Carbon usage in yellow-fleshed Manihot esculenta storage roots shifts from starch biosynthesis to cell wall and raffinose biosynthesis via the myo-inositol pathway.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology Country of Publication: England NLM ID: 9207397 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-313X (Electronic) Linking ISSN: 09607412 NLM ISO Abbreviation: Plant J Subsets: MEDLINE
    • Publication Information:
      Original Publication: Oxford : Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology, c1991-
    • Subject Terms:
    • Abstract:
      Cassava is a crucial staple crop for smallholder farmers in tropical Asia and Sub-Saharan Africa. Although high yield remains the top priority for farmers, the significance of nutritional values has increased in cassava breeding programs. A notable negative correlation between provitamin A and starch accumulation poses a significant challenge for breeding efforts. The negative correlation between starch and carotenoid levels in conventional and genetically modified cassava plants implies the absence of a direct genomic connection between the two traits. The competition among various carbon pathways seems to account for this relationship. In this study, we conducted a thorough analysis of 49 African cassava genotypes with varying levels of starch and provitamin A. Our goal was to identify factors contributing to differential starch accumulation. Considering carotenoid levels as a confounding factor in starch production, we found that yellow- and white-fleshed storage roots did not differ significantly in most measured components of starch or de novo fatty acid biosynthesis. However, genes and metabolites associated with myo-inositol synthesis and cell wall polymer production were substantially enriched in high provitamin A genotypes. These results indicate that yellow-fleshed cultivars, in comparison to their white-fleshed counterparts, direct more carbon toward the synthesis of raffinose and cell wall components. This finding is underlined by a significant rise in cell wall components measured within the 20 most contrasting genotypes for carotenoid levels. Our findings enhance the comprehension of the biosynthesis of starch and carotenoids in the storage roots of cassava.
      (© 2024 The Author(s). The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.)
    • References:
      Adeniji, O.T., Odo, P.E. & Ibrahim, B. (2011) Genetic relationships and selection indices for cassava root yield in Adamawa state, Nigeria. African Journal of Agricultural Research, 6(13), 2931–2934.
      Akinwale, M.G., Aladesanwa, R.D., Akinyele, B.O., Dixon, A.G.O. & Odiyi, A.C. (2010) Inheritance of ß‐carotene in cassava (Manihot esculenta crantza). International Journal of Genetics and Molecular Biology, 2, 198–201.
      Alseekh, S., Aharoni, A., Brotman, Y., Contrepois, K., D'Auria, J., Ewald, J. et al. (2021) Mass spectrometry‐based metabolomics: a guide for annotation, quantification and best reporting practices. Nature Methods, 18(7), 747–756.
      Andrews, S.R. (2010) FastQC. Available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
      Awotide, B., Abdoulaye, T., Alene, A. & Manyong, V.M. (2014) Assessing the extent and determinants of adoption of improved cassava varieties in south‐western Nigeria. Journal of Development and Agricultural Economics, 6(9), 376–385.
      Barros, J., Serk, H., Granlund, I. & Pesquet, E. (2015) The cell biology of lignification in higher plants. Annals of Botany, 115(7), 1053–1074.
      Beyene, G., Solomon, F.R., Chauhan, R.D., Gaitán‐Solis, E., Narayanan, N., Gehan, J. et al. (2018) Provitamin A biofortification of cassava enhances shelf life but reduces dry matter content of storage roots due to altered carbon partitioning into starch. Plant Biotechnology Journal, 16(6), 1186–1200.
      Bushnell, B. (2014) BBMap short read aligner, and other bioinformatic tools. Available at: https://sourceforge.net/projects/bbmap/.
      Cai, J., Xue, J., Zhu, W., Luo, X., Lu, X., Xue, M. et al. (2023) Integrated metabolomic and transcriptomic analyses reveals sugar transport and starch accumulation in two specific germplasms of Manihot esculenta Crantz. International Journal of Molecular Sciences, 24(8), 7236.
      Carvalho, L.J., Filho, J.F., Anderson, J.V., Figueiredo, P.W. & Chen, S. (2018) Storage Root of Cassava: Morphological Types, Anatomy, Formation, Growth, Development and Harvest Time. In: Waisundara, V. (Ed.) Cassava. Intertech Open.
      Chavez, A.L., Bedoya, J.M., Sánchez, T., Iglesias, C., Ceballos, H. & Roca, W. (2000) Iron, carotene, and ascorbic acid in cassava roots and leaves. Food and Nutrition Bulletin, 21(4), 410–413.
      Chávez, A.L., Sánchez, T., Jaramillo, G., Bedoya, J.M., Echeverry, J., Bolaños, E.A. et al. (2005) Variation of quality traits in cassava roots evaluated in landraces and improved clones. Euphytica, 143(1–2), 125–133.
      Correa, C.R. & Kruse, A. (2018) Supercritical water gasification of biomass for hydrogen production–review. The Journal of Supercritical Fluids, 133, 573–590.
      Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A. et al. (2011) The variant call format and VCFtools. Bioinformatics, 27(15), 2156–2158.
      Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S. et al. (2013) STAR: Ultrafast universal RNA‐seq aligner. Bioinformatics, 29(1), 15–21.
      Elango, D., Rajendran, K., Van der Laan, L., Sebastiar, S., Raigne, J., Thaiparambil, N.A. et al. (2022) Raffinose family oligosaccharides: friend or foe for human and plant health? Frontiers in Plant Science, 13, 829118.
      Endres, S. & Tenhaken, R. (2009) Myoinositol oxygenase controls the level of Myoinositol in Arabidopsis, but does not increase ascorbic acid. Plant Physiology, 149(2), 1042–1049.
      Esuma, W., Herselman, L., Labuschagne, M.T., Ramu, P., Lu, F., Baguma, Y. et al. (2016) Genome‐wide association mapping of provitamin A carotenoid content in cassava. Euphytica, 212(1), 97–110.
      Ewels, P., Magnusson, M., Lundin, S. & Käller, M. (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047–3048.
      FAO. (2023) Crops and livestock products. Available at: https://www.fao.org/faostat/en/#data/QCL.
      Figueroa, C.M., Asencion Diez, M.D., Ballicora, M.A. & Iglesias, A.A. (2022) Structure, function, and evolution of plant ADP‐glucose pyrophosphorylase. Plant Molecular Biology, 108(4–5), 307–323.
      Foster, C.E., Martin, T.M. & Pauly, M. (2010) Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part II: carbohydrates. Journal of Visualized Experiments, 37, e1837.
      Fraser, P.D., Enfissi, E.M.A., Halket, J.M., Truesdale, M.R., Yu, D., Gerrish, C. et al. (2007) Manipulation of phytoene levels in tomato fruit: Effects on isoprenoids, plastids, and intermediary metabolism. The Plant Cell, 19(10), 3194–3211. Available from: https://doi.org/10.1105/tpc.106.049817.
      Goodstein, D.M., Shu, S., Howson, R., Neupane, R., Hayes, R.D., Fazo, J. et al. (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research, 40(D1), D1178–D1186.
      Guschina, I.A. & Harwood, J.L. (2007) Complex lipid biosynthesis and its manipulation in plants. In: Ranalli, P. (Ed.) Improvement of Crop Plants for Industrial End Uses. Dordrecht, Netherlands: Springer, pp. 253–279.
      Harwood, J.L. (1996) Recent advances in the biosynthesis of plant fatty acids. Biochimica et Biophysica Acta (BBA)—Lipids and Lipid Metabolism, 1301(1–2), 7–56.
      Hefferon, K. (2015) Nutritionally enhanced food crops; Progress and perspectives. International Journal of Molecular Sciences, 16(2), 3895–3914.
      Iglesias, C., Mayer, J., Chavez, L. & Calle, F. (1997) Genetic potential and stability of carotene content in cassava roots. Euphytica, 94(3), 367–373.
      Inkscape. (2020) Inkscape. Available at: https://inkscape.org/release/inkscape‐1.2.2/.
      Jonik, C., Sonnewald, U., Hajirezaei, M.R., Flügge, U.I. & Ludewig, F. (2012) Simultaneous boosting of source and sink capacities doubles tuber starch yield of potato plants. Plant Biotechnology Journal, 10(9), 1088–1098.
      Kanwal, F., Ren, D., Kanwal, W., Ding, M., Su, J. & Shang, X. (2023) The potential role of nondigestible Raffinose family oligosaccharides as prebiotics. Glycobiology, 33(4), 274–288.
      Ke, J., Behal, R.H., Back, S.L., Nikolau, B.J., Wurtele, E.S. & Oliver, D.J. (2000) The role of pyruvate dehydrogenase and acetyl‐coenzyme A Synthetase in fatty acid synthesis in developing Arabidopsis seeds. Plant Physiology, 123(2), 497–508.
      Keller, I., Müdsam, C., Rodrigues, C.M., Kischka, D., Zierer, W., Sonnewald, U. et al. (2021) Cold‐triggered induction of ROS‐ and Raffinose metabolism in freezing‐sensitive taproot tissue of sugar beet. Frontiers in Plant Science, 12, 715767.
      Kim, S. (2015) Ppcor: An R package for a fast calculation to semi‐partial correlation coefficients. Communications for Statistical Applications and Methods, 22(6), 665–674.
      Klaus, D., Ohlrogge, J.B., Neuhaus, H.E. & Dörmann, P. (2004) Increased fatty acid production in potato by engineering of acetyl‐CoA carboxylase. Planta, 219(3), 389–396.
      Klotke, J., Kopka, J., Gatzke, N. & Heyer, A.G. (2004) Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation ‐ evidence for a role of raffinose in cold acclimation: cold acclimation of Arabidopsis accessions. Plant, Cell & Environment, 27(11), 1395–1404.
      Kraemer, F.J., Lunde, C., Koch, M., Kuhn, B.M., Ruehl, C., Brown, P.J. et al. (2021) A mixed‐linkage (1, 3; 1, 4)‐β‐D‐glucan specific hydrolase mediates dark‐triggered degradation of this plant cell wall polysaccharide. Plant Physiology, 185(4), 1559–1573.
      Lamm, C.E., Rabbi, I.Y., Medeiros, D.B., Rosado‐Souza, L., Pommerrenig, B., Dahmani, I. et al. (2023) Efficient sugar utilization and transition from oxidative to substrate‐level phosphorylation in high starch storage roots of African cassava genotypes. The Plant Journal, tpj.16357, 38–57.
      Li, H. (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics, 27(21), 2987–2993.
      Liao, Y., Smyth, G.K. & Shi, W. (2014) featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923–930.
      Loewus, F.A. & Loewus, M.W. (1983) Myo‐inositol: its biosynthesis and metabolism. Annual Review of Plant Physiology, 34(1), 137–161.
      Loewus, F.A. & Murthy, P.P.N. (2000) Myo‐inositol metabolism in plants. Plant Science, 150(1), 1–19.
      Love, M.I., Huber, W. & Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biology, 15(12), 550.
      Luo, X., An, F., Xue, J., Zhu, W., Wei, Z., Ou, W. et al. (2023) Integrative analysis of metabolome and transcriptome reveals the mechanism of color formation in cassava (Manihot esculenta Crantz) leaves. Frontiers in Plant Science, 14, 1181257.
      Mehdi, R., Lamm, C.E., Bodampalli Anjanappa, R., Müdsam, C., Saeed, M., Klima, J. et al. (2019) Symplasmic phloem unloading and radial post‐phloem transport via vascular rays in tuberous roots of Manihot esculenta. Journal of Experimental Botany, 70(20), 5559–5573.
      Morsy, M.R., Jouve, L., Hausman, J.‐F., Hoffmann, L. & Stewart, J.M.D. (2007) Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. Journal of Plant Physiology, 164(2), 157–167.
      Munyikwa, T.R.I., Langeveld, S., Salehuzzaman, S.N.I.M., Jacobsen, E. & Visser, R.G.F. (1997) Cassava starch biosynthesis: new avenues for modifying starch quantity and quality. Euphytica, 96(1), 65–75.
      Nassar, N. & Ortiz, R. (2010) Breeding cassava to feed the poor. Scientific American, 302(5), 78–84.
      Njoku, D.N., Gracen, V.E., Offei, S.K., Asante, I.K., Egesi, C.N., Kulakow, P. et al. (2015) Parent‐offspring regression analysis for total carotenoids and some agronomic traits in cassava. Euphytica, 206(3), 657–666.
      Ntawuruhunga, P. & Dixon, A.G. (2010) Quantitative variation and interrelationship between factors influencing cassava yield. Journal of Applied Biosciences, 26(4), 1594–1602.
      Ogbonna, A.C., Ramu, P., Esuma, W., Nandudu, L., Morales, N., Powell, A. et al. (2021) A population based expression atlas provides insights into disease resistance and other physiological traits in cassava (Manihot esculenta Crantz). Scientific Reports, 11(1), 23520.
      Olayide, P., Alexandersson, E., Tzfadia, O., Lenman, M., Gisel, A. & Stavolone, L. (2023) Transcriptome and metabolome profiling identify factors potentially involved in pro‐vitamin A accumulation in cassava landraces. Plant Physiology and Biochemistry, 199, 107713.
      Oleszkiewicz, T., Klimek‐Chodacka, M., Kruczek, M., Godel‐Jędrychowska, K., Sala, K., Milewska‐Hendel, A. et al. (2021) Inhibition of carotenoid biosynthesis by CRISPR/Cas9 triggers Cell Wall Remodelling in carrot. International Journal of Molecular Sciences, 22(12), 6516.
      Oxenbøll Sørensen, S., Pauly, M., Bush, M., Skjøt, M., McCann, M.C., Borkhardt, B. et al. (2000) Pectin engineering: modification of potato pectin by in vivo expression of an endo‐1, 4‐β‐D‐galactanase. Proceedings of the National Academy of Sciences of the United States of America, 97(13), 7639–7644.
      Pauly, M., Gille, S., Liu, L., Mansoori, N., de Souza, A., Schultink, A. et al. (2013) Hemicellulose biosynthesis. Planta, 238, 627–642.
      Polko, J.K. & Kieber, J.J. (2019) The regulation of cellulose biosynthesis in plants. The Plant Cell, 31(2), 282–296.
      Rabbi, I.Y., Kayondo, S.I., Bauchet, G., Yusuf, M., Aghogho, C.I., Ogunpaimo, K. et al. (2022) Genome‐wide association analysis reveals new insights into the genetic architecture of defensive, agro‐morphological and quality‐related traits in cassava. Plant Molecular Biology, 109(3), 195–213.
      Rabbi, I.Y., Udoh, L.I., Wolfe, M., Parkes, E.Y., Gedil, M.A., Dixon, A. et al. (2017) Genome‐wide association mapping of correlated traits in cassava: dry matter and Total carotenoid content. The Plant Genome, 10(3).
      Rawsthorne, S. (2002) Carbon flux and fatty acid synthesis in plants. Progress in Lipid Research, 41(2), 182–196.
      Rodríguez‐Villalón, A., Gas, E. & Rodríguez‐Concepción, M. (2009) Phytoene synthase activity controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark‐grown Arabidopsis seedlings. The Plant Journal, 60(3), 424–435.
      Rosado‐Souza, L., David, L.C., Drapal, M., Fraser, P.D., Hofmann, J., Klemens, P.A.W. et al. (2019) Cassava metabolomics and starch quality. Current Protocols in Plant Biology, 4(4).
      Rüscher, D., Vasina, V.V., Knoblauch, J., Bellin, L., Pommerrenig, B., Alseekh, S. et al. (2024) Symplasmic phloem loading and subcellular transport in storage roots are key factors for carbon allocation in cassava. Plant Physiology, kiae298. Online ahead of print. Available from: https://doi.org/10.1093/plphys/kiae298.
      Sánchez, T., Ceballos, H., Dufour, D., Ortiz, D., Morante, N., Calle, F. et al. (2014) Prediction of carotenoids, cyanide and dry matter contents in fresh cassava root using NIRS and hunter color techniques. Food Chemistry, 151, 444–451.
      Sanyal, R., Kumar, S., Pattanayak, A., Kar, A. & Bishi, S.K. (2023) Optimizing raffinose family oligosaccharides content in plants: A tightrope walk. Frontiers in Plant Science, 14, 1134754.
      Talsma, E.F., Borgonjen‐van Den Berg, K.J., Melse‐Boonstra, A., Mayer, E.V., Verhoef, H., Demir, A.Y. et al. (2018) The potential contribution of yellow cassava to dietary nutrient adequacy of primary‐school children in eastern Kenya; the use of linear programming. Public Health Nutrition, 21(2), 365–376.
      Wang, S., Robertz, S., Seven, M., Kraemer, F., Kuhn, B.M., Liu, L. et al. (2023) A large‐scale forward genetic screen for maize mutants with altered lignocellulosic properties. Frontiers in Plant Science, 14, 1099009.
      Wang, Y., Chantreau, M., Sibout, R. & Hawkins, S. (2013) Plant cell wall lignification and monolignol metabolism. Frontiers in Plant Science, 4, 51659.
      Wang, Z., Zhang, L., Dong, C., Guo, J., Jin, L., Wei, P. et al. (2021) Characterization and functional analysis of phytoene synthase gene family in tobacco. BMC Plant Biology, 21(1), 32.
      Welsch, R., Arango, J., Bär, C., Salazar, B., Al‐Babili, S., Beltrán, J. et al. (2010) Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. The Plant Cell, 22(10), 3348–3356.
      Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis, 2nd edition. Cham, Switzerland: Springer.
      Wilson, M.C., Mutka, A.M., Hummel, A.W., Berry, J., Chauhan, R.D., Vijayaraghavan, A. et al. (2017) Gene expression atlas for the food security crop cassava. New Phytologist, 213(4), 1632–1641.
      Wright, L.P., Rohwer, J.M., Ghirardo, A., Hammerbacher, A., Ortiz‐Alcaide, M., Raguschke, B. et al. (2014) Deoxyxylulose 5‐phosphate synthase controls flux through the methylerythritol 4‐phosphate pathway in Arabidopsis. Plant Physiology, 165(4), 1488–1504.
      Xiao, L., Cao, S., Shang, X., Xie, X., Zeng, W., Lu, L. et al. (2021) Metabolomic and transcriptomic profiling reveals distinct nutritional properties of cassavas with different flesh colors. Food Chemistry: Molecular Sciences, 2, 100016.
      Yan, S., Liu, Q., Li, W., Yan, J. & Fernie, A.R. (2022) Raffinose family oligosaccharides: crucial regulators of plant development and stress responses. Critical Reviews in Plant Sciences, 16(5), 284–287.
      Yu, G., Wang, L.‐G., Han, Y. & He, Q.‐Y. (2012) clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology, 16(5), 284–287.
      Zeeman, S.C., Kossmann, J. & Smith, A.M. (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Annual Review of Plant Biology, 61(1), 209–234.
      Zhang, L., Häusler, R.E., Greiten, C., Hajirezaei, M.R., Haferkamp, I., Neuhaus, H.E. et al. (2008) Overriding the co‐limiting import of carbon and energy into tuber amyloplasts increases the starch content and yield of transgenic potato plants. Plant Biotechnology Journal, 6(5), 453–464.
    • Grant Information:
      INV-008053 (Cassava Source-Sink) Bill and Melinda Gates Foundation; Germany's Excellence Strategy-EXC 2048/1-Pro Cluster of Excellence on Plant Sciences
    • Contributed Indexing:
      Keywords: Manihot esculenta; carotenoid content; cassava; cell wall components; myo‐inositol; provitamin A; raffinose; starch content
    • Accession Number:
      9005-25-8 (Starch)
      7440-44-0 (Carbon)
      4L6452S749 (Inositol)
      N5O3QU595M (Raffinose)
      36-88-4 (Carotenoids)
    • Publication Date:
      Date Created: 20240704 Date Completed: 20240814 Latest Revision: 20240814
    • Publication Date:
      20240815
    • Accession Number:
      10.1111/tpj.16909
    • Accession Number:
      38961707