Preparation of imidazolium ionic liquid functionalized paper membrane for selective extraction of caffeic acid and its structural and functional analogues from Taraxaci Herba.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: England NLM ID: 8610241 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1099-0801 (Electronic) Linking ISSN: 02693879 NLM ISO Abbreviation: Biomed Chromatogr Subsets: MEDLINE
    • Publication Information:
      Publication: 1990- : Chichester : Wiley
      Original Publication: London : Heyden & Son, c1986-1990
    • Subject Terms:
    • Abstract:
      In the search for pharmaceutically active compounds from natural products, it is crucial and challenging to develop separation or purification methods that target not only structurally similar compounds but also those with specific pharmaceutical functions. The adsorption-based method is widely employed in this field and holds potential for this application, given the diverse range of functional monomers that can be chosen based on structural or functional selectivity. In this work, an imidazolium ionic liquid (IL) modified paper membrane was synthesized via microwave reaction. Caffeic acid (CA), with potential interactions with imidazolium IL and a representative component of phenolic acids in Taraxaci Herba, was chosen as a target compound. After optimization of synthesis and extraction parameters, the resulting extraction membrane could be used to quantitatively analyze CA at ng/ml level, and to extract CA's analogues from the sample matrix. Cheminformatics confirmed the presence of structural and functional similarity among these extracted compounds. This study offers a novel approach to preparing a readily synthesized extraction membrane capable of isolating compounds with structural and functional analogies, as well as developing a membrane solid-phase extraction-based analytical method for natural products.
      (© 2024 John Wiley & Sons Ltd.)
    • References:
      Bi, X., Xie, M., Zhang, C., Lin, J.‐M., & Zhao, R.‐S. (2022a). Composite SPE paper membrane based on the functional superstructure of metal‐organic frameworks and ionic liquids for detection of tetracycline‐like antibiotics. ACS Applied Materials & Interfaces, 14(1), 2102–2112. https://doi.org/10.1021/acsami.1c22033.
      Bi, X., Zhao, L.‐X., Xie, M., Zhang, C., Lin, J.‐M., & Zhao, R.‐S. (2022b). Functional metal‐organic framework as high‐performance adsorbent for selective enrichment of pharmaceutical contaminants in aqueous samples. Chemical Engineering Journal, 445, 136751. https://doi.org/10.1016/j.cej.2022.136751.
      Chen, G., Zeng, X., & Huang, J.‐H. (2022). Imidazole‐modified polymers and their adsorption of salicylic acid from aqueous solution. Journal of Polymer Research, 29(7), 7. https://doi.org/10.1007/s10965-022-03099-y.
      Chinese Pharmacopoeia Committee (2020). The state pharmacopoeia Commission of People's republic of China (Vol. 1). Chemical Industry Press.
      Daina, A., Michielin, O., & Zoete, V. (2019). Swiss target prediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W364. https://doi.org/10.1093/nar/gkz382.
      Di, S., Zhang, M., Shi, C., & Zhu, S. (2023). Thoughtful design of a covalent organic framework with tailor‐made polarity and pore size for the enrichment of bisphenols and their derivatives: Extraction performance, adsorption mechanism and toxicity evaluation. Environmental Pollution, 326, 121475. https://doi.org/10.1016/j.envpol.2023.121475.
      Dinh, T. V., Saravana, P. S., Woo, H. C., & Chun, B. S. (2018). Ionic liquid‐assisted subcritical water enhances the extraction of phenolics from brown seaweed and its antioxidant activity. Separation and Purification Technology, 196, 287–299. https://doi.org/10.1016/j.seppur.2017.06.009.
      Geng, H.‐S., Xu, G.‐J., Liu, L., Wang, X.‐L., & Zhao, R.‐S. (2022). Determination of trace phenoxy carboxylic acid herbicides in environmental water samples by covalent organic frameworks based solid phase extraction coupled with liquid chromatography‐tandem mass spectrometry. Journal of Chromatography a, 1682, 463516. https://doi.org/10.1016/j.chroma.2022.463516.
      Goutelle, S., Maurin, M., Rougier, F., Barbaut, X., Bourguignon, L., Ducher, M., & Maire, P. (2008). The hill equation: A review of its capabilities in pharmacological modelling. Fundamental and Clinical Pharmacology, 22(6), 633–648. https://doi.org/10.1111/j.1472-8206.2008.00633.x.
      Green, M. D., & Long, T. E. (2009). Designing imidazole‐based ionic liquids and ionic liquid monomers for emerging technologies. Polymer Reviews, 49(4), 291–314. https://doi.org/10.1080/15583720903288914.
      Gu, Z.‐K., Guo, Z.‐C., Gao, S., Huang, L.‐R., & Liu, Z. (2023). Hierarchically structured molecularly imprinted nanotransducers for truncated HER2‐targeted photodynamic therapy of therapeutic antibody‐resistant breast cancer. ACS Nano, 17(11), 10152–10163. https://doi.org/10.1021/acsnano.3c00148.
      Huang, Y.‐F., Li, Y.‐Y., Wu, Y.‐F., & Huang, X.‐J. (2023). Computer‐aided design‐based green fabrication of magnetic molecularly imprinted nanoparticles for specific extraction of non‐steroidal anti‐inflammatory drugs. Chemical Engineering Journal, 452, 139440. https://doi.org/10.1016/j.cej.2022.139440.
      Hutter, M. C. (2022). Differential multimolecule fingerprint for similarity search‐making use of active and inactive compound sets in virtual screening. Journal of Chemical Information and Modeling, 62(11), 2726–2736. https://doi.org/10.1021/acs.jcim.2c00242.
      Isosaari, P., Srivastava, V., & Sillanpaa, M. (2019). Ionic liquid‐based water treatment technologies for organic pollutants: Current status and future prospects of ionic liquid mediated technologies. Science of the Total Environment, 690, 604–619. https://doi.org/10.1016/j.scitotenv.2019.06.421.
      Kumar, S. V., Saravanan, D., Kumar, B., & Jayakumar, A. (2014). An update on prodrugs from natural products. Asian Pacific Journal of Tropical Medicine, 7, S54–S59. https://doi.org/10.1016/s1995-7645(14)60203-0.
      Li, C. P., & Wang, Y. Z. (2022). Non‐targeted analytical technology in herbal medicines: Applications, challenges, and perspectives. Critical Reviews in Analytical Chemistry, 20, 1–20. https://doi.org/10.1080/10408347.2022.2148204.
      Li, G.‐F., Wang, Y.‐P., Ding, Y.‐H., Zhang, Z.‐X., Tang, N., Tian, X.‐P., & Li, D.‐J. (2023a). Fluorescent nanosensors for selective and sensitive determination of isoquercitrin based on boronate affinity‐based imprinted quantum dots. New Journal of Chemistry, 47(18), 8942–8950. https://doi.org/10.1039/d3nj00141e.
      Li, H.‐Y., Zhang, L., Yu, W.‐J., Bie, W.‐W., Wei, M.‐J., Wang, Z.‐X., Kong, F.‐Y., & Wang, W. (2023b). Sulfonated polyhedral oligomeric silsesquioxane‐cyclodextrin hybrid polymers for efficient removal of micropollutants from water. Carbohydrate Polymers, 312, 120832. https://doi.org/10.1016/j.carbpol.2023.120832.
      Li, J. W. H., & Vederas, J. C. (2009). Drug discovery and natural products: End of an era or an endless frontier? Science, 325(5937), 161–165. https://doi.org/10.1126/science.1168243.
      Li, P.‐F., Gao, S., Qu, W.‐T., Li, Y., & Liu, Z. (2024). Chemo‐selective single‐cell metabolomics reveals the spatiotemporal behavior of exogenous pollutants during Xenopus laevis embryogenesis. Advanced Science, 11, e2305401. https://doi.org/10.1002/advs.202305401.
      Li, P.‐F., & Liu, Z. (2024). Glycan‐specific molecularly imprinted polymers towards cancer diagnostics: Merits, applications, and future perspectives. Chemical Society Reviews, 53, 1870–1891. https://doi.org/10.1039/d3cs00842h.
      Li, Q., Yin, G.‐W., Wang, J., Li, L.‐K., Liang, Q., Zhao, X., Chen, Y.‐Y., Zheng, X.‐F., & Zhao, X.‐F. (2022). An emerging paradigm to develop analytical methods based on immobilized transmembrane proteins and its applications in drug discovery. TrAC, Trends in Analytical Chemistry, 157, 116728. https://doi.org/10.1016/j.trac.2022.116728.
      Liu, H.‐F., Chen, J., Chen, M.‐L., Wang, J.‐H., & Qiu, H.‐D. (2023). Recent development of chiral ionic liquids for enantioseparation in liquid chromatography and capillary electrophoresis: A review. Analytica Chimica Acta, 1274, 341496. https://doi.org/10.1016/j.aca.2023.341496.
      Liu, H.‐M., Jin, P., Zhu, F.‐C., Nie, L., & Qiu, H.‐D. (2021). A review on the use of ionic liquids in preparation of molecularly imprinted polymers for applications in solid‐phase extraction. TrAC, Trends in Analytical Chemistry, 134, 116132. https://doi.org/10.1016/j.trac.2020.116132.
      Luo, Y.‐J., Huang, X.‐X., Yao, S., Peng, L.‐C., Li, F.‐L., & Song, H. (2020). Synthesis of a new imidazole amino acid ionic liquid polymer and selective adsorption performance for tea polyphenols. Polymers, 12(10), 15. https://doi.org/10.3390/polym12102171.
      Ma, W., Wang, C., Liu, R., Wang, N., Lv, Y., Dai, B., & He, L. (2021). Advances in cell membrane chromatography. Journal of Chromatography a, 1639, 461916. https://doi.org/10.1016/j.chroma.2021.461916.
      Ma, W., Zheng, Q., He, Y., Li, G., Guo, W., Lin, Z., & Zhang, L. (2019). Size‐controllable synthesis of uniform spherical covalent organic frameworks at room temperature for highly efficient and selective enrichment of hydrophobic peptides. Journal of the American Chemical Society, 141(45), 18271–18277. https://doi.org/10.1021/jacs.9b09189.
      Mei, M., Huang, X. J., & Chen, L. (2019). Recent development and applications of poly (ionic liquid)s in microextraction techniques. TrAC, Trends in Analytical Chemistry, 112, 123–134. https://doi.org/10.1016/j.trac.2019.01.003.
      Mullowney, M. W., Duncan, K. R., Elsayed, S. S., Garg, N., van der Hooft, J. J. J., Martin, N. I., Meijer, D., Terlouw, B. R., Biermann, F., Blin, K., Durairaj, J., Gorostiola González, M., Helfrich, E. J. N., Huber, F., Leopold‐Messer, S., Rajan, K., de Rond, T., van Santen, J. A., Sorokina, M., … Medema, M. H. (2023). Artificial intelligence for natural product drug discovery. Nature Reviews Drug Discovery, 22, 895–916. https://doi.org/10.1038/s41573-023-00774-7.
      Petrovic, A. G., Navarro‐Vázquez, A., & Alonso‐Gómez, J. L. (2010). From relative to absolute configuration of complex natural products: Interplay between NMR, ECD, VCD, and ORD assisted by ab initio calculations. Current Organic Chemistry, 14(15), 1612–1628. https://doi.org/10.2174/138527210793563215.
      Qi, W., He, J.‐H., Li, M.‐J., Zhai, M.‐L., & Zhao, L. (2022). Efficient extraction of rhenium through demulsification of imidazolium ionic liquid‐based microemulsions from aqueous solution. Separation and Purification Technology, 297, 121574. https://doi.org/10.1016/j.seppur.2022.121574.
      Qiao, X.‐Q., Chen, R., Yan, H.‐Y., & Shen, S.‐G. (2017). Polyhedral oligomeric silsesquioxane‐based hybrid monolithic columns: Recent advances in their preparation and their applications in capillary liquid chromatography. TrAC, Trends in Analytical Chemistry, 97, 50–64. https://doi.org/10.1016/j.trac.2017.08.006.
      Qin, H., Liu, H., Liu, Y., Di, S., Bao, Y., Zhai, Y., & Zhu, S. (2023). Recent advances in sample preparation and chromatographic analysis of pharmaceuticals and personal care products in environment. TrAC Trends in Analytical Chemistry, 164, 117112. https://doi.org/10.1016/j.trac.2023.117112.
      Rani, N., Kumar, P., Singh, R., de Sousa, D. P., & Sharma, P. (2020). Current and future prospective of a versatile moiety: Imidazole. Current Drug Targets, 21(11), 1130–1155. https://doi.org/10.2174/1389450121666200530203247.
      Rodrigues, T., Reker, D., Schneider, P., & Schneider, G. (2016). Counting on natural products for drug design. Nature Chemistry, 8(6), 531–541. https://doi.org/10.1038/nchem.2479.
      Sasse, M., & Rainer, M. (2022). Mass spectrometric methods for non‐targeted screening of metabolites: A future perspective for the identification of unknown compounds in plant extracts. Separations, 9(12), 28. https://doi.org/10.3390/separations9120415.
      Song, H.‐Y., Yang, J., & Zhu, X.‐S. (2023). Polyphenylalanine ionic liquid for the extraction and determination of Allura red in food samples. Journal of Applied Polymer Science, 140(5), 12. https://doi.org/10.1002/app.53423.
      Sorokina, M., & Steinbeck, C. (2020). Review on natural products databases: Where to find data in 2020. Journal of Cheminformatics, 12(1), 51. https://doi.org/10.1186/s13321-020-00424-9.
      Tang, R., Li, R., Li, H., Ma, X.‐L., Du, P., Yu, X.‐Y., Ren, L., Wang, L.‐L., & Zheng, W.‐S. (2021). Design of hepatic targeted drug delivery systems for natural products: Insights into nomenclature revision of nonalcoholic fatty liver disease. ACS Nano, 15(11), 17016–17046. https://doi.org/10.1021/acsnano.1c02158.
      Teng, Y.‐F., Xu, L., Wei, M.‐Y., Wang, C.‐Y., Gu, Y.‐C., & Shao, C.‐L. (2020). Recent progresses in marine microbial‐derived antiviral natural products. Archives of Pharmacal Research, 43(12), 1215–1229. https://doi.org/10.1007/s12272-020-01286-3.
      Tian, T., Xu, X., Li, X., Zhang, W.‐H., & Lu, H.‐T. (2021). Precision‐characterization and quantitative determination of main compounds in Si‐Ni‐san with UHPLC‐MS/MS based targeted‐profiling method. Journal of Pharmaceutical and Biomedical Analysis, 194, 8. https://doi.org/10.1016/j.jpba.2020.113816.
      Ventura, S. P. M., Silva, F. A. E., Quental, M. V., Mondal, D., Freire, M. G., & Coutinho, J. A. P. (2017). Ionic‐liquid‐mediated extraction and separation processes for bioactive compounds: Past, present, and future trends. Chemical Reviews, 117(10), 6984–7052. https://doi.org/10.1021/acs.chemrev.6b00550.
      Wang, N., & Cui, B. (2022). An overview of ionic liquid‐based adsorbents in food analysis. TrAC, Trends in Analytical Chemistry, 146, 116496. https://doi.org/10.1016/j.trac.2021.116496.
      Wang, Y.‐H., Li, W., Luo, S., Liu, S.‐X., Ma, C.‐H., & Li, J. (2018). Research advances on the applications of immobilized ionic liquids functional materials. Acta Chimica Sinica, 76(2), 85–94. https://doi.org/10.6023/a17070319.
      Xing, R.‐R., Xue, T.‐Y., Ye, P., Yang, L., Wang, R.‐Q., Chen, X., & Hu, S. (2022). pH‐responsive epitope‐imprinted magnetic nanoparticles for selective separation and extraction of chlorogenic acid and caffeic acid in traditional Chinese medicines. Analytical Methods, 14(47), 4931–4937. https://doi.org/10.1039/d2ay01667b.
      Yang, B.‐Y., Ma, J., Gao, B., & Lu, X.‐L. (2019). Computer‐assisted drug virtual screening based on the natural product databases. Current Pharmaceutical Biotechnology, 20(4), 293–301. https://doi.org/10.2174/1389201020666190328115411.
      Ye, Y.‐M., Zhong, B.‐Q., Huang, M.‐J., Chen, W.‐H., & Wang, X.‐M. (2021). Pollution evaluation and children's multimedia exposure of atmospheric arsenic deposition in the Pearl River Delta, China. Science of the Total Environment, 787, 9. https://doi.org/10.1016/j.scitotenv.2021.147629.
      Zang, X.‐H., Chang, Q.‐Y., Hou, F.‐Y., Zhang, S.‐H., Wang, C., Wang, Z., & Xu, J.‐Z. (2024). Hydroxyl and carboxyl group functionalized conjugated microporous nanomaterial as adsorbent for the solid‐phase extraction of phenolic endocrine disrupting chemicals from freshwater fish samples. Food Chemistry, 436, 137674. https://doi.org/10.1016/j.foodchem.2023.137674.
      Zhang, A.‐Q., Guo, Z.‐C., Ge, G., & Liu, Z. (2023). Insights into in vivo environmental effects on quantitative biochemistry in single cells. Analytical Chemistry, 95(47), 17246–17255. https://doi.org/10.1021/acs.analchem.3c03102.
      Zhang, X.‐H., Gao, L., Niu, L.‐Y., & Bi, X. (2021). Microwave‐assisted preparation of a molecularly imprinted monolith combining an imidazolium ionic liquid and POSS for enhanced extraction of baicalin‐like compounds in Scutellaria baicalensis by means of in‐capillary SPME followed by on‐line LC and off‐line LC‐MS/MS. New Journal of Chemistry, 45(11), 5195–5205. https://doi.org/10.1039/d0nj06254e.
      Zhao, M.‐H., Guan, P.‐X., Xu, S.‐X., Lu, H.‐F., & Liu, Z. (2023). Molecularly imprinted nanomedicine for anti‐angiogenic cancer therapy via blocking vascular endothelial growth factor signaling. Nano Letters, 23(18), 8674–8682. https://doi.org/10.1021/acs.nanolett.3c02514.
      Zheng, J., Kuang, Y., Zhou, S., Gong, X., & Ouyang, G. (2023). Latest improvements and expanding applications of solid‐phase microextraction. Analytical Chemistry, 95(1), 218–237. https://doi.org/10.1021/acs.analchem.2c03246.
      Živanović, S. C., Veselinović, A. M., Mitić, Ž. J., & Nikolić, G. M. (2018). The study of the influence of mg (II) and ca (II) ions on caffeic acid autoxidation in weakly alkaline aqueous solution using MCR‐ALS analysis of spectrophotometric data. New Journal of Chemistry, 42(8), 6256–6263. https://doi.org/10.1039/C8NJ00871J.
      Zou, X.‐L., Hui, Z., Shepherd, R. A., Zhao, S.‐Q., Wu, Y.‐F., Shen, Z.‐L., Pang, C., Zhou, S., Yu, Z., Zhou, J., Moore, B. S., Sanchez, L. M., & Tang, X. ‐Y. (2024). Unveiling a CAAX protease‐like protein involved in didemnin drug maturation and secretion. Advanced Science, 11(4), e2306044. https://doi.org/10.1002/advs.202306044.
    • Grant Information:
      22376126 National Natural Science Foundation of China; 003083 Shandong First Medical University Key Talent Introduction Project; 2019LJ003 Academic Promotion Program of Shandong First Medical University
    • Contributed Indexing:
      Keywords: Taraxaci Herba; caffeic acid; imidazolium ionic liquid; membrane extraction; microwave preparation; similarity of structure and function
    • Accession Number:
      0 (Caffeic Acids)
      0 (Ionic Liquids)
      0 (Imidazoles)
      U2S3A33KVM (caffeic acid)
      0 (Membranes, Artificial)
      0 (Plant Extracts)
    • Publication Date:
      Date Created: 20240705 Date Completed: 20240816 Latest Revision: 20240816
    • Publication Date:
      20240816
    • Accession Number:
      10.1002/bmc.5953
    • Accession Number:
      38965739