Exosomes, and the potential for exosome-based interventions against COVID-19.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: England NLM ID: 9112448 Publication Model: Print Cited Medium: Internet ISSN: 1099-1654 (Electronic) Linking ISSN: 10529276 NLM ISO Abbreviation: Rev Med Virol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Chichester, West Sussex, England : Wiley, c1991-
    • Subject Terms:
    • Abstract:
      Since late 2019, the world has been devastated by the coronavirus disease 2019 (COVID-19) induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with more than 760 million people affected and ∼seven million deaths reported. Although effective treatments for COVID-19 are currently limited, there has been a strong focus on developing new therapeutic approaches to address the morbidity and mortality linked to this disease. An approach that is currently being investigated is the use of exosome-based therapies. Exosomes are small, extracellular vesicles that play a role in many clinical diseases, including viral infections, infected cells release exosomes that can transmit viral components, such as miRNAs and proteins, and can also include receptors for viruses that facilitate viral entry into recipient cells. SARS-CoV-2 has the ability to impact the formation, secretion, and release of exosomes, thereby potentially facilitating or intensifying the transmission of the virus among cells, tissues and individuals. Therefore, designing synthetic exosomes that carry immunomodulatory cargo and antiviral compounds are proposed to be a promising strategy for the treatment of COVID-19 and other viral diseases. Moreover, exosomes generated from mesenchymal stem cells (MSC) might be employed as cell-free therapeutic agents, as MSC-derived exosomes can diminish the cytokine storm and reverse the suppression of host anti-viral defences associated with COVID-19, and boost the repair of lung damage linked to mitochondrial activity. The present article discusses the significance and roles of exosomes in COVID-19, and explores potential future applications of exosomes in combating this disease. Despite the challenges posed by COVID-19, exosome-based therapies could represent a promising avenue for improving patient outcomes and reducing the impact of this disease.
      (© 2024 John Wiley & Sons Ltd.)
    • References:
      Ksiazek TG, Erdman D, Goldsmith CS, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1953‐1966. https://doi.org/10.1056/nejmoa030781.
      Jo WK, de Oliveira‐Filho EF, Rasche A, Greenwood AD, Osterrieder K, Drexler JF. Potential zoonotic sources of SARS‐CoV‐2 infections. Transbound Emerg Dis. 2021;68(4):1824‐1834. https://doi.org/10.1111/tbed.13872.
      Birman D. Investigation of the effects of Covid‐19 on different organs of the body. Eurasian J Chem Med Petrol Res. 2023;2(1):24‐36.
      Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med. 2020;382(13):1199‐1207. https://doi.org/10.1056/nejmoa2001316.
      Rostami A, Sepidarkish M, Leeflang MM, et al. SARS‐CoV‐2 seroprevalence worldwide: a systematic review and meta‐analysis. Clin Microbiol Infect. 2021;27(3):331‐340. https://doi.org/10.1016/j.cmi.2020.10.020.
      Naeimi R, Sepidarkish M, Mollalo A, et al. SARS‐CoV‐2 seroprevalence in children worldwide: a systematic review and meta‐analysis. EClinicalMedicine. 2023;56:101786. https://doi.org/10.1016/j.eclinm.2022.101786.
      Rostami A, Sepidarkish M, Fazlzadeh A, et al. Update on SARS‐CoV‐2 seroprevalence: regional and worldwide. Clin Microbiol Infect. 2021;27(12):1762‐1771. https://doi.org/10.1016/j.cmi.2021.09.019.
      World Health Organization (WHO). WHO coronavirus (COVID‐19) dashboard. https://covid19.who.int/. Accessed July 16, 2023. 2023. https://covid19.who.int/.
      Honarmand A, Sheybani F, Aflatoonian E, Saberinia A. COVID‐19 patients at referral to hospital during the first peak of disease: common clinical findings including myalgia and fatigue. Eur J Transl Myol. 2022;32(3):10731. https://doi.org/10.4081/ejtm.2022.10731.
      Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497‐506. https://doi.org/10.1016/s0140‐6736(20)30183‐5.
      Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID‐19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020;20(4):425‐434. https://doi.org/10.1016/s1473‐3099(20)30086‐4.
      Bonaventura A, Vecchié A, Dagna L, et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID‐19. Nat Rev Immunol. 2021;21(5):319‐329. https://doi.org/10.1038/s41577‐021‐00536‐9.
      Tao K, Tzou PL, Nouhin J, Bonilla H, Jagannathan P, Shafer RW. SARS‐CoV‐2 antiviral therapy. Clin Microbiol Rev. 2021;34(4):e00109‐e00121. https://doi.org/10.1128/cmr.00109‐21.
      Chapman RL, Andurkar SV. A review of natural products, their effects on SARS‐CoV‐2 and their utility as lead compounds in the discovery of drugs for the treatment of COVID‐19. Med Chem Res. 2022;31(1):40‐51. https://doi.org/10.1007/s00044‐021‐02826‐2.
      Talukder P, Saha A, Roy S, Ghosh G, Roy DD, Barua S. Drugs for COVID‐19 treatment: a new challenge. Appl Biochem Biotechnol. 2023;195(6):1‐18. https://doi.org/10.1007/s12010‐023‐04439‐4.
      Yan Y‐Y, Zhou W‐M, Wang Y‐Q, et al. The potential role of extracellular vesicles in COVID‐19 treatment: opportunity and challenge. Front Mol Biosci. 2021;8:699929. https://doi.org/10.3389/fmolb.2021.699929.
      Han C, Kang M, Kang H, et al. Characterization of extracellular vesicle and virus‐like particles by single vesicle tetraspanin analysis. Sens Actuators B: Chem. 2023;382:133547. https://doi.org/10.1016/j.snb.2023.133547.
      Pan B‐T, Teng K, Wu C, Adam M, Johnstone RM. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 1985;101(3):942‐948. https://doi.org/10.1083/jcb.101.3.942.
      Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014;29:116‐125. https://doi.org/10.1016/j.ceb.2014.05.004.
      Yuana Y, Sturk A, Nieuwland R. Extracellular vesicles in physiological and pathological conditions. Blood Rev. 2013;27(1):31‐39. https://doi.org/10.1016/j.blre.2012.12.002.
      Fleming A, Sampey G, Chung MC, et al. The carrying pigeons of the cell: exosomes and their role in infectious diseases caused by human pathogens. Pathogen Dis. 2014;71(2):109‐120. https://doi.org/10.1111/2049‐632x.12135.
      Chaudhari P, Ghate V, Nampoothiri M, Lewis S. Multifunctional role of exosomes in viral diseases: from transmission to diagnosis and therapy. Cell Signal. 2022;94:110325. https://doi.org/10.1016/j.cellsig.2022.110325.
      Pocsfalvi G, Mammadova R, Juarez APR, Bokka R, Trepiccione F, Capasso G. COVID‐19 and extracellular vesicles: an intriguing interplay. Kidney Blood Press Res. 2020;45(5):661‐670. https://doi.org/10.1159/000511402.
      Dogrammatzis C, Waisner H, Kalamvoki M. Cloaked viruses and viral factors in cutting edge exosome‐based therapies. Front Cell Dev Biol. 2020;8:376. https://doi.org/10.3389/fcell.2020.00376.
      Yousefi DM, Goodarzi N, Azhdari MH, Doroudian M. Mesenchymal stem cells and their derived exosomes to combat Covid–19. Rev Med Virol. 2022;32(2):e2281. https://doi.org/10.1002/rmv.2281.
      Sengupta V, Sengupta S, Lazo A, Woods P, Nolan A, Bremer N. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID‐19. Stem Cells Dev. 2020;29(12):747‐754. https://doi.org/10.1089/scd.2020.0080.
      Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS‐CoV‐2 pneumonia in Wuhan, China: a single‐centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475‐481. https://doi.org/10.1016/s2213‐2600(20)30079‐5.
      Simons M, Raposo G. Exosomes‐‐vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009;21(4):575‐581. https://doi.org/10.1016/j.ceb.2009.03.007.
      Bonucci E. Fine structure of early cartilage calcification. J Ultrastruct Res. 1967;20(1‐2):33‐50. https://doi.org/10.1016/s0022‐5320(67)80034‐0.
      Anderson HC. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol. 1969;41(1):59‐72. https://doi.org/10.1083/jcb.41.1.59.
      Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967;13(3):269‐288. https://doi.org/10.1111/j.1365‐2141.1967.tb08741.x.
      Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88(1):487‐514. https://doi.org/10.1146/annurev‐biochem‐013118‐111902.
      Schubert D. A brief history of adherons: the discovery of brain exosomes. Int J Mol Sci. 2020;21(20):7673. https://doi.org/10.3390/ijms21207673.
      Gurunathan S, Kang MH, Jeyaraj M, Qasim M, Kim JH. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. 2019;8(4):307. https://doi.org/10.3390/cells8040307.
      Chan BD, Wong WY, Lee MM, et al. Exosomes in inflammation and inflammatory disease. Proteomics. 2019;19(8):e1800149. https://doi.org/10.1002/pmic.201800149.
      Booth AM, Fang Y, Fallon JK, Yang JM, Hildreth JE, Gould SJ. Exosomes and HIV Gag bud from endosome‐like domains of the T cell plasma membrane. J Cell Biol. 2006;172(6):923‐935. https://doi.org/10.1083/jcb.200508014.
      El Andaloussi S, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12(5):347‐357. https://doi.org/10.1038/nrd3978.
      Agrawal AK, Aqil F, Jeyabalan J, et al. Milk‐derived exosomes for oral delivery of paclitaxel. Nanomedicine. 2017;13(5):1627‐1636. https://doi.org/10.1016/j.nano.2017.03.001.
      Lässer C, Seyed Alikhani V, Ekström K, et al. Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med. 2011;9(1):1‐8. https://doi.org/10.1186/1479‐5876‐9‐9.
      Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal. 2021;19(1):1‐19. https://doi.org/10.1186/s12964‐021‐00730‐1.
      Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol. 2016;36(3):301‐312. https://doi.org/10.1007/s10571‐016‐0366‐z.
      Antimisiaris SG, Mourtas S, Marazioti A. Exosomes and exosome‐inspired vesicles for targeted drug delivery. Pharmaceutics. 2018;10(4):218. https://doi.org/10.3390/pharmaceutics10040218.
      Zhang Y, Bi J, Huang J, Tang Y, Du S, Li P. Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int J Nanomed. 2020;15:6917‐6934. https://doi.org/10.2147/ijn.s264498.
      Cheng L, Zhang K, Wu S, Cui M, Xu T. Focus on mesenchymal stem cell‐derived exosomes: opportunities and challenges in cell‐free therapy. Stem Cell Int. 2017;2017:6305295. https://doi.org/10.1155/2017/6305295.
      He C, Hua W, Liu J, Fan L, Wang H, Sun G. Exosomes derived from endoplasmic reticulum‐stressed liver cancer cells enhance the expression of cytokines in macrophages via the STAT3 signaling pathway. Oncol Lett. 2020;20(1):589‐600. https://doi.org/10.3892/ol.2020.11609.
      Li D, Wang Y, Jin X, et al. NK cell‐derived exosomes carry miR‐207 and alleviate depression‐like symptoms in mice. J Neuroinflammation. 2020;17(1):126. https://doi.org/10.1186/s12974‐020‐01787‐4.
      Zhao D, Yu Z, Li Y, Wang Y, Li Q, Han D. GelMA combined with sustained release of HUVECs derived exosomes for promoting cutaneous wound healing and facilitating skin regeneration. J Mol Histol. 2020;51(3):251‐263. https://doi.org/10.1007/s10735‐020‐09877‐6.
      Kim MS, Haney MJ, Zhao Y, et al. Development of exosome‐encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine. 2016;12(3):655‐664. https://doi.org/10.1016/j.nano.2015.10.012.
      Yuan Z, Petree JR, Lee FE, et al. Macrophages exposed to HIV viral protein disrupt lung epithelial cell integrity and mitochondrial bioenergetics via exosomal microRNA shuttling. Cell Death Dis. 2019;10(8):580. https://doi.org/10.1038/s41419‐019‐1803‐y.
      Yin S, Ji C, Wu P, Jin C, Qian H. Human umbilical cord mesenchymal stem cells and exosomes: bioactive ways of tissue injury repair. Am J Transl Res. 2019;11(3):1230‐1240.
      Zhang B, Wang M, Gong A, et al. HucMSC‐exosome mediated‐Wnt4 signaling is required for cutaneous wound healing. Stem Cell. 2015;33(7):2158‐2168. https://doi.org/10.1002/stem.1771.
      Lou G, Chen Z, Zheng M, Liu Y. Mesenchymal stem cell‐derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med. 2017;49(6):e346. e346‐e346. https://doi.org/10.1038/emm.2017.63.
      Poggio M, Hu T, Pai CC, et al. Suppression of exosomal PD‐L1 induces systemic anti‐tumor immunity and memory. Cell. 2019;177(2):414‐427.e413. https://doi.org/10.1016/j.cell.2019.02.016.
      Bernardi S, Foroni C, Zanaglio C, et al. Feasibility of tumor‐derived exosome enrichment in the onco‐hematology leukemic model of chronic myeloid leukemia. Int J Mol Med. 2019;44(6):2133‐2144. https://doi.org/10.3892/ijmm.2019.4372.
      Mu J, Zhuang X, Wang Q, et al. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome‐like nanoparticles. Mol Nutr Food Res. 2014;58(7):1561‐1573. https://doi.org/10.1002/mnfr.201300729.
      Yang C, Zhang M, Merlin D. Advances in plant‐derived edible nanoparticle‐based lipid nano‐drug delivery systems as therapeutic nanomedicines. J Mater Chem B. 2018;6(9):1312‐1321. https://doi.org/10.1039/c7tb03207b.
      Zhang M, Viennois E, Xu C, Merlin D. Plant derived edible nanoparticles as a new therapeutic approach against diseases. Tissue Barriers. 2016;4(2):e1134415. https://doi.org/10.1080/21688370.2015.1134415.
      van der Meel R, Fens MH, Vader P, Van Solinge WW, Eniola‐Adefeso O, Schiffelers RM. Extracellular vesicles as drug delivery systems: lessons from the liposome field. J Contr Release. 2014;195:72‐85. https://doi.org/10.1016/j.jconrel.2014.07.049.
      Chen T, Guo J, Yang M, Zhu X, Cao X. Chemokine‐containing exosomes are released from heat‐stressed tumor cells via lipid raft‐dependent pathway and act as efficient tumor vaccine. J Immunol. 2011;186(4):2219‐2228. https://doi.org/10.4049/jimmunol.1002991.
      Han Q‐F, Li W‐J, Hu K‐S, et al. Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer. Mol Cancer. 2022;21(1):1‐26. https://doi.org/10.1186/s12943‐022‐01671‐0.
      Record M, Subra C, Silvente‐Poirot S, Poirot M. Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol. 2011;81(10):1171‐1182. https://doi.org/10.1016/j.bcp.2011.02.011.
      Srinivasan S, Vannberg FO, Dixon JB. Lymphatic transport of exosomes as a rapid route of information dissemination to the lymph node. Sci Rep. 2016;6(1):24436. https://doi.org/10.1038/srep24436.
      Colombo M, Moita C, Van Niel G, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126(24):5553‐5565. https://doi.org/10.1242/jcs.128868.
      Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 2012;1820(7):940‐948. https://doi.org/10.1016/j.bbagen.2012.03.017.
      Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8(7):727. https://doi.org/10.3390/cells8070727.
      Vella LJ, Sharples RA, Lawson VA, Masters CL, Cappai R, Hill AF. Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J Pathol. 2007;211(5):582‐590. https://doi.org/10.1002/path.2145.
      Schorey JS, Bhatnagar S. Exosome function: from tumor immunology to pathogen biology. Traffic. 2008;9(6):871‐881. https://doi.org/10.1111/j.1600‐0854.2008.00734.x.
      Zhang J, Li S, Li L, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Dev Reprod Biol. 2015;13(1):17‐24. https://doi.org/10.1016/j.gpb.2015.02.001.
      Jalalian SH, Ramezani M, Jalalian SA, Abnous K, Taghdisi SM. Exosomes, new biomarkers in early cancer detection. Anal Biochem. 2019;571:1‐13. https://doi.org/10.1016/j.ab.2019.02.013.
      Jansen F, Li Q. Exosomes as diagnostic biomarkers in cardiovascular diseases. Adv Exp Med Biol. 2017;998:61‐70. https://doi.org/10.1007/978‐981‐10‐4397‐0_4.
      Arenaccio C, Federico M. The multifaceted functions of exosomes in health and disease: an overview. Adv Exp Med Biol. 2017;998:3‐19. https://doi.org/10.1007/978‐981‐10‐4397‐0_1.
      Caby MP, Lankar D, Vincendeau‐Scherrer C, Raposo G, Bonnerot C. Exosomal‐like vesicles are present in human blood plasma. Int Immunol. 2005;17(7):879‐887. https://doi.org/10.1093/intimm/dxh267.
      Michael A, Bajracharya SD, Yuen PS, et al. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 2010;16(1):34‐38. https://doi.org/10.1111/j.1601‐0825.2009.01604.x.
      Aalberts M, van Dissel‐Emiliani FM, van Adrichem NP, et al. Identification of distinct populations of prostasomes that differentially express prostate stem cell antigen, annexin A1, and GLIPR2 in humans. Biol Reprod. 2012;86(3):82. https://doi.org/10.1095/biolreprod.111.095760.
      Balaj L, Lessard R, Dai L, et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. 2011;2(1):1‐9. https://doi.org/10.1038/ncomms1180.
      Asea A, Jean‐Pierre C, Kaur P, et al. Heat shock protein‐containing exosomes in mid‐trimester amniotic fluids. J Reprod Immunol. 2008;79(1):12‐17. https://doi.org/10.1016/j.jri.2008.06.001.
      Muller L, Hong CS, Stolz DB, Watkins SC, Whiteside TL. Isolation of biologically‐active exosomes from human plasma. J Immunol Methods. 2014;411:55‐65. https://doi.org/10.1016/j.jim.2014.06.007.
      Baskaran S, Panner Selvam MK, Agarwal A. Exosomes of male reproduction. Adv Clin Chem. 2020;95:149‐163. https://doi.org/10.1016/bs.acc.2019.08.004.
      Rani S, O'Brien K, Kelleher FC, et al. Isolation of exosomes for subsequent mRNA, MicroRNA, and protein profiling. Methods Mol Biol. 2011;784:181‐195. https://doi.org/10.1007/978‐1‐61779‐289‐2_13.
      Gao K, Zhu W, Li H, et al. Association between cytokines and exosomes in synovial fluid of individuals with knee osteoarthritis. Mod Rheumatol. 2020;30(4):758‐764. https://doi.org/10.1080/14397595.2019.1651445.
      Admyre C, Johansson SM, Qazi KR, et al. Exosomes with immune modulatory features are present in human breast milk. J Immunol. 2007;179(3):1969‐1978. https://doi.org/10.4049/jimmunol.179.3.1969.
      Grigor’eva AE, Tamkovich SN, Eremina AV, et al. Exosomes in tears of healthy individuals: isolation, identification, and characterization. Biochemistry. 2016;10(2):165‐172. https://doi.org/10.1134/s1990750816020049.
      Lin S, Yu Z, Chen D, et al. Progress in microfluidics‐based exosome separation and detection technologies for diagnostic applications. Small. 2020;16(9):e1903916. https://doi.org/10.1002/smll.201903916.
      Mohammadi M, Zargartalebi H, Salahandish R, Aburashed R, Wey Yong K, Sanati‐Nezhad A. Emerging technologies and commercial products in exosome‐based cancer diagnosis and prognosis. Biosens Bioelectron. 2021;183:113176. https://doi.org/10.1016/j.bios.2021.113176.
      Ayala‐Mar S, Donoso‐Quezada J, Gallo‐Villanueva RC, Perez‐Gonzalez VH, Gonzalez‐Valdez J. Recent advances and challenges in the recovery and purification of cellular exosomes. Electrophoresis. 2019;40(23‐24):3036‐3049. https://doi.org/10.1002/elps.201800526.
      Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation techniques. Theranostics. 2017;7(3):789‐804. https://doi.org/10.7150/thno.18133.
      Zhang Y, Bi J, Huang J, Tang Y, Du S, Li P. Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int J Nanomed. 2020;15:6917‐6934. https://doi.org/10.2147/ijn.s264498.
      Chen J, Li P, Zhang T, et al. Review on strategies and technologies for exosome isolation and purification. Front Bioeng Biotechnol. 2022;9:811971. https://doi.org/10.3389/fbioe.2021.811971.
      Zaborowski MP, Balaj L, Breakefield XO, Lai CP. Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience. 2015;65(8):783‐797. https://doi.org/10.1093/biosci/biv084.
      Krippl P, Langsenlehner U, Renner W, et al. A common 936 C/T gene polymorphism of vascular endothelial growth factor is associated with decreased breast cancer risk. Int J Cancer. 2003;106(4):468‐471. https://doi.org/10.1002/ijc.11238.
      Zhang M, Jin K, Gao L, et al. Methods and technologies for exosome isolation and characterization. Small Methods. 2018;2(9):1800021. https://doi.org/10.1002/smtd.201800021.
      Moon MH. Flow field‐flow fractionation: Recent applications for lipidomic and proteomic analysis. TrAC Trends Anal Chem. 2019;118:19‐28. https://doi.org/10.1016/j.trac.2019.05.024.
      Zeringer E, Barta T, Li M, Vlassov AV. Strategies for isolation of exosomes. Cold Spring Harb Protoc. 2015;2015(4):319‐323. https://doi.org/10.1101/pdb.top074476.
      Mathivanan S, Lim JW, Tauro BJ, Ji H, Moritz RL, Simpson RJ. Proteomics analysis of A33 immunoaffinity‐purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue‐specific protein signature. Mol Cell Proteomics. 2010;9(2):197‐208. https://doi.org/10.1074/mcp.m900152‐mcp200.
      Hosseini S, Vázquez‐Villegas P, Rito‐Palomares M, Martinez‐Chapa SO. General overviews on applications of ELISA. Enzyme‐linked Immunosorbent Assay (ELISA). 2018:19‐29. https://doi.org/10.1007/978‐981‐10‐6766‐2_2.
      Shtam T, Evtushenko V, Samsonov R, et al. Evaluation of immune and chemical precipitation methods for plasma exosome isolation. PLoS One. 2020;15(11):e0242732. https://doi.org/10.1371/journal.pone.0242732.
      Coughlan C, Bruce KD, Burgy O, et al. Exosome isolation by ultracentrifugation and precipitation and techniques for downstream analyses. Curr Protoc Cell Biol. 2020;88(1):e110. https://doi.org/10.1002/cpcb.110.
      Chen C, Skog J, Hsu CH, et al. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip. 2010;10(4):505‐511. https://doi.org/10.1039/b916199f.
      Wang Z, Wu HJ, Fine D, et al. Ciliated micropillars for the microfluidic‐based isolation of nanoscale lipid vesicles. Lab Chip. 2013;13(15):2879‐2882. https://doi.org/10.1039/c3lc41343h.
      Lai JJ, Chau ZL, Chen S‐Y, et al. Exosome processing and characterization approaches for research and technology development. Adv Sci. 2022;9(15):2103222. https://doi.org/10.1002/advs.202103222.
      Murray CJ, Ortblad KF, Guinovart C, et al. Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9947):1005‐1070. https://doi.org/10.1016/s0140‐6736(14)60844‐8.
      Zhang W, Jiang X, Bao J, Wang Y, Liu H, Tang L. Exosomes in pathogen infections: a bridge to deliver molecules and link functions. Front Immunol. 2018;9:90. https://doi.org/10.3389/fimmu.2018.00090.
      Husmann M, Beckmann E, Boller K, et al. Elimination of a bacterial pore‐forming toxin by sequential endocytosis and exocytosis. FEBS Lett. 2009;583(2):337‐344. https://doi.org/10.1016/j.febslet.2008.12.028.
      Abrami L, Brandi L, Moayeri M, et al. Hijacking multivesicular bodies enables long‐term and exosome‐mediated long‐distance action of anthrax toxin. Cell Rep. 2013;5(4):986‐996. https://doi.org/10.1016/j.celrep.2013.10.019.
      Szempruch AJ, Sykes SE, Kieft R, et al. Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell. 2016;164(1):246‐257. https://doi.org/10.1016/j.cell.2015.11.051.
      Mantel P‐Y, Hjelmqvist D, Walch M, et al. Infected erythrocyte‐derived extracellular vesicles alter vascular function via regulatory Ago2‐miRNA complexes in malaria. Nat Commun. 2016;7(1):12727. https://doi.org/10.1038/ncomms12727.
      Kim MJ, Jung B‐K, Cho J, et al. Exosomes secreted by Toxoplasma gondii‐infected L6 cells: their effects on host cell proliferation and cell cycle changes. Kor J Parasitol. 2016;54(2):147‐154. https://doi.org/10.3347/kjp.2016.54.2.147.
      Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome‐mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654‐659. https://doi.org/10.1038/ncb1596.
      Nawaz M, Heydarkhan‐Hagvall S, Tangruksa B, et al. Lipid nanoparticles deliver the therapeutic VEGFA mRNA in vitro and in vivo and transform extracellular vesicles for their functional extensions. Adv Sci. 2023;10(12):2206187. https://doi.org/10.1002/advs.202206187.
      Maugeri M, Nawaz M, Papadimitriou A, et al. Linkage between endosomal escape of LNP‐mRNA and loading into EVs for transport to other cells. Nat Commun. 2019;10(1):4333. https://doi.org/10.1038/s41467‐019‐12275‐6.
      Zhang L, Ju Y, Chen S, Ren L. Recent progress on exosomes in RNA virus infection. Viruses. 2021;13(2):256. https://doi.org/10.3390/v13020256.
      Jaworski E, Narayanan A, Van Duyne R, et al. Human T‐lymphotropic virus type 1‐infected cells secrete exosomes that contain Tax protein. J Biol Chem. 2014;289(32):22284‐22305. https://doi.org/10.1074/jbc.m114.549659.
      Barclay RA, Schwab A, DeMarino C, et al. Exosomes from uninfected cells activate transcription of latent HIV‐1. J Biol Chem. 2017;292(28):11682‐11701. https://doi.org/10.1074/jbc.a117.793521.
      Mori Y, Koike M, Moriishi E, et al. Human herpesvirus‐6 induces MVB formation, and virus egress occurs by an exosomal release pathway. Traffic. 2008;9(10):1728‐1742. https://doi.org/10.1111/j.1600‐0854.2008.00796.x.
      Hoffmann M, Kleine‐Weber H, Schroeder S, et al. SARS‐CoV‐2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271‐280.e278. https://doi.org/10.1016/j.cell.2020.02.052.
      Harrison AG, Lin T, Wang P. Mechanisms of SARS‐CoV‐2 transmission and pathogenesis. Trends Immunol. 2020;41(12):1100‐1115. https://doi.org/10.1016/j.it.2020.10.004.
      Lamers MM, Haagmans BL. SARS‐CoV‐2 pathogenesis. Nat Rev Microbiol. 2022;20(5):270‐284. https://doi.org/10.1038/s41579‐022‐00713‐0.
      Monteil V, Kwon H, Prado P, et al. Inhibition of SARS‐CoV‐2 infections in engineered human tissues using clinical‐grade soluble human ACE2. Cell. 2020;181(4):905‐913.e907. https://doi.org/10.1016/j.cell.2020.04.004.
      Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID‐19. Lancet. 2020;395(10234):1417‐1418. https://doi.org/10.1016/s0140‐6736(20)30937‐5.
      Mönkemüller K, Fry L, Rickes S. COVID‐19, coronavirus, SARS‐CoV‐2 and the small bowel. Rev Esp Enferm Dig. 2020;112(5):383‐388.
      Aljuhani A, Albalawi O, Albalawi R, et al. Exosomes in COVID‐19 infection: focus on role in diagnosis, pathogenesis, immunity, and clinical trials. Cell Biol Int. 2023;47(6):1049‐1067. https://doi.org/10.1002/cbin.12014.
      Nolte‐‘t Hoen E, Cremer T, Gallo RC, Margolis LB. Extracellular vesicles and viruses: are they close relatives? Proc Natl Acad Sci. 2016;113(33):9155‐9161. https://doi.org/10.1073/pnas.1605146113.
      Dittmayer C, Meinhardt J, Radbruch H, et al. Why misinterpretation of electron micrographs in SARS‐CoV‐2‐infected tissue goes viral. Lancet. 2020;396(10260):e64‐e65. https://doi.org/10.1016/s0140‐6736(20)32079‐1.
      Zhang J, Huang F, Xia B, et al. The interferon‐stimulated exosomal hACE2 potently inhibits SARS‐CoV‐2 replication through competitively blocking the virus entry. Signal Transduct Target Ther. 2021;6(1):189. https://doi.org/10.1038/s41392‐021‐00604‐5.
      Pesce E, Manfrini N, Cordiglieri C, et al. Exosomes recovered from the plasma of COVID‐19 patients expose SARS‐CoV‐2 spike‐derived fragments and contribute to the adaptive immune response. Front Immunol. 2022;12:785941. https://doi.org/10.3389/fimmu.2021.785941.
      Barberis E, Vanella VV, Falasca M, et al. Circulating exosomes are strongly involved in SARS‐CoV‐2 infection. Front Mol Biosci. 2021;8:29. https://doi.org/10.3389/fmolb.2021.632290.
      Kumar S, Zhi K, Mukherji A, Gerth K. Repurposing antiviral protease inhibitors using extracellular vesicles for potential therapy of COVID‐19. Viruses. 2020;12(5):486. https://doi.org/10.3390/v12050486.
      Kwon Y, Nukala SB, Srivastava S, et al. Detection of viral RNA fragments in human iPSC cardiomyocytes following treatment with extracellular vesicles from SARS‐CoV‐2 coding sequence overexpressing lung epithelial cells. Stem Cell Res Ther. 2020;11:1‐5. https://doi.org/10.1186/s13287‐020‐02033‐7.
      Dubey A, Lobo CL, Ravi G, Shetty A, Hebbar S, El‐Zahaby SA. Exosomes: emerging implementation of nanotechnology for detecting and managing novel corona virus‐SARS‐CoV‐2. Asian J Pharm Sci. 2022;17(1):20‐34. https://doi.org/10.1016/j.ajps.2021.08.004.
      Pfeiffer D, Roßmanith E, Lang I, Falkenhagen D. miR‐146a, miR‐146b, and miR‐155 increase expression of IL‐6 and IL‐8 and support HSP10 in an in vitro sepsis model. PLoS One. 2017;12(6):e0179850. https://doi.org/10.1371/journal.pone.0179850.
      Soni DK, Cabrera‐Luque J, Kar S, Sen C, Devaney J, Biswas R. Suppression of miR‐155 attenuates lung cytokine storm induced by SARS‐CoV‐2 infection in human ACE2‐transgenic mice. bioRxiv. 2020. https://doi.org/10.1101/2020.1112.1117.423130.
      Griffiths‐Jones S. The microRNA Registry. Nucleic Acids Res. 2004;32(suppl_1):D109‐D111. https://doi.org/10.1093/nar/gkh023.
      Trobaugh DW, Klimstra WB. MicroRNA regulation of RNA virus replication and pathogenesis. Trend Mol Med. 2017;23(1):80‐93. https://doi.org/10.1016/j.molmed.2016.11.003.
      Ivashchenko A, Rakhmetullina A, Aisina D. How miRNAs can protect humans from coronaviruses COVID‐19, SARS‐CoV, and MERS‐CoV. Res Sq. 2020. https://doi.org/10.21203/rs.21203.rs‐16264/v21201.
      Rakhmetullina A, Ivashchenko A, Akimniyazova A, Aisina D, Pyrkova A. The miRNA Complexes against Coronaviruses COVID‐19, SARS‐CoV, and MERS‐CoV. Res Sq; 2020. https://doi.org/10.21203/rs.21203.rs‐20476/v21202.
      Gasparello J, Finotti A, Gambari R. Tackling the COVID‐19 “cytokine storm” with microRNA mimics directly targeting the 3’UTR of pro‐inflammatory mRNAs. Med Hypothes. 2021;146:110415. https://doi.org/10.1016/j.mehy.2020.110415.
      Zhou L‐K, Zhou Z, Jiang X‐M, et al. Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS‐CoV‐2 replication and accelerates the negative conversion of infected patients. Cell Discov. 2020;6(1):54. https://doi.org/10.1038/s41421‐020‐00197‐3.
      Zhu W, Chen CZ, Gorshkov K, Xu M, Lo DC, Zheng W. RNA‐dependent RNA polymerase as a target for COVID‐19 drug discovery. SLAS Discov. 2020;25(10):1141‐1151. https://doi.org/10.1177/2472555220942123.
      Bao H, Gao F, Xie G, Liu Z. Angiotensin‐converting enzyme 2 inhibits apoptosis of pulmonary endothelial cells during acute lung injury through suppressing MiR‐4262. Cell Physiol Biochem. 2015;37(2):759‐767. https://doi.org/10.1159/000430393.
      Ruan DT, Gao S, Shelat H, King B, Geng Y‐J. Differential expression of microRNA and arachidonic acid metabolism in aspirin‐treated human cardiac and peri‐cardiac fat‐derived mesenchymal stem cells. Vasc Pharmacol. 2020;127:106651. https://doi.org/10.1016/j.vph.2020.106651.
      Mukhopadhyay D, Mussa BM. Identification of novel hypothalamic microRNAs as promising therapeutics for SARS‐CoV‐2 by regulating ACE2 and TMPRSS2 expression: an in silico analysis. Brain Sci. 2020;10(10):666. https://doi.org/10.3390/brainsci10100666.
      Yang J, Petitjean SJ, Koehler M, et al. Molecular interaction and inhibition of SARS‐CoV‐2 binding to the ACE2 receptor. Nat Commun. 2020;11(1):1‐10. https://doi.org/10.1038/s41467‐020‐18319‐6.
      Lambert DW, Lambert LA, Clarke NE, Hooper NM, Porter KE, Turner AJ. Angiotensin‐converting enzyme 2 is subject to post‐transcriptional regulation by miR‐421. Clin Sci. 2014;127(4):243‐249. https://doi.org/10.1042/cs20130420.
      Nersisyan S, Engibaryan N, Gorbonos A, Kirdey K, Makhonin A, Tonevitsky A. Potential role of cellular miRNAs in coronavirus‐host interplay. PeerJ. 2020;8:e9994. https://doi.org/10.7717/peerj.9994.
      Fani M, Zandi M, Ebrahimi S, Soltani S, Abbasi S. The role of miRNAs in COVID‐19 disease. Future Virol. 2021;16(4):301‐306. https://doi.org/10.2217/fvl‐2020‐0389.
      Ahmed SS, Paramasivam P, Raj K, Kumar V, Murugesan R, Ramakrishnan V. Regulatory cross talk between SARS‐CoV‐2 receptor binding and replication machinery in the human host. Front Physiol. 2020;11:802. https://doi.org/10.3389/fphys.2020.00802.
      Chauhan N, Jaggi M, Chauhan SC, Yallapu MM. COVID‐19: fighting the invisible enemy with microRNAs. Expert Rev Anti Infect Ther. 2021;19(2):137‐145. https://doi.org/10.1080/14787210.2020.1812385.
      Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biol. 2014;15(12):1‐21. https://doi.org/10.1186/s13059‐014‐0550‐8.
      Morty RE, Königshoff M, Eickelberg O. Transforming growth factor‐β signaling across ages: from distorted lung development to chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2009;6(7):607‐613. https://doi.org/10.1513/pats.200908‐087rm.
      Longhitano L, Tibullo D, Giallongo C, et al. Proteasome inhibitors as a possible therapy for SARS‐CoV‐2. Int J Mol Sci. 2020;21(10):3622. https://doi.org/10.3390/ijms21103622.
      Wang J, Chen S, Bihl J. Exosome‐mediated transfer of ACE2 (angiotensin‐converting enzyme 2) from endothelial progenitor cells promotes survival and function of endothelial cell. Oxid Med Cell Longev. 2020;2020:4213541. https://doi.org/10.1155/2020/4213541.
      Schorey JS, Harding CV. Extracellular vesicles and infectious diseases: new complexity to an old story. J Clin Invest. 2016;126(4):1181‐1189. https://doi.org/10.1172/jci81132.
      Martins SdT, Alves LR. Extracellular vesicles in viral infections: two sides of the same coin? Front Cell Infect Microbiol. 2020;10:593170. https://doi.org/10.3389/fcimb.2020.593170.
      Gambardella J, Sardu C, Morelli MB, et al. Exosomal microRNAs drive thrombosis in COVID‐19. Circulation. 2020;142(Supp‐4):A221. https://doi.org/10.1161/circ.142.suppl_4.221.
      Chahar HS, Corsello T, Kudlicki AS, Komaravelli N, Casola A. Respiratory syncytial virus infection changes cargo composition of exosome released from airway epithelial cells. Sci Rep. 2018;8(1):1‐18. https://doi.org/10.1038/s41598‐017‐18672‐5.
      Zheng Y, Zhang Y, Chi H, et al. The hemocyte counts as a potential biomarker for predicting disease progression in COVID‐19: a retrospective study. Clin Chem Lab Med. 2020;58(7):1106‐1115. https://doi.org/10.1515/cclm‐2020‐0377.
      Chen W. A potential treatment of COVID‐19 with TGF‐β blockade. Int J Biol Sci. 2020;16(11):1954‐1955. https://doi.org/10.7150/ijbs.46891.
      Farr RJ, Rootes CL, Rowntree LC, et al. Altered microRNA expression in COVID‐19 patients enables identification of SARS‐CoV‐2 infection. PLoS Pathog. 2021;17(7):e1009759. https://doi.org/10.1371/journal.ppat.1009759.
      Plowman T, Lagos D. Non‐coding RNAs in COVID‐19: emerging insights and current questions. Noncoding RNA. 2021;7(3):54. https://doi.org/10.3390/ncrna7030054.
      Keikha R, Hashemi‐Shahri SM, Jebali A. The relative expression of miR‐31, miR‐29, miR‐126, and miR‐17 and their mRNA targets in the serum of COVID‐19 patients with different grades during hospitalization. Eur J Med Res. 2021;26(1):75. https://doi.org/10.1186/s40001‐021‐00544‐4.
      Safdar M, Khan MS, Karim AY, et al. SNPs at 3′UTR of APOL1 and miR‐6741‐3p target sites associated with kidney diseases more susceptible to SARS‐COV‐2 infection: in silco and in vitro studies. Mamm Genome. 2021;32(5):389‐400. https://doi.org/10.1007/s00335‐021‐09880‐6.
      Eyileten C, Wicik Z, Simoes SN, et al. Thrombosis‐related circulating miR‐16‐5p is associated with disease severity in patients hospitalised for COVID‐19. RNA Biol. 2022;19(1):963‐979. https://doi.org/10.1080/15476286.2022.2100629.
      Keikha R, Jebali A. [The miRNA neuroinflammatory biomarkers in COVID‐19 patients with different severity of illness]. Neurologia. 2021.
      Mishra R, Banerjea AC. SARS‐CoV‐2 spike targets USP33‐IRF9 Axis via exosomal miR‐148a to activate human microglia. Front Immunol. 2021;12:656700. https://doi.org/10.3389/fimmu.2021.656700.
      Molinero M, Benitez ID, Gonzalez J, et al. Bronchial aspirate‐based profiling identifies MicroRNA signatures associated with COVID‐19 and fatal disease in critically ill patients. Front Med. 2021;8:756517. https://doi.org/10.3389/fmed.2021.756517.
      de Gonzalo‐Calvo D, Benitez ID, Pinilla L, et al. Circulating microRNA profiles predict the severity of COVID‐19 in hospitalized patients. Transl Res. 2021;236:147‐159. https://doi.org/10.1016/j.trsl.2021.05.004.
      Park JH, Choi Y, Lim CW, et al. Potential therapeutic effect of micrornas in extracellular vesicles from mesenchymal stem cells against SARS‐CoV‐2. Cells. 2021;10(9):2393. https://doi.org/10.3390/cells10092393.
      Akula SM, Bolin P, Cook PP. Cellular miR‐150‐5p may have a crucial role to play in the biology of SARS‐CoV‐2 infection by regulating nsp10 gene. RNA Biol. 2022;19(1):1‐11. https://doi.org/10.1080/15476286.2021.2010959.
      Yang P, Zhao Y, Li J, et al. Downregulated miR‐451a as a feature of the plasma cfRNA landscape reveals regulatory networks of IL‐6/IL‐6R‐associated cytokine storms in COVID‐19 patients. Cell Mol Immunol. 2021;18(4):1064‐1066. https://doi.org/10.1038/s41423‐021‐00652‐5.
      Mi B, Xiong Y, Zhang C, et al. SARS‐CoV‐2‐induced overexpression of miR‐4485 suppresses osteogenic differentiation and impairs fracture healing. Int J Biol Sci. 2021;17(5):1277‐1288. https://doi.org/10.7150/ijbs.56657.
      Gambardella J, Kansakar U, Sardu C, et al. Exosomal miR‐145 and miR‐885 regulate thrombosis in COVID‐19. J Pharmacol Exp Therapeut. 2022;384(1):109‐115. https://doi.org/10.1124/jpet.122.001209.
      Widiasta A, Sribudiani Y, Nugrahapraja H, Hilmanto D, Sekarwana N, Rachmadi D. Potential role of ACE2‐related microRNAs in COVID‐19‐associated nephropathy. Noncoding RNA Res. 2020;5(4):153‐166. https://doi.org/10.1016/j.ncrna.2020.09.001.
      Sabbatinelli J, Giuliani A, Matacchione G, et al. Decreased serum levels of the inflammaging marker miR‐146a are associated with clinical non‐response to tocilizumab in COVID‐19 patients. Mech Ageing Dev. 2021;193:111413. https://doi.org/10.1016/j.mad.2020.111413.
      Centa A, Fonseca AS, Ferreira S, et al. Deregulated miRNA expression is associated with endothelial dysfunction in post‐mortem lung biopsies of COVID‐19 patients. Am J Physiol Lung Cell Mol Physiol. 2020.
      Donyavi T, Bokharaei‐Salim F, Baghi HB, et al. Acute and post‐acute phase of COVID‐19: analyzing expression patterns of miRNA‐29a‐3p, 146a‐3p, 155‐5p, and let‐7b‐3p in PBMC. Int Immunopharmacol. 2021;97:107641. https://doi.org/10.1016/j.intimp.2021.107641.
      Gambardella J, Coppola A, Izzo R, Fiorentino G, Trimarco B, Santulli G. Role of endothelial miR‐24 in COVID‐19 cerebrovascular events. Crit Care. 2021;25(1):306. https://doi.org/10.1186/s13054‐021‐03731‐1.
      Calderon‐Dominguez M, Trejo‐Gutierrez E, González‐Rovira A, et al. Serum microRNAs targeting ACE2 and RAB14 genes distinguish asymptomatic from critical COVID‐19 patients. Mol Ther Nucleic Acids. 2022;29:76‐87. https://doi.org/10.1016/j.omtn.2022.06.006.
      Matarese A, Gambardella J, Sardu C, Santulli G. miR‐98 regulates TMPRSS2 expression in human endothelial cells: key implications for COVID‐19. Biomedicines. 2020;8(11):462. https://doi.org/10.3390/biomedicines8110462.
      Kim WR, Park EG, Kang KW, Lee SM, Kim B, Kim HS. Expression analyses of MicroRNAs in hamster lung tissues infected by SARS‐CoV‐2. Mol Cells. 2020;43(11):953‐963. https://doi.org/10.14348/molcells.2020.0177.
      Pimenta R, Viana NI, Dos Santos GA, et al. MiR‐200c‐3p expression may be associated with worsening of the clinical course of patients with COVID‐19. Mol Biol Res Commun. 2021;10(3):141‐147.
      Soung YH, Ford S, Zhang V, Chung J. Exosomes in cancer diagnostics. Cancers. 2017;9(1):8. https://doi.org/10.3390/cancers9010008.
      Jiang L, Dong H, Cao H, Ji X, Luan S, Liu J. Exosomes in pathogenesis, diagnosis, and treatment of Alzheimer’s disease. Med Sci Monit. 2019;25:3329‐3335. https://doi.org/10.12659/msm.914027.
      Alipoor SD, Mortaz E, Garssen J, Movassaghi M, Mirsaeidi M, Adcock IM. Exosomes and exosomal miRNA in respiratory diseases. Mediators Inflamm. 2016;2016:5628404‐5628411. https://doi.org/10.1155/2016/5628404.
      Krishnan A, Gangadaran P, Chavda VP, et al. Convalescent serum‐derived exosomes: attractive niche as COVID‐19 diagnostic tool and vehicle for mRNA delivery. Exp Biol Med. 2022;247(14):1244‐1252. https://doi.org/10.1177/15353702221092984.
      Henzinger H, Barth DA, Klec C, Pichler M. Non‐coding RNAs and SARS‐related coronaviruses. Viruses. 2020;12(12):1374. https://doi.org/10.3390/v12121374.
      Bautista‐Becerril B, Nava‐Quiroz KJ, Muñoz‐Soria E, et al. High expression levels of miR‐21‐5p in younger hospitalized COVID‐19 patients are associated with mortality and critical disease. Int J Mol Sci. 2023;24(12):10112. https://doi.org/10.3390/ijms241210112.
      Gaytán‐Pacheco N, Ibáñez‐Salazar A, Herrera‐Van Oostdam AS, et al. miR‐146a, miR‐221, and miR‐155 are involved in inflammatory immune response in severe COVID‐19 patients. Diagnostics. 2022;13(1):133. https://doi.org/10.3390/diagnostics13010133.
      Lee JH, Kim JA, Kwon MH, Kang JY, Rhee WJ. In situ single step detection of exosome microRNA using molecular beacon. Biomaterials. 2015;54:116‐125. https://doi.org/10.1016/j.biomaterials.2015.03.014.
      Petkevich AA, Abramov AA, Pospelov VI, et al. Exosomal and non‐exosomal miRNA expression levels in patients with HCV‐related cirrhosis and liver cancer. Oncotarget. 2021;12(17):1697‐1706. https://doi.org/10.18632/oncotarget.28036.
      Grunt M, Failla AV, Stevic I, Hillebrand T, Schwarzenbach H. A novel assay for exosomal and cell‐free miRNA isolation and quantification. RNA Biol. 2020;17(4):425‐440. https://doi.org/10.1080/15476286.2020.1721204.
      El‐Shennawy L, Hoffmann AD, Dashzeveg NK, et al. Circulating ACE2‐expressing extracellular vesicles block broad strains of SARS‐CoV‐2. Nat Commun. 2022;13(1):405. https://doi.org/10.1038/s41467‐021‐27893‐2.
      Bansal S, Tokman S, Fleming T, et al. SARS‐CoV‐2 infection in lung transplant recipients induces circulating exosomes with SARS‐CoV‐2 spike protein S2. Clin Trans Med. 2021;11(11):e576. https://doi.org/10.1002/ctm2.576.
      Sur S, Steele R, Isbell TS, Ray R, Ray RB. Circulatory exosomes from COVID‐19 patients trigger NLRP3 inflammasome in endothelial cells. mBio. 2022;13(3):e00951‐e00922. https://doi.org/10.1128/mbio.00951‐22.
      Barberis E, Vanella VV, Falasca M, et al. Circulating exosomes are strongly involved in SARS‐CoV‐2 infection. Front Mol Biosci. 2021;8:632290. https://doi.org/10.3389/fmolb.2021.632290.
      Peluso MJ, Deeks SG, Mustapic M, et al. SARS‐CoV‐2 and mitochondrial proteins in neural‐derived exosomes of COVID‐19. Ann Neurol. 2022;91(6):772‐781. https://doi.org/10.1002/ana.26350.
      Subudhi PD, Rooge S, Bihari C, et al. Prolonged existence of SARS‐CoV‐2 RNAs in the extracellular vesicles of respiratory specimens from patients with negative reverse transcription‐polymerase chain reaction. Liver Research. 2023;7(3):228‐236. https://doi.org/10.1016/j.livres.2023.09.004.
      Kim D, Lee J‐Y, Yang J‐S, Kim JW, Kim VN, Chang H. The architecture of SARS‐CoV‐2 transcriptome. Cell. 2020;181(4):914‐921.e910. https://doi.org/10.1016/j.cell.2020.04.011.
      Rosell A, Havervall S, Von Meijenfeldt F, et al. Patients with COVID‐19 have elevated levels of circulating extracellular vesicle tissue factor activity that is associated with severity and mortality—brief report. Arterioscler Thromb Vasc Biol. 2021;41(2):878‐882. https://doi.org/10.1161/atvbaha.120.315547.
      Balbi C, Burrello J, Bolis S, et al. Circulating extracellular vesicles are endowed with enhanced procoagulant activity in SARS‐CoV‐2 infection. EBioMed. 2021;67:103369. https://doi.org/10.1016/j.ebiom.2021.103369.
      Müller L, Tunger A, Wobus M, et al. Immunomodulatory properties of mesenchymal stromal cells: an update. Front Cell Dev Biol. 2021;9:637725. https://doi.org/10.3389/fcell.2021.637725.
      Shi Y, Wang Y, Li Q, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol. 2018;14(8):493‐507. https://doi.org/10.1038/s41581‐018‐0023‐5.
      Abdallah BM, Kassem M. The use of mesenchymal (skeletal) stem cells for treatment of degenerative diseases: current status and future perspectives. J Cell Physiol. 2009;218(1):9‐12. https://doi.org/10.1002/jcp.21572.
      Zhang J, Xie B, Hashimoto K. Current status of potential therapeutic candidates for the COVID‐19 crisis. Brain Behav Immun. 2020;87:59‐73. https://doi.org/10.1016/j.bbi.2020.04.046.
      Andrukhov O, Behm C, Blufstein A, Rausch‐Fan X. Immunomodulatory properties of dental tissue‐derived mesenchymal stem cells: implication in disease and tissue regeneration. World J Stem Cells. 2019;11(9):604‐617. https://doi.org/10.4252/wjsc.v11.i9.604.
      Wang S, Qu X, Zhao RC. Clinical applications of mesenchymal stem cells. J Hematol Oncol. 2012;5:1‐9. https://doi.org/10.1186/1756‐8722‐5‐19.
      Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. Int J Mol Sci. 2014;15(3):4142‐4157. https://doi.org/10.3390/ijms15034142.
      Kesimer M, Scull M, Brighton B, et al. Characterization of exosome‐like vesicles released from human tracheobronchial ciliated epithelium: a possible role in innate defense. FASEB J. 2009;23(6):1858‐1868. https://doi.org/10.1096/fj.08‐119131.
      Gennai S, Monsel A, Hao Q, Park J, Matthay M, Lee J. Microvesicles derived from human mesenchymal stem cells restore alveolar fluid clearance in human lungs rejected for transplantation. Am J Transplant. 2015;15(9):2404‐2412. https://doi.org/10.1111/ajt.13271.
      Khatri M, Richardson LA, Meulia T. Mesenchymal stem cell‐derived extracellular vesicles attenuate influenza virus‐induced acute lung injury in a pig model. Stem Cell Res Ther. 2018;9:1‐13. https://doi.org/10.1186/s13287‐018‐0774‐8.
      Monsel A, Zhu Y‐G, Gennai S, et al. Therapeutic effects of human mesenchymal stem cell–derived microvesicles in severe pneumonia in mice. Am J Respir Crit Care Med. 2015;192(3):324‐336. https://doi.org/10.1164/rccm.201410‐1765oc.
      Laffey JG, Matthay MA. Fifty years of research in ARDS. Cell‐based therapy for acute respiratory distress syndrome. Biology and potential therapeutic value. Am J Respir Crit Care Med. 2017;196(3):266‐273. https://doi.org/10.1164/rccm.201701‐0107cp.
      Melo‐Narváez MC, Stegmayr J, Wagner DE, Lehmann M. Lung regeneration: implications of the diseased niche and ageing. Eur Respir Rev. 2020;29(157):200222. https://doi.org/10.1183/16000617.0222‐2020.
      Xu J, Gonzalez ET, Iyer SS, et al. Use of senescence‐accelerated mouse model in bleomycin‐induced lung injury suggests that bone marrow–derived cells can alter the outcome of lung injury in aged mice. J Gerontol A Biol Sci Med Sci. 2009;64(7):731‐739. https://doi.org/10.1093/gerona/glp040.
      Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome. N Engl J Med. 2017;377(6):562‐572. https://doi.org/10.1056/nejmra1608077.
      Zhang B, Zhou X, Qiu Y, et al. Clinical characteristics of 82 cases of death from COVID‐19. PLoS One. 2020;15(7):e0235458. https://doi.org/10.1371/journal.pone.0235458.
      Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID‐19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420‐422. https://doi.org/10.1016/s2213‐2600(20)30076‐x.
      Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10:1‐22. https://doi.org/10.1186/s13287‐019‐1165‐5.
      Babajani A, Soltani P, Jamshidi E, Farjoo MH, Niknejad H. Recent advances on drug‐loaded mesenchymal stem cells with anti‐neoplastic agents for targeted treatment of cancer. Front Bioeng Biotechnol. 2020;8:748. https://doi.org/10.3389/fbioe.2020.00748.
      Rossello‐Gelabert M, Gonzalez‐Pujana A, Igartua M, Santos‐Vizcaino E, Hernandez RM. Clinical progress in MSC‐based therapies for the management of severe COVID‐19. Cytokine Growth Factor Rev. 2022;68:25‐36. https://doi.org/10.1016/j.cytogfr.2022.07.002.
      Zhu R, Yan T, Feng Y, et al. Mesenchymal stem cell treatment improves outcome of COVID‐19 patients via multiple immunomodulatory mechanisms. Cell Res. 2021;31(12):1244‐1262. https://doi.org/10.1038/s41422‐021‐00573‐y.
      Pinky GS, Krishnakumar V, Sharma Y, Dinda AK, Mohanty S. Mesenchymal stem cell derived exosomes: a nano platform for therapeutics and drug delivery in combating COVID‐19. Stem cell Rev Rep. 2021;17(1):33‐43. https://doi.org/10.1007/s12015‐020‐10002‐z.
      Rezakhani L, Kelishadrokhi AF, Soleimanizadeh A, Rahmati S. Mesenchymal stem cell (MSC)‐derived exosomes as a cell‐free therapy for patients Infected with COVID‐19: real opportunities and range of promises. Chem Phys Lipids. 2021;234:105009. https://doi.org/10.1016/j.chemphyslip.2020.105009.
      Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev. 2016;106:148‐156. https://doi.org/10.1016/j.addr.2016.02.006.
      Lamichhane TN, Sokic S, Schardt JS, Raiker RS, Lin JW, Jay SM. Emerging roles for extracellular vesicles in tissue engineering and regenerative medicine. Tissue Eng Part B Rev. 2015;21(1):45‐54. https://doi.org/10.1089/ten.teb.2014.0300.
      Grein J, Ohmagari N, Shin D, et al. Compassionate use of remdesivir for patients with severe Covid‐19. N Engl J Med. 2020;382(24):2327‐2336. https://doi.org/10.1056/nejmoa2007016.
      Zhou P, Yang X‐L, Wang X‐G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270‐273. https://doi.org/10.1038/s41586‐020‐2012‐7.
      Dinh P‐UC, Paudel D, Brochu H, et al. Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis. Nat Commun. 2020;11(1):1064. https://doi.org/10.1038/s41467‐020‐14344‐7.
      Li Z, Niu S, Guo B, et al. Stem cell therapy for COVID‐19, ARDS and pulmonary fibrosis. Cell Prolif. 2020;53(12):e12939. https://doi.org/10.1111/cpr.12939.
      Bjørge I, Kim S, Mano J, Kalionis B, Chrzanowski W. Extracellular vesicles, exosomes and shedding vesicles in regenerative medicine–a new paradigm for tissue repair. Biomater Sci. 2018;6(1):60‐78. https://doi.org/10.1039/c7bm00479f.
      Andaloussi SE, Lakhal S, Mäger I, Wood MJ. Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev. 2013;65(3):391‐397. https://doi.org/10.1016/j.addr.2012.08.008.
      Gurunathan S, Kang MH, Kim J‐H. Diverse effects of exosomes on COVID‐19: a perspective of progress from transmission to therapeutic developments. Front Immunol. 2021;12:716407. https://doi.org/10.3389/fimmu.2021.716407.
      Gunasekaran M, Bansal S, Ravichandran R, et al. Respiratory viral infection in lung transplantation induces exosomes that trigger chronic rejection. J Heart Lung Transplant. 2020;39(4):379‐388. https://doi.org/10.1016/j.healun.2019.12.009.
      Hassanpour M, Rezaie J, Nouri M, Panahi Y. The role of extracellular vesicles in COVID‐19 virus infection. Infect Genet Evol. 2020;85:104422. https://doi.org/10.1016/j.meegid.2020.104422.
      Kim D‐K, Lee J, Kim SR, et al. EVpedia: a community web portal for extracellular vesicles research. Bioinformatics. 2015;31(6):933‐939. https://doi.org/10.1093/bioinformatics/btu741.
      Urciuoli E, Peruzzi B. Inhibiting extracellular vesicle trafficking as antiviral approach to corona virus disease 2019 infection. Front Pharmacol. 2020;11:580505. https://doi.org/10.3389/fphar.2020.580505.
      Catalano M, O’Driscoll L. Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. J Extracell Vesicles. 2020;9(1):1703244. https://doi.org/10.1080/20013078.2019.1703244.
      Verma DK, Kapoor S, Das S, Thakur KG. Potential inhibitors of SARS‐CoV‐2 main protease (Mpro) identified from the library of FDA‐approved drugs using molecular docking studies. Biomedicines. 2023;11(1):85. https://doi.org/10.3390/biomedicines11010085.
      Abou‐Hamdan M, Saleh R, Mani S, et al. Potential antiviral effects of pantethine against SARS‐CoV‐2. Sci Rep. 2022;13(1):2237. https://doi.org/10.1038/s41598‐023‐29245‐0.
      Ranganathan S, Jackson RL, Harmony JA. Effect of pantethine on the biosynthesis of cholesterol in human skin fibroblasts. Atherosclerosis. 1982;44(3):261‐273. https://doi.org/10.1016/0021‐9150(82)90002‐8.
      Roseblade A, Luk F, Ung A, Bebawy M. Targeting microparticle biogenesis: a novel approach to the circumvention of cancer multidrug resistance. Curr Cancer Drug Targets. 2015;15(3):205‐214. https://doi.org/10.2174/1568009615666150225121508.
      Lyu L, Wang H, Li B, et al. A critical role of cardiac fibroblast‐derived exosomes in activating renin angiotensin system in cardiomyocytes. J Mol Cell Cardiol. 2015;89:268‐279. https://doi.org/10.1016/j.yjmcc.2015.10.022.
      Kosgodage US, Trindade RP, Thompson PR, Inal JM, Lange S. Chloramidine/bisindolylmaleimide‐I‐mediated inhibition of exosome and microvesicle release and enhanced efficacy of cancer chemotherapy. Int J Mol Sci. 2017;18(5):1007. https://doi.org/10.3390/ijms18051007.
      Arenz C. Small molecule inhibitors of acid sphingomyelinase. Cell Physiol Biochem. 2010;26(1):1‐8. https://doi.org/10.1159/000315100.
      Deng L, Peng Y, Jiang Y, et al. Imipramine protects against bone loss by inhibition of osteoblast‐derived microvesicles. Int J Mol Sci. 2017;18(5):1013. https://doi.org/10.3390/ijms18051013.
      Lin HP, Singla B, Ghoshal P, et al. Identification of novel macropinocytosis inhibitors using a rational screen of Food and Drug Administration‐approved drugs. Br J Pharmacol. 2018;175(18):3640‐3655. https://doi.org/10.1111/bph.14429.
      Alkafaas SS, Abdallah AM, Ghosh S, et al. Insight into the role of clathrin‐mediated endocytosis inhibitors in SARS‐CoV‐2 infection. Rev Med Virol. 2023;33(1):e2403. https://doi.org/10.1002/rmv.2403.
      Hao Y, Song H, Zhou Z, et al. Promotion or inhibition of extracellular vesicle release: emerging therapeutic opportunities. J Contr Release. 2021;340:136‐148. https://doi.org/10.1016/j.jconrel.2021.10.019.
      Kongsomros S, Suksatu A, Kanjanasirirat P, et al. Anti‐SARS‐CoV‐2 activity of extracellular vesicle inhibitors: screening, validation, and combination with remdesivir. Biomedicines. 2021;9(9):1230. https://doi.org/10.3390/biomedicines9091230.
      Barnard DL, Hubbard VD, Burton J, et al. Inhibition of severe acute respiratory syndrome‐associated coronavirus (SARSCoV) by calpain inhibitors and beta‐D‐N4‐hydroxycytidine. Antivir Chem Chemother. 2004;15(1):15‐22. https://doi.org/10.1177/095632020401500102.
      Fox JE, Austin CD, Reynolds CC, Steffen PK. Evidence that agonist‐induced activation of calpain causes the shedding of procoagulant‐containing microvesicles from the membrane of aggregating platelets. J Biol Chem. 1991;266(20):13289‐13295. https://doi.org/10.1016/s0021‐9258(18)98837‐x.
      Crespin M, Vidal C, Picard F, Lacombe C, Fontenay M. Activation of PAK1/2 during the shedding of platelet microvesicles. Blood Coagul Fibrinolysis. 2009;20(1):63‐70. https://doi.org/10.1097/mbc.0b013e32831bc310.
      Mallick RL, Kumari S, Singh N, Sonkar VK, Dash D. Prion protein fragment (106‐126) induces prothrombotic state by raising platelet intracellular calcium and microparticle release. Cell Calcium. 2015;57(4):300‐311. https://doi.org/10.1016/j.ceca.2015.02.002.
      Li B, Antonyak MA, Zhang J, Cerione RA. RhoA triggers a specific signaling pathway that generates transforming microvesicles in cancer cells. Oncogene. 2012;31(45):4740‐4749. https://doi.org/10.1038/onc.2011.636.
      Lau JJ, Cheng SMS, Leung K, et al. Real‐world COVID‐19 vaccine effectiveness against the Omicron BA.2 variant in a SARS‐CoV‐2 infection‐naive population. Nat Med. 2023;29(2):348‐357. https://doi.org/10.1038/s41591‐023‐02219‐5.
      Oordt‐Speets A, Spinardi J, Mendoza C, et al. Effectiveness of COVID‐19 vaccination on transmission: a systematic review. COVID. 2023;3(10):1516‐1527. https://doi.org/10.3390/covid3100103.
      Wilder‐Smith A. What is the vaccine effect on reducing transmission in the context of the SARS‐CoV‐2 delta variant? Lancet Infect Dis. 2022;22(2):152‐153. https://doi.org/10.1016/s1473‐3099(21)00690‐3.
      Chi W‐Y, Li Y‐D, Huang H‐C, et al. COVID‐19 vaccine update: vaccine effectiveness, SARS‐CoV‐2 variants, boosters, adverse effects, and immune correlates of protection. J Biomed Sci. 2022;29(1):82. https://doi.org/10.1186/s12929‐022‐00853‐8.
      Walker S, Busatto S, Pham A, et al. Extracellular vesicle‐based drug delivery systems for cancer treatment. Theranostics. 2019;9(26):8001‐8017. https://doi.org/10.7150/thno.37097.
      Nainu F, Abidin RS, Bahar MA, et al. SARS‐CoV‐2 reinfection and implications for vaccine development. Hum Vaccines Immunother. 2020;16(12):3061‐3073. https://doi.org/10.1080/21645515.2020.1830683.
      Saleh AF, Lázaro‐Ibáñez E, Forsgard MA, et al. Extracellular vesicles induce minimal hepatotoxicity and immunogenicity. Nanoscale. 2019;11(14):6990‐7001. https://doi.org/10.1039/c8nr08720b.
      Zhu X, Badawi M, Pomeroy S, et al. Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells. J Extracell Vesicles. 2017;6(1):1324730. https://doi.org/10.1080/20013078.2017.1324730.
      Ghaebi M, Osali A, Valizadeh H, Roshangar L, Ahmadi M. Vaccine development and therapeutic design for 2019‐nCoV/SARS‐CoV‐2: challenges and chances. J Cell Physiol. 2020;235(12):9098‐9109. https://doi.org/10.1002/jcp.29771.
      Arvin AM, Fink K, Schmid MA, et al. A perspective on potential antibody‐dependent enhancement of SARS‐CoV‐2. Nature. 2020;584(7821):353‐363. https://doi.org/10.1038/s41586‐020‐2538‐8.
      Yoo KH, Thapa N, Kim BJ, et al. Possibility of exosome‐based coronavirus disease 2019 vaccine. Mol Med Rep. 2022;25(1):1‐9.
      Kim J, Thapa N. Exosome‐based COVID‐19 vaccine. In: Cell‐Secreted Vesicles: Methods and Protocols. Springer; 2023:301‐311.
      Tsai S, Guo C, Atai N, Gould S. Exosome‐mediated mRNA delivery for SARS‐CoV‐2 vaccination. J Biol Chem. 2020;27(5):101266.
      Polak K, Greze N, Lachat M, et al. Extracellular vesicle‐based vaccine platform displaying native viral envelope proteins elicits a robust anti‐SARS‐CoV‐2 response in mice. bioRxiv. 2020. https://doi.org/10.1101/2020.1110.1128.357137.
      Khoury DS, Cromer D, Reynaldi A, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS‐CoV‐2 infection. Nat Med. 2021;27(7):1205‐1211. https://doi.org/10.1038/s41591‐021‐01377‐8.
      Ng O‐W, Chia A, Tan AT, et al. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post‐infection. Vaccine. 2016;34(17):2008‐2014. https://doi.org/10.1016/j.vaccine.2016.02.063.
      Cao Y, Su B, Guo X, et al. Potent neutralizing antibodies against SARS‐CoV‐2 identified by high‐throughput single‐cell sequencing of convalescent patients’ B cells. Cell. 2020;182(1):73‐84.e16. https://doi.org/10.1016/j.cell.2020.05.025.
      Cong Y, Ulasli M, Schepers H, et al. Nucleocapsid protein recruitment to replication‐transcription complexes plays a crucial role in coronaviral life cycle. J Virol. 2020;94(4):e01925‐e01919. https://doi.org/10.1128/jvi.01925‐19.
      Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T cell responses to SARS‐CoV‐2 coronavirus in humans with COVID‐19 disease and unexposed individuals. Cell. 2020;181(7):1489‐1501.e1415. https://doi.org/10.1016/j.cell.2020.05.015.
      Lei K, Liang X, Gao Y, et al. Lnc‐ATB contributes to gastric cancer growth through a MiR‐141‐3p/TGFβ2 feedback loop. Biochem Biophys Res Commun. 2017;484(3):514‐521. https://doi.org/10.1016/j.bbrc.2017.01.094.
      Sabanovic B, Piva F, Cecati M, Giulietti M. Promising extracellular vesicle‐based vaccines against viruses, including SARS‐CoV‐2. Biology. 2021;10(2):94. https://doi.org/10.3390/biology10020094.
      Mustajab T, Kwamboka MS, Choi DA, et al. Update on extracellular vesicle‐based vaccines and therapeutics to combat COVID‐19. Int J Mol Sci. 2022;23(19):11247. https://doi.org/10.3390/ijms231911247.
      Kim J, Song Y, Park CH, Choi C. Platform technologies and human cell lines for the production of therapeutic exosomes. Extracell Vesicles Circ Nucl Acids. 2021;2(1):3‐17. https://doi.org/10.20517/evcna.2020.01.
      Van Doremalen N, Lambe T, Spencer A, et al. ChAdOx1 nCoV‐19 vaccine prevents SARS‐CoV‐2 pneumonia in rhesus macaques. Nature. 2020;586(7830):578‐582. https://doi.org/10.1038/s41586‐020‐2608‐y.
      Shen C, Gu M, Song C, et al. The tumorigenicity diversification in human embryonic kidney 293 cell line cultured in vitro. Biologicals. 2008;36(4):263‐268. https://doi.org/10.1016/j.biologicals.2008.02.002.
      Gupta A, Kashte S, Gupta M, Rodriguez HC, Gautam SS, Kadam S. Mesenchymal stem cells and exosome therapy for COVID‐19: current status and future perspective. Hum Cell. 2020;33(4):907‐918. https://doi.org/10.1007/s13577‐020‐00407‐w.
      Sur S, Khatun M, Steele R, Isbell TS, Ray R, Ray RB. Exosomes from COVID‐19 patients carry tenascin‐C and fibrinogen‐beta in triggering inflammatory signals in cells of distant organ. Int J Mol Sci. 2021;22(6):3184. https://doi.org/10.3390/ijms22063184.
      Willis CM, Nicaise AM, Menoret A, et al. Extracellular vesicle fibrinogen induces encephalitogenic CD8+ T cells in a mouse model of multiple sclerosis. Proc Natl Acad Sci U S A. 2019;116(21):10488‐10493. https://doi.org/10.1073/pnas.1816911116.
      Mills JT, Schwenzer A, Marsh EK, et al. Airway epithelial cells generate pro‐inflammatory tenascin‐C and small extracellular vesicles in response to TLR3 stimuli and rhinovirus infection. Front Immunol. 2019;10:1987. https://doi.org/10.3389/fimmu.2019.01987.
      Vilar R, Fish RJ, Casini A, Neerman‐Arbez M. Fibrin(ogen) in human disease: both friend and foe. Haematologica. 2020;105(2):284‐296. https://doi.org/10.3324/haematol.2019.236901.
      Fujita Y, Hoshina T, Matsuzaki J, et al. Early prediction of COVID‐19 severity using extracellular vesicle COPB2. J Extracell Vesicles. 2021;10(8):e12092. https://doi.org/10.1002/jev2.12092.
      Gilligan KE, Dwyer RM. Engineering exosomes for cancer therapy. Int J Mol Sci. 2017;18(6):1122. https://doi.org/10.3390/ijms18061122.
      Nam GH, Choi Y, Kim GB, Kim S, Kim SA, Kim IS. Emerging prospects of exosomes for cancer treatment: from conventional therapy to immunotherapy. Adv Mater. 2020;32(51):e2002440. https://doi.org/10.1002/adma.202002440.
      Larabi A, Barnich N, Nguyen HTT. Emerging role of exosomes in diagnosis and treatment of infectious and inflammatory bowel diseases. Cells. 2020;9(5):1111. https://doi.org/10.3390/cells9051111.
      Kholia S, Herrera Sanchez MB, Cedrino M, et al. Mesenchymal stem cell derived extracellular vesicles ameliorate kidney injury in aristolochic acid nephropathy. Front Cell Dev Biol. 2020;8:188. https://doi.org/10.3389/fcell.2020.00188.
      Wang M, Yuan Q, Xie L. Mesenchymal stem cell‐based immunomodulation: properties and clinical application. Stem Cell Int. 2018;2018:3057624. https://doi.org/10.1155/2018/3057624.
      Qian X, Xu C, Fang S, et al. Exosomal MicroRNAs derived from umbilical mesenchymal stem cells inhibit hepatitis C virus infection. Stem Cells Transl Med. 2016;5(9):1190‐1203. https://doi.org/10.5966/sctm.2015‐0348.
      Harding CV, Heuser JE, Stahl PD. Exosomes: looking back three decades and into the future. J Cell Biol. 2013;200(4):367‐371. https://doi.org/10.1083/jcb.201212113.
      Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9(1):19. https://doi.org/10.1186/s13578‐019‐0282‐2.
      Morrison TJ, Jackson MV, Cunningham EK, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med. 2017;196(10):1275‐1286. https://doi.org/10.1164/rccm.201701‐0170oc.
      Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS‐CoV‐2 receptor ACE2 is an interferon‐stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016‐1035e1019. https://doi.org/10.1016/j.cell.2020.04.035.
      Henry E, Cores J, Hensley MT, et al. Adult lung spheroid cells contain progenitor cells and mediate regeneration in rodents with bleomycin‐induced pulmonary fibrosis. Stem Cells Transl Med. 2015;4(11):1265‐1274. https://doi.org/10.5966/sctm.2015‐0062.
      Cores J, Hensley MT, Kinlaw K, et al. Safety and efficacy of allogeneic lung spheroid cells in a mismatched rat model of pulmonary fibrosis. Stem Cells Transl Med. 2017;6(10):1905‐1916. https://doi.org/10.1002/sctm.16‐0374.
      Li Z, Wang Z, Dinh PC, et al. Cell‐mimicking nanodecoys neutralize SARS‐CoV‐2 and mitigate lung injury in a non‐human primate model of COVID‐19. Nat Nanotechnol. 2021;16(8):942‐951. https://doi.org/10.1038/s41565‐021‐00923‐2.
      Popowski KD, Dinh PC, George A, Lutz H, Cheng K. Exosome therapeutics for COVID‐19 and respiratory viruses. View. 2021;2(3):20200186. https://doi.org/10.1002/viw.20200186.
      Tzng E, Bayardo N, Yang PC. Current challenges surrounding exosome treatments. Extracell Vesicle. 2023;2:100023. https://doi.org/10.1016/j.vesic.2023.100023.
      Yuan F, Li Y‐M, Wang Z. Preserving extracellular vesicles for biomedical applications: consideration of storage stability before and after isolation. Drug Deliv. 2021;28(1):1501‐1509. https://doi.org/10.1080/10717544.2021.1951896.
      Plava J, Cihova M, Burikova M, Matuskova M, Kucerova L, Miklikova S. Recent advances in understanding tumor stroma‐mediated chemoresistance in breast cancer. Mol Cancer. 2019;18:1‐10. https://doi.org/10.1186/s12943‐019‐0960‐z.
      Scarfe L, Taylor A, Sharkey J, et al. Non‐invasive imaging reveals conditions that impact distribution and persistence of cells after in vivo administration. Stem Cell Res Ther. 2018;9(1):1‐17. https://doi.org/10.1186/s13287‐018‐1076‐x.
      de Jong B, Barros ER, Hoenderop JG, Rigalli JP. Recent advances in extracellular vesicles as drug delivery systems and their potential in precision medicine. Pharmaceutics. 2020;12(11):1006. https://doi.org/10.3390/pharmaceutics12111006.
      Meng W, He C, Hao Y, Wang L, Li L, Zhu G. Prospects and challenges of extracellular vesicle‐based drug delivery system: considering cell source. Drug Deliv. 2020;27(1):585‐598. https://doi.org/10.1080/10717544.2020.1748758.
      Gimona M, Brizzi MF, Choo ABH, et al. Critical considerations for the development of potency tests for therapeutic applications of mesenchymal stromal cell‐derived small extracellular vesicles. Cytotherapy. 2021;23(5):373‐380. https://doi.org/10.1016/j.jcyt.2021.01.001.
      Bustos ML, Huleihel L, Kapetanaki MG, et al. Aging mesenchymal stem cells fail to protect because of impaired migration and antiinflammatory response. Am J Respir Crit Care Med. 2014;189(7):787‐798. https://doi.org/10.1164/rccm.201306‐1043oc.
      Kurian TK, Banik S, Gopal D, Chakrabarti S, Mazumder N. Elucidating methods for isolation and quantification of exosomes: a review. Mol Biotechnol. 2021;63(4):249‐266. https://doi.org/10.1007/s12033‐021‐00300‐3.
    • Grant Information:
      Australian Research Council
    • Contributed Indexing:
      Keywords: COVID‐19; SARS‐CoV‐2; biology; diagnosis; exosome; host‐pathogen interplay; mesenchymal stem cells; treatment; vaccine
    • Accession Number:
      0 (Antiviral Agents)
    • Publication Date:
      Date Created: 20240626 Date Completed: 20240626 Latest Revision: 20240626
    • Publication Date:
      20240627
    • Accession Number:
      10.1002/rmv.2562
    • Accession Number:
      38924213