Study on the effects of rapamycin and the mTORC1/2 dual inhibitor OSI-027 on the metabolism of colon cancer cells based on UPLC-MS/MS metabolomics.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: United States NLM ID: 8309330 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-0646 (Electronic) Linking ISSN: 01676997 NLM ISO Abbreviation: Invest New Drugs Subsets: MEDLINE
    • Publication Information:
      Publication: New York : Springer
      Original Publication: Boston : M. Nijhoff, 1983-
    • Subject Terms:
    • Abstract:
      mTORC1/2 dual inhibitors may be more effective than mTORC1 inhibitor rapamycin. However, their metabolic impacts on colon cancer cells remain unexplored. We conducted a comparative analysis of the anti-proliferative effects of rapamycin and the novel OSI-027 in colon cancer cells HCT-116, evaluating their metabolic influences through ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS/MS). Our results demonstrate that OSI-027 more effectively inhibits colon cancer cell proliferation than rapamycin. Additionally, we identified nearly 600 metabolites from the spectra, revealing significant differences in metabolic patterns between cells treated with OSI-027 and rapamycin. Through VIP value screening, we pinpointed crucial metabolites contributing to these distinctions. For inhibiting glycolysis and reducing glucose consumption, OSI-027 was likely to be more potent than rapamycin. For amino acids metabolism, although OSI-027 has a broad effect as rapamycin, their effects in degrees were not exactly the same. These findings address the knowledge gap regarding mTORC1/2 dual inhibitors and lay a foundation for their further development and research.
      (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Zhang Y, Chen Z, Li J (2017) The current status of treatment for colorectal cancer in China: a systematic review. Med (Baltim) 96:e8242. https://doi.org/10.1097/md.0000000000008242. (PMID: 10.1097/md.0000000000008242)
      Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30. https://doi.org/10.3322/caac.21442. (PMID: 10.3322/caac.2144229313949)
      Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB (2019) Colorectal cancer. Lancet (London England) 394(10207):1467–1480. https://doi.org/10.1016/S0140-6736(19)32319-0. (PMID: 10.1016/S0140-6736(19)32319-031631858)
      Weng ML, Chen WK, Chen XY, Lu H, Sun ZR, Yu Q, Sun PF, Xu YJ, Zhu MM, Jiang N, Zhang J, Zhang JP, Song YL, Ma D, Zhang XP, Miao CH (2020) Fasting inhibits aerobic glycolysis and proliferation in colorectal cancer via the Fdft1-mediated AKT/mTOR/HIF1α pathway suppression. Nat Commun 11(1):1869. https://doi.org/10.1038/s41467-020-15795-8. (PMID: 10.1038/s41467-020-15795-8323130177170903)
      Tewari D, Patni P, Bishayee A, Sah AN, Bishayee A (2022) Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: a novel therapeutic strategy. Semin Cancer Biol 80:1–17. https://doi.org/10.1016/j.semcancer.2019.12.008. (PMID: 10.1016/j.semcancer.2019.12.00831866476)
      Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484. https://doi.org/10.1016/j.cell.2006.01.016. (PMID: 10.1016/j.cell.2006.01.01616469695)
      Wang H, Liu Y, Ding J, Huang Y, Liu J, Liu N, Ao Y, Hong Y, Wang L, Zhang L, Wang J, Zhang Y (2020) Targeting mTOR suppressed colon cancer growth through 4EBP1/eIF4E/PUMA pathway. Cancer Gene Ther 27:448–460. https://doi.org/10.1038/s41417-019-0117-7. (PMID: 10.1038/s41417-019-0117-731257364)
      Deleyto-Seldas N, Efeyan A (2021) The mTOR-Autophagy Axis and the control of metabolism. Front Cell Dev Biol 9:655731. https://doi.org/10.3389/fcell.2021.655731. (PMID: 10.3389/fcell.2021.655731342776038281972)
      Saxton RA, Sabatini DM (2017) mTOR Signaling in Growth, Metabolism, and Disease. Cell 169:361–371. https://doi.org/10.1016/j.cell.2017.03.035. (PMID: 10.1016/j.cell.2017.03.03528388417)
      Hua H, Kong Q, Zhang H, Wang J, Luo T, Jiang Y (2019) Targeting mTOR for cancer therapy. J Hematol Oncol 12:71. https://doi.org/10.1186/s13045-019-0754-1. (PMID: 10.1186/s13045-019-0754-1312776926612215)
      Yin Y, Hua H, Li M, Liu S, Kong Q, Shao T, Wang J, Luo Y, Wang Q, Luo T, Jiang Y (2016) mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR. Cell Res 26:46–65. https://doi.org/10.1038/cr.2015.133. (PMID: 10.1038/cr.2015.13326584640)
      Vergès B, Walter T, Cariou B (2014) Endocrine side effects of anti-cancer drugs: effects of anti-cancer targeted therapies on lipid and glucose metabolism. Eur J Endocrinol 170:R43–55. https://doi.org/10.1530/eje-13-0586. (PMID: 10.1530/eje-13-058624154684)
      Szwed A, Kim E, Jacinto E (2021) Regulation and metabolic functions of mTORC1 and mTORC2. Physiol Rev 101(3):1371–1426. https://doi.org/10.1152/physrev.00026.2020. (PMID: 10.1152/physrev.00026.2020335991518424549)
      Kim LC, Cook RS, Chen J (2017) mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene 36(16):2191–2201. https://doi.org/10.1038/onc.2016.363. (PMID: 10.1038/onc.2016.36327748764)
      Carew JS, Kelly KR, Nawrocki ST (2011) Mechanisms of mTOR inhibitor resistance in cancer therapy. Target Oncol 6:17–27. https://doi.org/10.1007/s11523-011-0167-8. (PMID: 10.1007/s11523-011-0167-821547705)
      Lou J, Lv JX, Zhang YP, Liu ZJ (2022) OSI-027 inhibits the tumorigenesis of colon cancer through mediation of c-Myc/FOXO3a/PUMA axis. Cell Biol Int 46(8):1204–1214. https://doi.org/10.1002/cbin.11792. (PMID: 10.1002/cbin.1179235293663)
      Bhagwat SV, Gokhale PC, Crew AP, Cooke A, Yao Y, Mantis C, Kahler J, Workman J, Bittner M, Dudkin L, Epstein DM, Gibson NW, Wild R, Arnold LD, Houghton PJ, Pachter JA (2011) Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: distinct from rapamycin. Mol Cancer Ther 10(8):1394–1406. https://doi.org/10.1158/1535-7163.MCT-10-1099. (PMID: 10.1158/1535-7163.MCT-10-109921673091)
      Afzal O, Altamimi ASA, Mubeen B, Alzarea SI, Almalki WH, Al-Qahtani SD, Atiya EM, Al-Abbasi FA, Ali F, Ullah I, Nadeem MS, Kazmi I (2022) mTOR as a potential target for the Treatment of Microbial Infections, Inflammatory Bowel diseases, and Colorectal Cancer. Int J Mol Sci 23(20):12470. https://doi.org/10.3390/ijms232012470. (PMID: 10.3390/ijms232012470362933269603867)
      Vander Heiden MG, DeBerardinis RJ (2017) Understanding the intersections between Metabolism and Cancer Biology. Cell 168:657–669. https://doi.org/10.1016/j.cell.2016.12.039. (PMID: 10.1016/j.cell.2016.12.03928187287)
      Zhang Y, Kwok-Shing Ng P, Kucherlapati M, Chen F, Liu Y, Tsang YH, de Velasco G, Jeong KJ, Akbani R, Hadjipanayis A, Pantazi A, Bristow CA, Lee E, Mahadeshwar HS, Tang J, Zhang J, Yang L, Seth S, Lee S, Ren X, Song X, Sun H, Seidman J, Luquette LJ, Xi R, Chin L, Protopopov A, Westbrook TF, Shelley CS, Choueiri TK, Ittmann M, Van Waes C, Weinstein JN, Liang H, Henske EP, Godwin AK, Park PJ, Kucherlapati R, Scott KL, Mills GB, Kwiatkowski DJ, Creighton CJ (2017) A Pan-cancer Proteogenomic Atlas of PI3K/AKT/mTOR pathway alterations. Cancer Cell 31:820–832e823. https://doi.org/10.1016/j.ccell.2017.04.013. (PMID: 10.1016/j.ccell.2017.04.013285288675502825)
      Ganley IG, Lam duH, Wang J, Ding X, Chen S, Jiang X (2009) ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284(18):12297–12305. https://doi.org/10.1074/jbc.M900573200. (PMID: 10.1074/jbc.M900573200192583182673298)
      Massari F, Ciccarese C, Santoni M, Iacovelli R, Mazzucchelli R, Piva F, Scarpelli M, Berardi R, Tortora G, Lopez-Beltran A, Cheng L, Montironi R (2016) Metabolic phenotype of bladder cancer. Cancer Treat Rev 45:46–57. https://doi.org/10.1016/j.ctrv.2016.03.005. (PMID: 10.1016/j.ctrv.2016.03.00526975021)
      Schmidt S, Denk S, Wiegering A (2020) Targeting protein synthesis in Colorectal Cancer. Cancers 12(5):1298. https://doi.org/10.3390/cancers12051298. (PMID: 10.3390/cancers12051298324555787281195)
      DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. Sci Adv 2:e1600200. https://doi.org/10.1126/sciadv.1600200. (PMID: 10.1126/sciadv.1600200273865464928883)
      Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330:1340–1344. https://doi.org/10.1126/science.1193494. (PMID: 10.1126/science.119349421127244)
      Chakraborty S, Balan M, Sabarwal A, Choueiri TK, Pal S (2021) Metabolic reprogramming in renal cancer: events of a metabolic disease. Biochim Biophys Acta Rev Cancer 1876:188559. https://doi.org/10.1016/j.bbcan.2021.188559. (PMID: 10.1016/j.bbcan.2021.188559339655138349779)
      Pavlova NN, Zhu J, Thompson CB (2022) The hallmarks of cancer metabolism: still emerging. Cell Metab 34:355–377. https://doi.org/10.1016/j.cmet.2022.01.007. (PMID: 10.1016/j.cmet.2022.01.007351236588891094)
      Li S, Sheng J, Liu Z, Fan Y, Zhang C, Lv T, Hu S, Jin J, Yu W, Song Y (2021) Potent antitumour of the mTORC1/2 dual inhibitor AZD2014 in docetaxel-sensitive and docetaxel-resistant castration-resistant prostate cancer cells. J Cell Mol Med 25:2436–2449. https://doi.org/10.1111/jcmm.16155. (PMID: 10.1111/jcmm.16155335075847933970)
      Zhang Q, Zhang Y, Chen Y, Qian J, Zhang X, Yu K (2019) A novel mTORC1/2 inhibitor (MTI-31) inhibits Tumor Growth, Epithelial-Mesenchymal Transition, metastases, and improves Antitumor Immunity in Preclinical models of Lung Cancer. Clin Cancer Res 25:3630–3642. https://doi.org/10.1158/1078-0432.Ccr-18-2548. (PMID: 10.1158/1078-0432.Ccr-18-254830796032)
      Marx C, Sonnemann J, Maddocks ODK, Marx-Blümel L, Beyer M, Hoelzer D, Thierbach R, Maletzki C, Linnebacher M, Heinzel T, Krämer OH (2022) Global metabolic alterations in colorectal cancer cells during irinotecan-induced DNA replication stress. Cancer Metabolism 10(1):10. https://doi.org/10.1186/s40170-022-00286-9. (PMID: 10.1186/s40170-022-00286-9357877289251592)
      Doherty JR, Cleveland JL (2013) Targeting lactate metabolism for cancer therapeutics. J Clin Invest 123:3685–3692. https://doi.org/10.1172/jci69741. (PMID: 10.1172/jci69741239994433754272)
      Mills E, O’Neill LA (2014) Succinate: a metabolic signal in inflammation. Trends Cell Biol 24:313–320. https://doi.org/10.1016/j.tcb.2013.11.008. (PMID: 10.1016/j.tcb.2013.11.00824361092)
      Liu C, Ji L, Hu J, Zhao Y, Johnston LJ, Zhang X, Ma X (2021) Functional amino acids and autophagy: Diverse Signal Transduction and Application. Int J Mol Sci 22. https://doi.org/10.3390/ijms222111427.
      Vettore L, Westbrook RL, Tennant DA (2020) New aspects of amino acid metabolism in cancer. Br J Cancer 122:150–156. https://doi.org/10.1038/s41416-019-0620-5. (PMID: 10.1038/s41416-019-0620-531819187)
      Peng H, Wang Y, Luo W (2020) Multifaceted role of branched-chain amino acid metabolism in cancer. Oncogene 39:6747–6756. https://doi.org/10.1038/s41388-020-01480-z. (PMID: 10.1038/s41388-020-01480-z329785217606751)
      Castelli V, Paladini A, d’Angelo M, Allegretti M, Mantelli F, Brandolini L, Cocchiaro P, Cimini A, Varrassi G (2021) Taurine and oxidative stress in retinal health and disease. CNS Neurosci Ther 27:403–412. https://doi.org/10.1111/cns.13610. (PMID: 10.1111/cns.13610336214397941169)
      Baliou S, Adamaki M, Ioannou P, Pappa A, Panayiotidis MI, Spandidos DA, Christodoulou I, Kyriakopoulos AM, Zoumpourlis V (2021) Protective role of taurine against oxidative stress (review). Mol Med Rep 24. https://doi.org/10.3892/mmr.2021.12242.
      Bhattacharjee A, Prajapati SK, Krishnamurthy S (2021) Supplementation of taurine improves ionic homeostasis and mitochondrial function in the rats exhibiting post-traumatic stress disorder-like symptoms. Eur J Pharmacol 908:174361. https://doi.org/10.1016/j.ejphar.2021.174361. (PMID: 10.1016/j.ejphar.2021.17436134297965)
      Li Y, Hu Z, Chen B, Bu Q, Lu W, Deng Y, Zhu R, Shao X, Hou J, Zhao J, Li H, Zhang B, Huang Y, Lv L, Zhao Y, Cen X (2012) Taurine attenuates methamphetamine-induced autophagy and apoptosis in PC12 cells through mTOR signaling pathway. Toxicol Lett 215(1):1–7. https://doi.org/10.1016/j.toxlet.2012.09.019. (PMID: 10.1016/j.toxlet.2012.09.01923041169)
    • Grant Information:
      SKYXD2022022 Suzhou Municipal Science and Technology Bureau; SKYXD2022022 Suzhou Pharmaceutical Association
    • Contributed Indexing:
      Keywords: Colon cancer; Metabolism; OSI-027; mTORC1/2
    • Accession Number:
      0 (Imidazoles)
      EC 2.7.11.1 (Mechanistic Target of Rapamycin Complex 1)
      EC 2.7.11.1 (Mechanistic Target of Rapamycin Complex 2)
      0 (OSI 027)
      W36ZG6FT64 (Sirolimus)
      0 (Triazines)
    • Publication Date:
      Date Created: 20240625 Date Completed: 20240815 Latest Revision: 20240819
    • Publication Date:
      20240820
    • Accession Number:
      10.1007/s10637-024-01438-y
    • Accession Number:
      38916794