Menu
×
John's Island Library
9 a.m. - 6 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 6 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 6 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 6 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 6 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 6 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 6 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 6 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 6 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 1 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 3 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 6 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 6 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 6 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 6 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
John's Island Library
9 a.m. - 6 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 6 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 6 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 6 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 6 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 6 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 6 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 6 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 6 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 1 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 3 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 6 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 6 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 6 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 6 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Research progress of propofol in alleviating cerebral ischemia/reperfusion injury.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Zheng H;Zheng H;Zheng H;Zheng H; Xiao X; Xiao X; Han Y; Han Y; Wang P; Wang P; Zang L; Zang L; Wang L; Wang L; Zhao Y; Zhao Y; Shi P; Shi P; Yang P; Yang P; Guo C; Guo C; Xue J; Xue J; Zhao X; Zhao X
- Source:
Pharmacological reports : PR [Pharmacol Rep] 2024 Oct; Vol. 76 (5), pp. 962-980. Date of Electronic Publication: 2024 Jul 02.- Publication Type:
Journal Article; Review- Language:
English - Source:
- Additional Information
- Source: Publisher: Springer International Publishing Country of Publication: Switzerland NLM ID: 101234999 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2299-5684 (Electronic) Linking ISSN: 17341140 NLM ISO Abbreviation: Pharmacol Rep Subsets: MEDLINE
- Publication Information: Publication: 2020- : Cham, Switzerland : Springer International Publishing
Original Publication: Kraków, Poland : Institute of Pharmacology, Polish Academy of Sciences, c2005- - Subject Terms: Propofol*/pharmacology ; Propofol*/therapeutic use ; Reperfusion Injury*/drug therapy ; Reperfusion Injury*/metabolism ; Neuroprotective Agents*/pharmacology ; Neuroprotective Agents*/therapeutic use ; Brain Ischemia*/drug therapy ; Brain Ischemia*/metabolism; Humans ; Animals ; Oxidative Stress/drug effects ; Anesthetics, Intravenous/pharmacology ; Hypnotics and Sedatives/pharmacology ; Hypnotics and Sedatives/therapeutic use
- Abstract: Ischemic stroke is a leading cause of adult disability and death worldwide. The primary treatment for cerebral ischemia patients is to restore blood supply to the ischemic region as quickly as possible. However, in most cases, more severe tissue damage occurs, which is known as cerebral ischemia/reperfusion (I/R) injury. The pathological mechanisms of brain I/R injury include mitochondrial dysfunction, oxidative stress, excitotoxicity, calcium overload, neuroinflammation, programmed cell death and others. Propofol (2,6-diisopropylphenol), a short-acting intravenous anesthetic, possesses not only sedative and hypnotic effects but also immunomodulatory and neuroprotective effects. Numerous studies have reported the protective properties of propofol during brain I/R injury. In this review, we summarize the potential protective mechanisms of propofol to provide insights for its better clinical application in alleviating cerebral I/R injury.
(© 2024. The Author(s) under exclusive licence to Maj Institute of Pharmacology Polish Academy of Sciences.) - References: Jia J, Jin H, Nan D, Yu W, Huang Y. New insights into targeting mitochondria in ischemic injury. Apoptosis. 2021;26(3–4):163–83. (PMID: 3375131810.1007/s10495-021-01661-5)
Hoffmann A, Zhu G, Wintermark M. Advanced neuroimaging in stroke patients: prediction of tissue fate and hemorrhagic transformation. Expert Rev Cardiovasc Ther. 2012;10(4):515–24. (PMID: 2245858310.1586/erc.12.30)
Sarvari S, Moakedi F, Hone E, Simpkins JW, Ren X. Mechanisms in blood-brain barrier opening and metabolism-challenged cerebrovascular ischemia with emphasis on ischemic stroke. Metab Brain Dis. 2020;35(6):851–68. (PMID: 32297170798890610.1007/s11011-020-00573-8)
Bhatia K, Bhagavan S, Bains N, French B, Siddiq F, Gomez CR, et al. Current endovascular treatment of acute ischemic stroke. Mo Med. 2020;117(5):480–9. (PMID: 333117597723144)
Chen Y, Li Z. Protective effects of propofol on rats with cerebral ischemia-reperfusion injury via the PI3K/Akt pathway. J Mol Neurosci. 2021;71(4):810–20. (PMID: 3298493510.1007/s12031-020-01703-8)
Vasileiou I, Xanthos T, Koudouna E, Perrea D, Klonaris C, Katsargyris A, et al. Propofol: a review of its non-anaesthetic effects. Eur J Pharmacol. 2009;605(1–3):1–8. (PMID: 1924824610.1016/j.ejphar.2009.01.007)
Ten VS, Starkov A. Hypoxic-ischemic injury in the developing brain: the role of reactive oxygen species originating in mitochondria. Neurol Res Int. 2012;2012:542976. (PMID: 225481673323863)
Yang JL, Mukda S, Chen SD. Diverse roles of mitochondria in ischemic stroke. Redox Biol. 2018;16:263–75. (PMID: 29549824585493010.1016/j.redox.2018.03.002)
Scheffer DDL, Garcia AA, Lee L, Mochly-Rosen D, Ferreira JCB. Mitochondrial fusion, fission, and mitophagy in cardiac diseases: challenges and therapeutic opportunities. Antioxid Redox Signal. 2022;36(13–15):844–63. (PMID: 35044229912552410.1089/ars.2021.0145)
Shao Z, Dou S, Zhu J, Wang H, Xu D, Wang C, et al. The role of mitophagy in ischemic stroke. Front Neurol. 2020;11:608610. (PMID: 33424757779366310.3389/fneur.2020.608610)
Obeng E. Apoptosis (programmed cell death) and its signals - a review. Braz J Biol. 2021;81(4):1133–43. (PMID: 3311192810.1590/1519-6984.228437)
Li J, Yu W, Li XT, Qi SH, Li B. The effects of propofol on mitochondrial dysfunction following focal cerebral ischemia-reperfusion in rats. Neuropharmacology. 2014;77:358–68. (PMID: 2403592010.1016/j.neuropharm.2013.08.029)
Wang H, Zheng S, Liu M, Jia C, Wang S, Wang X, et al. The effect of propofol on mitochondrial fission during oxygen-glucose deprivation and reperfusion injury in rat hippocampal neurons. PLoS ONE. 2016;11(10):e0165052. (PMID: 27788177508283010.1371/journal.pone.0165052)
Yue ZY, Dong H, Wang YF, Liu Y, Song CY, Yang WC, et al. Propofol prevents neuronal mtDNA deletion and cerebral damage due to ischemia/reperfusion injury in rats. Brain Res. 2015;1594:108–14. (PMID: 2545108810.1016/j.brainres.2014.10.016)
Li X, Liu Y, Sun Z. Influence of propofol to expression of cytochrome C and activity of mitochondrial ATPase with cerebral ischemia-reperfusion injury in rats. Med Inform. 2014;27(23):66–7. (in Chinese).
Sun HS, Feng ZP, Barber PA, Buchan AM, French RJ. Kir6.2-containing ATP-sensitive potassium channels protect cortical neurons from ischemic/anoxic injury in vitro and in vivo. Neuroscience. 2007;144(4):1509–15. (PMID: 1717511210.1016/j.neuroscience.2006.10.043)
Zhang Y, Hou J, Zhang B, Li H. Effects of propofol on the mitochondria ATP-sensitive potassium channel that contains Kir6.2 and SUR1 subunits in rats with cerebral ischemia-reperfusion injury. J Clin Anesthesiology. 2016;32(3):288–90. (in Chinese).
Wu X, Sun S, Wang Y, Zhu J, Jiang K, Leng Y, et al. A fluorescent carbon-dots-based mitochondria-targetable nanoprobe for peroxynitrite sensing in living cells. Biosens Bioelectron. 2017;90:501–7. (PMID: 2782588310.1016/j.bios.2016.10.060)
Wierońska JM, Cieślik P, Kalinowski L. Nitric oxide-dependent pathways as critical factors in the consequences and recovery after brain ischemic hypoxia. Biomolecules. 2021;11(8):1097. (PMID: 34439764839272510.3390/biom11081097)
Chen Z, Vong CT, Gao C, Chen S, Wu X, Wang S, et al. Bilirubin Nanomedicines for the treatment of reactive oxygen species (ROS)-mediated diseases. Mol Pharm. 2020;17(7):2260–74. (PMID: 3243388610.1021/acs.molpharmaceut.0c00337)
Hu Y, Deng H, Xu S, Zhang J. MicroRNAs regulate mitochondrial function in cerebral ischemia-reperfusion injury. Int J Mol Sci. 2015;16(10):24895–917. (PMID: 26492239463278110.3390/ijms161024895)
Lee JC, Won MH. Neuroprotection of antioxidant enzymes against transient global cerebral ischemia in gerbils. Anat Cell Biol. 2014;47(3):149–56. (PMID: 25276473417818910.5115/acb.2014.47.3.149)
Chen X, Cheng C, Zuo X, Huang W. Astragalin alleviates cerebral ischemia-reperfusion injury by improving anti-oxidant and anti-inflammatory activities and inhibiting apoptosis pathway in rats. BMC Complement Med Ther. 2020;20(1):120. (PMID: 32316944717180510.1186/s12906-020-02902-x)
Grasshoff C, Gillessen T. The effect of propofol on increased superoxide concentration in cultured rat cerebrocortical neurons after stimulation of N-methyl-d-aspartate receptors. Anesth Analg. 2002;95(4):920–2. (PMID: 1235126810.1213/00000539-200210000-00023)
Xu Z, Lu Y, Wang J, Ding X, Chen J, Miao C. The protective effect of propofol against TNF-α-induced apoptosis was mediated via inhibiting iNOS/NO production and maintaining intracellular Ca 2 + homeostasis in mouse hippocampal HT22 cells. Biomed Pharmacother. 2017;91:664–72. (PMID: 2849923710.1016/j.biopha.2017.04.110)
Lu Y, Chen W, Lin C, Wang J, Zhu M, Chen J, et al. The protective effects of propofol against CoCl-induced HT22 cell hypoxia injury via PP2A/CAMKIIα/nNOS pathway. BMC Anesthesiol. 2017;17(1):32. (PMID: 28241801532991510.1186/s12871-017-0327-1)
Yu W, Gao D, Jin W, Liu S, Qi S. Propofol prevents oxidative stress by decreasing the ischemic accumulation of succinate in focal cerebral ischemia-reperfusion injury. Neurochem Res. 2018;43(2):420–9. (PMID: 2916809210.1007/s11064-017-2437-z)
Chen XH, Zhou X, Yang XY, Zhou ZB, Lu DH, Tang Y, et al. Propofol protects against H2 O2 -induced oxidative injury in differentiated PC12 cells via inhibition of ca(2+)-dependent NADPH oxidase. Cell Mol Neurobiol. 2016;36(4):541–51. (PMID: 2616296810.1007/s10571-015-0235-1)
He J, Huang C, Jiang J, Lv L. Propofol exerts hippocampal neuron protective effects via up-regulation of metallothionein-3. Neurol Sci. 2013;34(2):165–71. (PMID: 2236722110.1007/s10072-012-0978-0)
Han B, Zhao J, Xiang F, Shu Y. General anesthetic propofol alleviates global cerebral ischemia-reperfusion injury by up-regulating MT-3 in gerbils. Chin J Gerontol. 2014;34(5):1302–4. (in Chinese).
Liu XB, Xia H, Wang G, Zhang W, Hu Y, Zhang J. Propofol relieves oxidative stress response of cerebral ischemiareperfusion injury through SIRT1 signaling pathway. J Biol Regul Homeost Agents. 2020;34(3):435–43. (PMID: 32529818)
Meng X, Tan J, Li M, Song S, Miao Y, Zhang Q. Sirt1: Role under the condition of ischemia/hypoxia. Cell Mol Neurobiol. 2017;37(1):17–28. (PMID: 2697152510.1007/s10571-016-0355-2)
Liang C, Cang J, Wang H, Xue Z. Propofol attenuates cerebral ischemia/reperfusion injury partially using heme oxygenase-1. J Neurosurg Anesthesiol. 2013;25(3):311–6. (PMID: 2351937210.1097/ANA.0b013e31828c6af5)
Yu C, Xiao JH. The Keap1-Nrf2 system: a mediator between oxidative stress and aging. Oxid Med Cell Longev. 2021;2021:6635460. (PMID: 34012501810677110.1155/2021/6635460)
Wan X, Yu W, Zhao Q, Jiang L, Sun Q, Zhao Y, et al. Effect of propofol on Keap1/Nrf2 signaling pathway in alleviating oxygen-glucose deprivation and reperfusion damage in primary rat neurons. Chin J Anesthesiology. 2020;40(11):1353–7. (in Chinese).
Zhou HY, Jiang F, Cao Z, Shen QY, Feng YJ, Hou ZH. Propofol protects PC12 cells from cobalt chloride-induced injury by mediating miR-134. Histol Histopathol. 2021;36(4):425–35. (PMID: 33410125)
Yun JY, Park KS, Kim JH, Do SH, Zuo Z. Propofol reverses oxidative stress-attenuated glutamate transporter EAAT3 activity: evidence of protein kinase C involvement. Eur J Pharmacol. 2007;565(1–3):83–8. (PMID: 1738292710.1016/j.ejphar.2007.02.045)
Palmada M, Kinne-Saffran E, Centelles JJ, Kinne RK. Benzodiazepines differently modulate EAAT1/GLAST and EAAT2/GLT1 glutamate transporters expressed in CHO cells. Neurochem Int. 2002;40(4):321–6. (PMID: 1179246210.1016/S0197-0186(01)00087-0)
Girbovan C, Plamondon H. Resveratrol downregulates type-1 glutamate transporter expression and microglia activation in the hippocampus following cerebral ischemia reperfusion in rats. Brain Res. 2015;1608:203–14. (PMID: 2572717310.1016/j.brainres.2015.02.038)
Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation. 2019;16(1):142. (PMID: 31291966661768410.1186/s12974-019-1516-2)
Qi SH, Liu Y, Hao LY, Guan QH, Gu YH, Zhang J, et al. Neuroprotection of ethanol against ischemia/reperfusion-induced brain injury through decreasing c-Jun N-terminal kinase 3 (JNK3) activation by enhancing GABA release. Neuroscience. 2010;167(4):1125–37. (PMID: 2021963710.1016/j.neuroscience.2010.02.018)
Lin S, Zhou G, Shao W, Fu Z. Impact of dexmedetomidine on amino acid contents and the cerebral ultrastructure of rats with cerebral ischemia-reperfusion injury. Acta Cir Bras. 2017;32(6):459–66. (PMID: 2870000710.1590/s0102-865020170060000006)
Gong HY, Zheng F, Zhang C, Chen XY, Liu JJ, Yue XQ. Propofol protects hippocampal neurons from apoptosis in ischemic brain injury by increasing GLT-1 expression and inhibiting the activation of NMDAR via the JNK/Akt signaling pathway. Int J Mol Med. 2016;38(3):943–50. (PMID: 2743032710.3892/ijmm.2016.2663)
Guo J, Yue Y, Cui J, Liao L. Effects of propofol on levels of amino acid and neuronal apoptosis of hippocampus after global ischemia-reperfusion in rats. Chin J Pathophysiology. 2007;23(8):1547–50. (in Chinese).
Cai J, Hu Y, Li W, Li L, Li S, Zhang M, et al. The neuroprotective effect of propofol against brain ischemia mediated by the glutamatergic signaling pathway in rats. Neurochem Res. 2011;36(10):1724–31. (PMID: 2155684310.1007/s11064-011-0487-1)
Diering GH, Huganir RL. The AMPA receptor code of synaptic plasticity. Neuron. 2018;100(2):314–29. (PMID: 30359599621436310.1016/j.neuron.2018.10.018)
Zhu M, Fu W, Wang H, Wang G. Effect of propofol post-conditioning on ADAR2-AMPA receptor GluR2 pathway in a rat model of focal cerebral ischemia-reperfusion injury. J Clin Anesthesiology. 2015;31(7):693–6. (in Chinese).
Cai J, Zhang Z, Qi X, Bian Q, Liang Z, Zhang H. Effect of propofol on neuropathology and glutamate transporter-1 expression in CA1 hippocampus of ischemic rats. Chin J Pharmacol Toxicol. 2012;26(3):299–304. (in Chinese).
Velly LJ, Guillet BA, Masmejean FM, Nieoullon AL, Bruder NJ, Gouin FM, et al. Neuroprotective effects of propofol in a model of ischemic cortical cell cultures: role of glutamate and its transporters. Anesthesiology. 2003;99(2):368–75. (PMID: 1288340910.1097/00000542-200308000-00018)
Wang H, Liu S, Wang H, Wang G, Zhu A. The effect of propofol postconditioning on the expression of K(+)-Cl(-)-co-transporter 2 in GABAergic inhibitory interneurons of acute ischemia/reperfusion injury rats. Brain Res. 2015;1597:210–9. (PMID: 2546302710.1016/j.brainres.2014.11.036)
Shenoda B. The role of Na + /Ca 2 + exchanger subtypes in neuronal ischemic injury. Transl Stroke Res. 2015;6(3):181–90. (PMID: 2586043910.1007/s12975-015-0395-9)
Yuan M, Tang Y, Zhou C, Liu F, Chen L, Yuan H. Elevated plasma CaM expression in patients with acute cerebral infarction predicts poor outcomes and is inversely associated with miR-26b expression. Int J Neurosci. 2016;126(5):408–14. (PMID: 2600120410.3109/00207454.2015.1020537)
Halling DB, Aracena-Parks P, Hamilton SL. Regulation of voltage-gated Ca 2 + channels by calmodulin. Sci STKE. 2005;2005(315):re15. (PMID: 1636904710.1126/stke.3152005re15)
Li X, Yao L, Liang Q, Qu H, Cai H. Propofol protects hippocampal neurons from hypoxia-reoxygenation injury by decreasing calcineurin-induced calcium overload and activating YAP signaling. Oxid Med Cell Longev. 2018;2018:1725191. (PMID: 30046369603858410.1155/2018/1725191)
Giorgi C, Baldassari F, Bononi A, Bonora M, De Marchi E, Marchi S, et al. Mitochondrial ca(2+) and apoptosis. Cell Calcium. 2012;52(1):36–43. (PMID: 22480931339684610.1016/j.ceca.2012.02.008)
Cai Y, Hu H, Wang M, Ma X. Protective effects of propofol on focal ischemia-reperfusion injury in rats. Chin J Tissue Eng Res. 2006;10(4):175–7. (in Chinese).
Lu Y, Gu Y, Ding X, Wang J, Chen J, Miao C. Intracellular Ca 2 + homeostasis and JAK1/STAT3 pathway are involved in the protective effect of propofol on BV2 microglia against hypoxia-induced inflammation and apoptosis. PLoS ONE. 2017;12(5):e0178098. (PMID: 28542400544159810.1371/journal.pone.0178098)
Zhong H, Chen H, Gu C. Sevoflurane post-treatment upregulated miR-203 expression to attenuate cerebral ischemia-reperfusion-induced neuroinflammation by targeting MyD88. Inflammation. 2020;43(2):651–63. (PMID: 3189791510.1007/s10753-019-01147-2)
Wang Y, Xiao G, He S, Liu X, Zhu L, Yang X, et al. Protection against acute cerebral ischemia/reperfusion injury by QiShenYiQi via neuroinflammatory network mobilization. Biomed Pharmacother. 2020;125:109945. (PMID: 3202824010.1016/j.biopha.2020.109945)
Marchi S, Guilbaud E, Tait SWG, Yamazaki T, Galluzzi L. Mitochondrial control of inflammation. Nat Rev Immunol. 2023;23(3):159–73. (PMID: 3587941710.1038/s41577-022-00760-x)
Maida CD, Norrito RL, Daidone M, Tuttolomondo A, Pinto A. Neuroinflammatory mechanisms in ischemic stroke: focus on cardioembolic stroke, background, and therapeutic approaches. Int J Mol Sci. 2020;21(18):6454. (PMID: 32899616755565010.3390/ijms21186454)
Wang Y, Fang H. Advances of relations between connexin43 (Cx43) and neuroinflammation. Fudan Univ J Med Sci. 2018;45(6):906–10. (in Chinese).
Franco R, Lillo A, Rivas-Santisteban R, Reyes-Resina I, Navarro G. Microglial adenosine receptors: from preconditioning to modulating the M1/M2 balance in activated cells. Cells. 2021;10(5):1124. (PMID: 34066933814859810.3390/cells10051124)
Zhang T, Wang Y, Xia Q, Tu Z, Sun J, Jing Q, et al. Propofol mediated protection of the brain from ischemia/reperfusion injury through the regulation of microglial connexin 43. Front Cell Dev Biol. 2021;9:637233. (PMID: 34169070821799010.3389/fcell.2021.637233)
Yu H, Wang X, Kang F, Chen Z, Meng Y, Dai M. Propofol attenuates inflammatory damage on neurons following cerebral infarction by inhibiting excessive activation of microglia. Int J Mol Med. 2019;43(1):452–60. (PMID: 30431058)
Wang Y, Jin S, Sonobe Y, Cheng Y, Horiuchi H, Parajuli B, et al. Interleukin-1β induces blood-brain barrier disruption by downregulating sonic hedgehog in astrocytes. PLoS ONE. 2014;9(10):e110024. (PMID: 25313834419696210.1371/journal.pone.0110024)
Halder SK, Ueda H. Amlexanox inhibits cerebral ischemia-induced delayed astrocytic High-Mobility Group Box 1 release and subsequent brain damage. J Pharmacol Exp Ther. 2018;365(1):27–36. (PMID: 2933015510.1124/jpet.117.245340)
Fan Y, Zhu S, Wang J, Zhao Y, Wang X. Propofol protects against oxygen/glucose deprivationinduced cell injury via gap junction inhibition in astrocytes. Mol Med Rep. 2020;22(4):2896–904. (PMID: 329453677453496)
Zhang F, Wang Z, Sun B, Huang Y, Chen C, Hu J, et al. Propofol rescued astrocytes from LPS-induced inflammatory response via blocking LncRNA-MEG3/NF-κB Axis. Curr Neurovasc Res. 2022;19(1):5–18. (PMID: 3529734910.2174/1567202619666220316112509)
Song H, Yang Z, Liu J, Liu G. Effect of propofol on astrocyte injury induced by glucose-oxygen deprivation and reperfusion and its mechanism. J Qingdao University(Medical Sciences). 2021;57(6):903–7. (in Chinese).
Ikegame Y, Yamashita K, Hayashi S, Yoshimura S, Nakashima S, Iwama T. Neutrophil elastase inhibitor prevents ischemic brain damage via reduction of vasogenic edema. Hypertens Res. 2010;33(7):703–7. (PMID: 2048544110.1038/hr.2010.58)
Egashira Y, Suzuki Y, Azuma Y, Takagi T, Mishiro K, Sugitani S, et al. The growth factor progranulin attenuates neuronal injury induced by cerebral ischemia-reperfusion through the suppression of neutrophil recruitment. J Neuroinflammation. 2013;10:105. (PMID: 23972823376538110.1186/1742-2094-10-105)
Feng C, Ma H, Yue Y, Zhang Y, Qu X. Effect of propofol on the activation of nuclear factor-κB and expression of inflammatory cytokines in cerebral cortex during transient focal cerebral ischemia-reperfusion:experiment with rats. Natl Med J China. 2004;84(24):58–62. (in Chinese).
Tan Y, Li X, Yu J, Lin G. Effects of Propofol pretreatment on the activity of neutropil elastase and expression of inflammatory factors following early stage of cerebral ischemia-reperfusion injury in rats. J Clin Neurol. 2011;24(6):431–3. (in Chinese).
Shi SS, Yang WZ, Chen Y, Chen JP, Tu XK. Propofol reduces inflammatory reaction and ischemic brain damage in cerebral ischemia in rats. Neurochem Res. 2014;39(5):793–9. (PMID: 2461052710.1007/s11064-014-1272-8)
Ruan C, Guo H, Gao J, Wang Y, Liu Z, Yan J, et al. Neuroprotective effects of metformin on cerebral ischemia-reperfusion injury by regulating PI3K/Akt pathway. Brain Behav. 2021;11(10):e2335. (PMID: 34473417855330510.1002/brb3.2335)
Ghafouri-Fard S, Abak A, Tondro Anamag F, Shoorei H, Majidpoor J, Taheri M. The emerging role of non-coding RNAs in the regulation of PI3K/AKT pathway in the carcinogenesis process. Biomed Pharmacother. 2021;137:111279. (PMID: 3349396910.1016/j.biopha.2021.111279)
Tu X, Yang B, Tu D, Liang R, Shi S. Propofol attenuates neuroinflammation and brain damage via modulating PI3K/Akt signaling pathway in rats of focal cerebral ischemia. Chin Pharmacol Bull. 2019;35(5):630–3. (in Chinese).
Luo J, Huang B, Zhang Z, Liu M, Luo T. Delayed treatment of propofol inhibits lipopolysaccharide-induced inflammation in microglia through the PI3K/PKB pathway. NeuroReport. 2018;29(10):839–45. (PMID: 29742623599938510.1097/WNR.0000000000001041)
Zhang Q, Sun P, Zhang S, Tian Y, Zhang J. Effects of propofol on the mRNA expression of toll-like receptor 4 in BV-2 cells during mimic ischemia-reperfusion injury in vitro. J Huazhong Univ Sci Technolog Med Sci. 2008;28(6):711–3. (PMID: 1910737310.1007/s11596-008-0622-7)
Li R, Zhou Y, Zhang S, Li J, Zheng Y, Fan X. The natural (poly)phenols as modulators of microglia polarization via TLR4/NF-κB pathway exert anti-inflammatory activity in ischemic stroke. Eur J Pharmacol. 2022;914:174660. (PMID: 3486371010.1016/j.ejphar.2021.174660)
Ulbrich F, Eisert L, Buerkle H, Goebel U, Schallner N. Propofol, but not ketamine or midazolam, exerts neuroprotection after ischaemic injury by inhibition of toll-like receptor 4 and nuclear factor kappa-light-chain-enhancer of activated B-cell signalling: a combined in vitro and animal study. Eur J Anaesthesiol. 2016;33(9):670–80. (PMID: 2698188110.1097/EJA.0000000000000449)
Xin P, Xu X, Deng C, Liu S, Wang Y, Zhou X, et al. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol. 2020;80:106210. (PMID: 3197242510.1016/j.intimp.2020.106210)
Brown KD. Transglutaminase 2 and NF-κB: an odd couple that shapes breast cancer phenotype. Breast Cancer Res Treat. 2013;137(2):329–36. (PMID: 2322414610.1007/s10549-012-2351-7)
Rudlong J, Cheng A, Johnson GVW. The role of transglutaminase 2 in mediating glial cell function and pathophysiology in the central nervous system. Anal Biochem. 2020;591:113556. (PMID: 3186628910.1016/j.ab.2019.113556)
Hou Y, Xiao X, Yu W, Qi S. Propofol suppresses microglia inflammation by targeting TGM2/NF-κB signaling. J Immunol Res. 2021;2021:4754454. (PMID: 34485533841044610.1155/2021/4754454)
Feng S, Zou L, Wang H, He R, Liu K, Zhu H. RhoA/ROCK-2 pathway inhibition and tight junction protein upregulation by Catalpol suppresses Lipopolysaccaride-induced disruption of blood-brain barrier permeability. Molecules. 2018;23(9):2371. (PMID: 30227623622531110.3390/molecules23092371)
Dokumacioglu E, Duzcan I, Iskender H, Sahin A. RhoA/ROCK-1 signaling pathway and oxidative stress in coronary artery disease patients. Braz J Cardiovasc Surg. 2022;37(2):212–8. (PMID: 34236817905414610.21470/1678-9741-2020-0525)
Wu F. The effects of Propofol-mediated RhoA/ROCK2 signaling pathway on neuroinflammation, cell apoptosis and cerebral infarction after cerebral ischemia-reperfusion. Stroke Nerv Dis. 2021;28(1):14–9. (in Chinese).
D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–92. (PMID: 3095860210.1002/cbin.11137)
Zhao M, Li S, Matsubara JA. Targeting pyroptotic cell death pathways in retinal disease. Front Med (Lausanne). 2022;8:802063. (PMID: 3504753510.3389/fmed.2021.802063)
Liu L, Chan C. The role of inflammasome in Alzheimer’s disease. Ageing Res Rev. 2014;15:6–15. (PMID: 2456125010.1016/j.arr.2013.12.007)
Awad F, Assrawi E, Louvrier C, Jumeau C, Georgin-Lavialle S, Grateau G, et al. Inflammasome biology, molecular pathology and therapeutic implications. Pharmacol Ther. 2018;187:133–49. (PMID: 2946670210.1016/j.pharmthera.2018.02.011)
Fann DY, Lee SY, Manzanero S, Chunduri P, Sobey CG, Arumugam TV. Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res Rev. 2013;12(4):941–66. (PMID: 2410336810.1016/j.arr.2013.09.004)
Ma Z. Propofol inhibits neuronal pyroptosis after cerebral ischemia-reperfusion in mice through NLRP1-caspase-1 pathway. Jilin University; 2021. (in Chinese).
Wen Y, Jv K. Neuroprotective effects of propofol in cerebral ischemic rats through NLRP3/caspase-1 pathway. China Pharmacist. 2020;23(6):1081–6. (in Chinese).
Ma Z, Li K, Chen P, Pan J, Li X, Zhao G. Propofol attenuates inflammatory damage via inhibiting NLRP1-Casp1-Casp6 signaling in ischemic brain injury. Biol Pharm Bull. 2020;43(10):1481–9. (PMID: 3299915810.1248/bpb.b20-00050)
Hou K, Xu D, Li F, Chen S, Li Y. The progress of neuronal autophagy in cerebral ischemia stroke: mechanisms, roles and research methods. J Neurol Sci. 2019;400:72–82. (PMID: 3090468910.1016/j.jns.2019.03.015)
Wan X. Propofol protects neurons against ischemia-reperfusion injury through Keap1/Nrf2/ARE pathway-mediated mitophagy. Qingdao University; 2021. (in Chinese).
Wang Y, Tian D, Wei C, Cui V, Wang H, Zhu Y, et al. Propofol attenuates α-synuclein aggregation and neuronal damage in a mouse model of ischemic stroke. Neurosci Bull. 2020;36(3):289–98. (PMID: 3152039810.1007/s12264-019-00426-0)
Sun B, Ou H, Ren F, Huan Y, Zhong T, Gao M, et al. Propofol inhibited autophagy through Ca 2+ /CaMKKβ/AMPK/mTOR pathway in OGD/R-induced neuron injury. Mol Med. 2018;24(1):58. (PMID: 30470173625114010.1186/s10020-018-0054-1)
Sun B, Ou H, Ren F, Guan Y, Huan Y, Cai H. Propofol protects against cerebral ischemia/reperfusion injury by down-regulating long noncoding RNA SNHG14. ACS Chem Neurosci. 2021;12(16):3002–14. (PMID: 3436975010.1021/acschemneuro.1c00059)
Cui DR, Wang L, Jiang W, Qi AH, Zhou QH, Zhang XL. Propofol prevents cerebral ischemia-triggered autophagy activation and cell death in the rat hippocampus through the NF-κB/p53 signaling pathway. Neuroscience. 2013;246:117–32. (PMID: 2364405610.1016/j.neuroscience.2013.04.054)
Kim T, Mehta SL, Kaimal B, Lyons K, Dempsey RJ, Vemuganti R. Poststroke induction of α-synuclein mediates ischemic brain damage. J Neurosci. 2016;36(26):7055–65. (PMID: 27358461499470910.1523/JNEUROSCI.1241-16.2016)
Pradelli LA, Bénéteau M, Ricci JE. Mitochondrial control of caspase-dependent and -independent cell death. Cell Mol Life Sci. 2010;67(10):1589–97. (PMID: 201513141111576710.1007/s00018-010-0285-y)
Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 2006;7(9):880–5. (PMID: 16953201155967610.1038/sj.embor.7400779)
Engelhard K, Werner C, Eberspächer E, Pape M, Stegemann U, Kellermann K, et al. Influence of propofol on neuronal damage and apoptotic factors after incomplete cerebral ischemia and reperfusion in rats: a long-term observation. Anesthesiology. 2004;101(4):912–7. (PMID: 1544852410.1097/00000542-200410000-00016)
Tao T, Li CL, Yang WC, Zeng XZ, Song CY, Yue ZY, et al. Protective effects of propofol against whole cerebral ischemia/reperfusion injury in rats through the inhibition of the apoptosis-inducing factor pathway. Brain Res. 2016;1644:9–14. (PMID: 2716372110.1016/j.brainres.2016.05.006)
Li J, Han B, Ma X, Qi S. The effects of propofol on hippocampal caspase-3 and Bcl-2 expression following forebrain ischemia-reperfusion in rats. Brain Res. 2010;1356:11–23. (PMID: 2070798810.1016/j.brainres.2010.08.012)
He M, Sun H, Pang J, Guo X, Huo Y, Wu X, et al. Propofol alleviates hypoxia-induced nerve injury in PC-12 cells by up-regulation of microRNA-153. BMC Anesthesiol. 2018;18(1):197. (PMID: 30579328630395610.1186/s12871-018-0660-z)
Wang L, Tang W, Jiang T, Lu P, Li Y, Sun A, et al. Endoplasmic reticulum stress is involved in the neuroprotective effect of propofol. Neurochem Res. 2014;39(9):1741–52. (PMID: 2496231310.1007/s11064-014-1369-0)
Nakajima A, Tsuji M, Inagaki M, Tamura Y, Kato M, Niiya A, et al. Neuroprotective effects of propofol on ER stress-mediated apoptosis in neuroblastoma SH-SY5Y cells. Eur J Pharmacol. 2014;725:47–54. (PMID: 2444443710.1016/j.ejphar.2014.01.003)
Xu F, Ma R, Zhang G, Wang S, Yin J, Wang E, et al. Estrogen and propofol combination therapy inhibits endoplasmic reticulum stress and remarkably attenuates cerebral ischemia-reperfusion injury and OGD injury in hippocampus. Biomed Pharmacother. 2018;108:1596–606. (PMID: 3037286210.1016/j.biopha.2018.09.167)
Wang P, Jiang Z, Wang B, Chen H, Wang M. Influence of propofol postconditioning on endoplasmic reticulum inositol-requiring enzyme 1-X box binding protein 1 signaling pathway in oxygen-glucose deprivation/reperfusion model of mouse neuroblastoma cells. J Clin Anesthesiology. 2022;38(6):638–42. (in Chinese).
Chen W, Ju XZ, Lu Y, Ding XW, Miao CH, Chen JW. Propofol improved hypoxia-impaired integrity of blood-brain barrier via modulating the expression and phosphorylation of zonula occludens-1. CNS Neurosci Ther. 2019;25(6):704–13. (PMID: 30680941651589310.1111/cns.13101)
Xiong A, Xiong R, Yu J, Liu Y, Liu K, Jin G, et al. Aquaporin-4 is a potential drug target for traumatic brain injury via aggravating the severity of brain edema. Burns Trauma. 2021;9:tkaa050. (PMID: 33748293795734710.1093/burnst/tkaa050)
Yang C, Hawkins KE, Doré S, Candelario-Jalil E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol. 2019;316(2):C135–53. (PMID: 3037957710.1152/ajpcell.00136.2018)
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS. 2022;19(1):29. (PMID: 35410231899668210.1186/s12987-022-00312-4)
Xiao Z, Xie H, Jin H, Wang J, Chen R. Protection of propofol on blood-brain barrier injury induced by ischemia/reperfusion based on SIRT1/Foxol signal. Chin J Microcirculation. 2022;32(01):12–8. (in Chinese).
Sun X, Yin Y, Kong L, Chen W, Miao C, Chen J. The effect of propofol on hypoxia-modulated expression of heat shock proteins: potential mechanism in modulating blood-brain barrier permeability. Mol Cell Biochem. 2019;462(1–2):85–96. (PMID: 3144661410.1007/s11010-019-03612-w)
Shi Y, Jiang X, Zhang L, Pu H, Hu X, Zhang W, et al. Endothelium-targeted overexpression of heat shock protein 27 ameliorates blood-brain barrier disruption after ischemic brain injury. Proc Natl Acad Sci U S A. 2017;114(7):E1243–52. (PMID: 28137866532095810.1073/pnas.1621174114)
Trillo-Contreras JL, Ramírez-Lorca R, Villadiego J, Echevarría M. Cellular distribution of brain aquaporins and their contribution to cerebrospinal fluid homeostasis and hydrocephalus. Biomolecules. 2022;12(4):530. (PMID: 35454119902585510.3390/biom12040530)
Candelario-Jalil E, Yang Y, Rosenberg GA. Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience. 2009;158(3):983–94. (PMID: 1862110810.1016/j.neuroscience.2008.06.025)
Lee JH, Cui HS, Shin SK, Kim JM, Kim SY, Lee JE, et al. Effect of propofol post-treatment on blood-brain barrier integrity and cerebral edema after transient cerebral ischemia in rats. Neurochem Res. 2013;38(11):2276–86. (PMID: 2399022410.1007/s11064-013-1136-7)
Ji FT, Liang JJ, Miao LP, Wu Q, Cao MH. Propofol post-conditioning protects the blood brain barrier by decreasing matrix metalloproteinase-9 and aquaporin-4 expression and improves the neurobehavioral outcome in a rat model of focal cerebral ischemia-reperfusion injury. Mol Med Rep. 2015;12(2):2049–55. (PMID: 2584943210.3892/mmr.2015.3585)
Ding XW, Sun X, Shen XF, Lu Y, Wang JQ, Sun ZR, et al. Propofol attenuates TNF-α-induced MMP-9 expression in human cerebral microvascular endothelial cells by inhibiting Ca 2+ /CAMKII/ERK/NF-κB signaling pathway. Acta Pharmacol Sin. 2019;40(10):1303–13. (PMID: 31235816678635810.1038/s41401-019-0258-0)
Chen X, Liu F, Yan Z, Cheng S, Liu X, Li H, et al. Therapeutic effects of sensory input training on motor function rehabilitation after stroke. Med (Baltim). 2018;97(48):e13387. (PMID: 10.1097/MD.0000000000013387)
Moshayedi P, Carmichael ST. Hyaluronan, neural stem cells and tissue reconstruction after acute ischemic stroke. Biomatter. 2013;3(1):e23863. (PMID: 23507922373232210.4161/biom.23863)
Var SR, Shetty AV, Grande AW, Low WC, Cheeran MC. Microglia and macrophages in neuroprotection, neurogenesis, and emerging therapies for stroke. Cells. 2021;10(12):3555. (PMID: 34944064870039010.3390/cells10123555)
Lasarzik I, Winkelheide U, Stallmann S, Orth C, Schneider A, Tresch A, et al. Assessment of postischemic neurogenesis in rats with cerebral ischemia and propofol anesthesia. Anesthesiology. 2009;110(3):529–37. (PMID: 1921226810.1097/ALN.0b013e318195b4fe)
Wang H, Luo M, Li C, Wang G. Propofol post-conditioning induced long-term neuroprotection and reduced internalization of AMPAR GluR2 subunit in a rat model of focal cerebral ischemia/reperfusion. J Neurochem. 2011;119(1):210–9. (PMID: 2179060610.1111/j.1471-4159.2011.07400.x)
Chen F, Lu K, Bai N, Hao Y, Wang H, Chen F. Expression of CELSR1, VEGF and TRPM7 in rats with focal cerebral ischemia-reperfusion injury and analysis of propofol pretreatment effect. J Brain Nerv Dis. 2020;28(9):545–9. (in Chinese).
Zhong Y, Chen J, Li L, Qin Y, Wei Y, Pan S, et al. PKA-CREB-BDNF signaling pathway mediates propofol-induced long-term learning and memory impairment in hippocampus of rats. Brain Res. 2018;1691:64–74. (PMID: 2968433610.1016/j.brainres.2018.04.022)
Huang J, Jing S, Chen X, Bao X, Du Z, Li H, et al. Propofol administration during early postnatal life suppresses hippocampal neurogenesis. Mol Neurobiol. 2016;53(2):1031–44. (PMID: 2557717110.1007/s12035-014-9052-7)
Li X, Huang L, Zhao Z, Bo L, Kang R, Yang J, et al. The protective effect of the rho-kinase inhibitor hydroxyfasudil on propofol-induced hippocampal neuron apoptosis in neonatal rats. Int J Clin Exp Pathol. 2018;11(9):4562–70. (PMID: 319498546962995)
Zhang W, Liu Q, Zhu H, Ma C, Luo Q, Ji M, et al. Propofol induces the apoptosis of neural stem cells via microRNA-9-5p / chemokine CXC receptor 4 signaling pathway. Bioengineered. 2022;13(1):1062–72. (PMID: 34990302880581410.1080/21655979.2021.2017590)
Hu Q, Huang L, Zhao C, Shen Y, Zheng XF, Wang Y, et al. Ca-PKCα-ERK1/2 signaling pathway is involved in the suppressive effect of propofol on proliferation of neural stem cells from the neonatal rat hippocampus. Brain Res Bull. 2019;149:148–55. (PMID: 3100291110.1016/j.brainresbull.2019.04.005)
Xu Y, Xin X, Tao T. Decoding the neurotoxic effects of propofol: insights into the RARα-Snhg1-Bdnf regulatory cascade. Am J Physiol Cell Physiol. 2024 Apr 15.
Bosnjak ZJ, Logan S, Liu Y, Bai X. Recent insights into molecular mechanisms of propofol-induced developmental neurotoxicity: implications for the protective strategies. Anesth Analg. 2016;123(5):1286–96. (PMID: 27551735507300010.1213/ANE.0000000000001544)
Chen J, Xiao F, Chen L, Zhou Z, Wei Y, Zhong Y, et al. Role of ferroptosis in hypoxic preconditioning to reduce propofol neurotoxicity. Front Pharmacol. 2023;14:1121280. (PMID: 36817119993219610.3389/fphar.2023.1121280)
Goto A. Synaptic plasticity during systems memory consolidation. Neurosci Res. 2022;183:1–6. (PMID: 3566749310.1016/j.neures.2022.05.008)
Wang CS, Kavalali ET, Monteggia LM. BDNF signaling in context: from synaptic regulation to psychiatric disorders. Cell. 2022;185(1):62–76. (PMID: 3496305710.1016/j.cell.2021.12.003)
Qi L, Ou Y, Yu M, Liu M, Zhang K. Effects of propofol on the PKA-CREB pathway and improvement of neurological function in focal cerebral ischemia-reperfusion model rats. Chin J Comp Med. 2021;31(2):30–6. (in Chinese).
Tao W, Zhang X, Ding J, Yu S, Ge P, Han J, et al. The effect of propofol on hypoxia- and TNF-α-mediated BDNF/TrkB pathway dysregulation in primary rat hippocampal neurons. CNS Neurosci Ther. 2022;28(5):761–74. (PMID: 35112804898144910.1111/cns.13809)
Niu W, Duan Y, Kang Y, Cao X, Xue Q. Propofol improves learning and memory in post-traumatic stress disorder (PTSD) mice via recovering hippocampus synaptic plasticity. Life Sci. 2022;293:120349. (PMID: 3506516210.1016/j.lfs.2022.120349)
Yang J, Pan Y, Li X, Wang X. Atorvastatin attenuates cognitive deficits through Akt1/caspase-3 signaling pathway in ischemic stroke. Brain Res. 2015;1629:231–9. (PMID: 2659737610.1016/j.brainres.2015.10.032)
Chen X, Du YM, Xu F, Liu D, Wang YL. Propofol prevents hippocampal neuronal loss and memory impairment in cerebral ischemia injury through promoting PTEN degradation. J Mol Neurosci. 2016;60(1):63–70. (PMID: 2748009310.1007/s12031-016-0791-y)
Zhang X, Zheng M, Ran R, Xue R, Zhang J. The effect of propofol preconditioning on cognitive function and WNT signaling pathway in rats with cerebral ischemia reperfusion. J Hubei Univ Med. 2019;38(4):325–9. (in Chinese).
Wen Z, Wang G, Wang H, Li C, Luo M. The role of membrane translocation of AMPA receptor GluR1 subunit in the long-term brain protection after propofol treatment. In National Forum of Young anesthesiologists in China. Tianjin, 2012. (in Chinese).
Kakehata J, Togashi H, Yamaguchi T, Morimoto Y, Yoshioka M. Effects of propofol and halothane on long-term potentiation in the rat hippocampus after transient cerebral ischaemia. Eur J Anaesthesiol. 2007;24(12):1021–7. (PMID: 1757994810.1017/S0265021507000749)
Xue QS, Yu BW, Wang ZJ, Chen HZ. Effects of ketamine, midazolam, thiopental, and propofol on brain ischemia injury in rat cerebral cortical slices. Acta Pharmacol Sin. 2004;25(1):115–20. (PMID: 14704132)
Yu BW, Xue QS, Xia M, Wang ZJ, Chen HZ. The influences of propofol on different kinds of brain injuries in rat brain slices. Zhonghua Yi Xue Za Zhi. 2003;83(13):1176–9. (PMID: 12921640)
Cai J, Li S, Hu Y, Li L, Zhang M, Li Q, et al. Neuronal protective effect of propofol in global brain ischemia in rats: study on administrating doses, time points and protocols. J Apoplexy Nerv Dis. 2009;26(2):159–62. (in Chinese).
Wu B, Hu H, Cai A, Ren C, Liu S. The safety and efficacy of dexmedetomidine versus propofol for patients undergoing endovascular therapy for acute stroke: a prospective randomized control trial. Med (Baltim). 2019;98(21):e15709. (PMID: 10.1097/MD.0000000000015709)
Sivasankar C, Stiefel M, Miano TA, Kositratna G, Yandrawatthana S, Hurst R, et al. Anesthetic variation and potential impact of anesthetics used during endovascular management of acute ischemic stroke. J Neurointerv Surg. 2016;8(11):1101–6. (PMID: 2661449310.1136/neurintsurg-2015-011998) - Grant Information: 222102310566 Henan Provincial Science and Technology Research Project; XYBSKYZZ201810 Xinxiang Medical University
- Contributed Indexing: Keywords: Cerebral ischemia/reperfusion injury; Neuroinflammation; Programmed cell death; Propofol
- Accession Number: YI7VU623SF (Propofol)
0 (Neuroprotective Agents)
0 (Anesthetics, Intravenous)
0 (Hypnotics and Sedatives) - Publication Date: Date Created: 20240702 Date Completed: 20240910 Latest Revision: 20240910
- Publication Date: 20240911
- Accession Number: 10.1007/s43440-024-00620-6
- Accession Number: 38954373
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.