: Identification of metabolic pathways with maximal thermodynamic driving force and its application for analyzing the endogenous CO2 fixation potential of Escherichia coli. PLoS Computational Biology, 14, e1006492.
      Han, L., Wu, Y., Xu, Y., Zhang, C., Liu, Y., Li, J., Du, G., Lv, X., & Liu, L. (2024). Engineered Saccharomyces cerevisiae for de novo δ‐tocotrienol biosynthesis. Systems Microbiology and Biomanufacturing, 4, 150–164.
      Hirota, Y., Nakagawa, K., Sawada, N., Okuda, N., Suhara, Y., Uchino, Y., Kimoto, T., Funahashi, N., Kamao, M., Tsugawa, N., & Okano, T. (2015). Functional characterization of the vitamin K2 biosynthetic enzyme UBIAD1. PLoS One, 10, e0125737.
      Ignea, C., Trikka, F. A., Nikolaidis, A. K., Georgantea, P., Ioannou, E., Loupassaki, S., Kefalas, P., Kanellis, A. K., Roussis, V., Makris, A. M., & Kampranis, S. C. (2015). Efficient diterpene production in yeast by engineering Erg20p into a geranylgeranyl diphosphate synthase. Metabolic Engineering, 27, 65–75.
      Jin, P., Kang, Z., Yuan, P., Du, G., & Chen, J. (2016). Production of specific‐molecular‐weight hyaluronan by metabolically engineered Bacillus subtilis 168. Metabolic Engineering, 35, 21–30.
      Kikuchi, Y., Tsujimoto, K., & Kurahashi, O. (1997). Mutational analysis of the feedback sites of phenylalanine‐sensitive 3‐deoxy‐D‐arabino‐heptulosonate‐7‐phosphate synthase of Escherichia coli. Applied and Environmental Microbiology, 63, 761–762.
      Kudoh, K., Kubota, G., Fujii, R., Kawano, Y., & Ihara, M. (2017). Exploration of the 1‐deoxy‐d‐xylulose 5‐phosphate synthases suitable for the creation of a robust isoprenoid biosynthesis system. Journal of Bioscience and Bioengineering, 123, 300–307.
      Li, C.‐L., Li, M., Zhang, W.‐G., & Xu, J.‐Z. (2023). Accelerating the menaquinone‐7 production in Bacillus amyloliquefaciens by optimization of the biosynthetic pathway and medium components. Systems Microbiology and Biomanufacturing, 3, 776–791.
      Li, Q., Fan, F., Gao, X., Yang, C., Bi, C., Tang, J., Liu, T., & Zhang, X. (2017). Balanced activation of IspG and IspH to eliminate MEP intermediate accumulation and improve isoprenoids production in Escherichia coli. Metabolic Engineering, 44, 13–21.
      Liao, C., Ayansola, H., Ma, Y., Ito, K., Guo, Y., & Zhang, B. (2021). Advances in enhanced Menaquinone‐7 production from bacillus subtilis. Frontiers in Bioengineering and Biotechnology, 9, 695526.
      Liu, Y., Yang, Z., Xue, Z., Qian, S., Wang, Z., Hu, L., Wang, J., Zhu, H., Ding, X., & Yu, F. (2018). Influence of site‐directed mutagenesis of UbiA, overexpression of dxr, menA and ubiE, and supplementation with precursors on menaquinone production in Elizabethkingia meningoseptica. Process Biochemistry, 68, 64–72.
      Ma, Y., McClure, D. D., Somerville, M. V., Proschogo, N. W., Dehghani, F., Kavanagh, J. M., & Coleman, N. V. (2019). Metabolic engineering of the MEP pathway in Bacillus subtilis for increased biosynthesis of Menaquinone‐7. ACS Synthetic Biology, 8, 1620–1630.
      Noor, E., Flamholz, A., Bar‐Even, A., Davidi, D., Milo, R., & Liebermeister, W. (2016). The protein cost of metabolic fluxes: Prediction from enzymatic rate laws and cost minimization. PLoS Computational Biology, 12, e1005167.
      Rana, P., Ghouse, S. M., Akunuri, R., Madhavi, Y. V., Chopra, S., & Nanduri, S. (2020). FabI (enoyl acyl carrier protein reductase)—A potential broad spectrum therapeutic target and its inhibitors. European Journal of Medicinal Chemistry, 208, 112757.
      Ren, Q., He, Y., Lu, X., Zong, H., & Zhuge, B. (2022). Improved pinene production in a recombinant yeast by fusion linker optimization and chaperon coexpression. Systems Microbiology and Biomanufacturing, 2, 208–216.
      Sivy, T. L., Fall, R., & Rosenstiel, T. N. (2011). Evidence of isoprenoid precursor toxicity in Bacillus subtilis. Bioscience, Biotechnology, and Biochemistry, 75, 2376–2383.
      Vermeer, C., & Braam, L. (2001). Role of K vitamins in the regulation of tissue calcification. Journal of Bone and Mineral Metabolism, 19, 201–206.
      Walther, B., Karl, J. P., Booth, S. L., & Boyaval, P. (2013). Menaquinones, bacteria, and the food supply: the relevance of dairy and fermented food products to vitamin K requirements. Advances in Nutrition, 4, 463–473.
      Westbrook, A. W., Ren, X., Oh, J., Moo‐Young, M., & Chou, C. P. (2018). Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Metabolic Engineering, 47, 401–413.
      Wu, J., Li, W., Zhao, S., Qian, S., Wang, Z., Zhou, M., Hu, W., Wang, J., Hu, L., Liu, Y., & Xue, Z. (2021). Site‐directed mutagenesis of the quorum‐sensing transcriptional regulator SinR affects the biosynthesis of menaquinone in Bacillus subtilis. Microbial Cell Factories, 20, 113.
      Wu, Y., Chen, T., Liu, Y., Tian, R., Lv, X., Li, J., Du, G., Chen, J., Ledesma‐Amaro, R., & Liu, L. (2020). Design of a programmable biosensor‐CRISPRi genetic circuits for dynamic and autonomous dual‐control of metabolic flux in Bacillus subtilis. Nucleic Acids Research, 48, 996–1009.
      Wu, Z., Liang, X., Li, M., Ma, M., Zheng, Q., Li, D., An, T., & Wang, G. (2023). Advances in the optimization of central carbon metabolism in metabolic engineering. Microbial Cell Factories, 22, 76.
      Xu, X., Lv, X., Cui, S., Liu, Y., Xia, H., Li, J., Du, G., Li, Z., Ledesma‐Amaro, R., Chen, J., & Liu, L. (2023). Remodeling isoprene pyrophosphate metabolism for promoting terpenoids bioproduction. Engineering, 28, 166–178.
      Xu, Y., Li, Y., Zhang, L., Ding, Z., Gu, Z., & Shi, G. (2019). Unraveling the specific regulation of the shikimate pathway for tyrosine accumulation in Bacillus licheniformis. Journal of Industrial Microbiology and Biotechnology, 46, 1047–1059.
      Yang, S., Cao, Y., Sun, L., Li, C., Lin, X., Cai, Z., Zhang, G., & Song, H. (2019). Modular pathway engineering of Bacillus subtilis to promote De Novo biosynthesis of menaquinone‐7. ACS Synthetic Biology, 8, 70–81.
      Zhang, Z., Liu, L., Liu, C., Sun, Y., & Zhang, D. (2021). New aspects of microbial vitamin K2 production by expanding the product spectrum. Microbial Cell Factories, 20, 84.
      Zhao, H., Sun, Y., Peters, J. M., Gross, C. A., Garner, E. C., & Helmann, J. D. (2016). Depletion of undecaprenyl pyrophosphate phosphatases disrupts cell envelope biogenesis in Bacillus subtilis. Journal of Bacteriology, 198, 2925–2935.
      Zhou, L., Wang, Y., Han, L., Wang, Q., Liu, H., Cheng, P., Li, R., Guo, X., & Zhou, Z. (2021). Enhancement of Patchoulol production in Escherichia coli via multiple engineering strategies. Journal of Agricultural and Food Chemistry, 69, 7572–7580.
    • Grant Information:
      22208122 National Natural Science Foundation of China; 32021005 National Natural Science Foundation of China
    • Contributed Indexing:
      Keywords: Bacillus subtilis; combinatorial metabolic engineering; enzyme engineering; etiBsu1209; menaquinone‐7
    • Accession Number:
      11032-49-8 (Vitamin K 2)
      8427BML8NY (menaquinone 7)
    • Publication Date:
      Date Created: 20240705 Date Completed: 20241009 Latest Revision: 20241009
    • Publication Date:
      20241009
    • Accession Number:
      10.1002/bit.28800
    • Accession Number:
      38965781