Valsalva maneuver pressure recovery time is prolonged following spinal cord injury with correlations to autonomically-influenced secondary complications.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Steinkopff Country of Publication: Germany NLM ID: 9106549 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1619-1560 (Electronic) Linking ISSN: 09599851 NLM ISO Abbreviation: Clin Auton Res Subsets: MEDLINE
    • Publication Information:
      Publication: 2002- : Darnstadt : Steinkopff
      Original Publication: Oxford, UK : Rapid Communications of Oxford, c1991-
    • Subject Terms:
    • Abstract:
      Purpose: This work's purpose was to quantify rapid sympathetic activation in individuals with spinal cord injury (SCI), and to identify associated correlations with symptoms of orthostatic hypotension and common autonomically mediated secondary medical complications.
      Methods: This work was a cross-sectional study of individuals with SCI and uninjured individuals. Symptoms of orthostatic hypotension were recorded using the Composite Autonomic Symptom Score (COMPASS)-31 and Autonomic Dysfunction following SCI (ADFSCI) survey. Histories of secondary complications of SCI were gathered. Rapid sympathetic activation was assessed using pressure recovery time of Valsalva maneuver. Stepwise multiple linear regression models identified contributions to secondary medical complication burden.
      Results: In total, 48 individuals (24 with SCI, 24 uninjured) underwent testing, with symptoms of orthostatic hypotension higher in those with SCI (COMPASS-31, 3.3 versus 0.6, p < 0.01; ADFSCI, 21.2 versus. 3.2, p < 0.01). Pressure recovery time was prolonged after SCI (7.0 s versus. 1.7 s, p < 0.01), though poorly correlated with orthostatic symptom severity. Neurological level of injury after SCI influenced pressure recovery time, with higher injury levels associated with more prolonged time. Stepwise multiple linear regression models identified pressure recovery time as the primary explanation for variance in number of urinary tract infections (34%), histories of hospitalizations (12%), and cumulative secondary medical complication burden (24%). In all conditions except time for bowel program, pressure recovery time outperformed current clinical tools for assessing such risk.
      Conclusions: SCI is associated with impaired rapid sympathetic activation, demonstrated here by prolonged pressure recovery time. Prolonged pressure recovery time after SCI predicts higher risk for autonomically mediated secondary complications, serving as a viable index for more "autonomically complete" injury.
      (© 2024. Springer-Verlag GmbH Germany.)
    • References:
      Claydon VE, Steeves JD, Krassioukov A (2006) Orthostatic hypotension following spinal cord injury: understanding clinical pathophysiology. Spinal cord 44(6):341–351. https://doi.org/10.1038/sj.sc.3101855. (PMID: 10.1038/sj.sc.310185516304564)
      Illman A, Stiller K, Williams M (2000) The prevalence of orthostatic hypotension during physiotherapy treatment in patients with an acute spinal cord injury. Spinal Cord 38(12):741–747. https://doi.org/10.1038/sj.sc.3101089. (PMID: 10.1038/sj.sc.310108911175374)
      Jegede AB, Rosado-Rivera D, Bauman WA, Cardozo CP, Sano M, Moyer JM, Brooks M, Wecht JM (2010) Cognitive performance in hypotensive persons with spinal cord injury. Clin Auton Res 20:3–9. https://doi.org/10.1007/s10286-009-0036-z. (PMID: 10.1007/s10286-009-0036-z19842013)
      Mathias CJ (2006) Orthostatic hypotension and paroxysmal hypertension in humans with high spinal cord injury. Prog Brain Res 152:231–243. https://doi.org/10.1016/s0079-6123(05)52015-6. (PMID: 10.1016/s0079-6123(05)52015-616198704)
      Casiglia E, Pizziol A, Piacentini F, Biasin R, Onesto C, Tikhonoff V, Prati R, Palatini P, Pessina AC (1999) 24-hour leg and forearm haemodynamics in transected spinal cord subjects. Cardiovasc Res 41(1):312–316. https://doi.org/10.1016/s0008-6363(98)00237-5. (PMID: 10.1016/s0008-6363(98)00237-510325980)
      Bluvshtein V, Korczyn AD, Akselrod S, Pinhas I, Gelernter I, Catz A (2011) Hemodynamic responses to head-up tilt after spinal cord injury support a role for the mid-thoracic spinal cord in cardiovascular regulation. Spinal Cord 49(2):251–256. https://doi.org/10.1038/sc.2010.98. (PMID: 10.1038/sc.2010.9820714335)
      Houtman S, Oeseburg B, Hughson RL, Hopman MT (2000) Sympathetic nervous system activity and cardiovascular homeostasis during head-up tilt in patients with spinal cord injuries. Clin Auton Res 10:207–212. https://doi.org/10.1007/bf02291358. (PMID: 10.1007/bf0229135811029019)
      Kooijman M, de Hoog M, Rongen GA, Van Kuppevelt HJ, Smits P, Hopman MT (2007) Local vasoconstriction in spinal cord-injured and able-bodied individuals. J Appl Physiol 103(3):1070–1077. https://doi.org/10.1152/japplphysiol.00053.2007. (PMID: 10.1152/japplphysiol.00053.200717626837)
      Groothuis JT, Rongen GA, Geurts AC, Smits P, Hopman MT (2010) Effect of different sympathetic stimuli–autonomic dysreflexia and head-up tilt–on leg vascular resistance in spinal cord injury. Arch Phys Med Rehabil 91(12):1930–1935. https://doi.org/10.1016/j.apmr.2010.09.004. (PMID: 10.1016/j.apmr.2010.09.00421112436)
      Cariga P, Ahmed S, Mathias CJ, Gardner BP (2002) The prevalence and association of neck (coat-hanger) pain and orthostatic (postural) hypotension in human spinal cord injury. Spinal cord 40(2):77–82. https://doi.org/10.1038/sj.sc.3101259. (PMID: 10.1038/sj.sc.310125911926419)
      West C, Bellantoni A, Krassioukov A (2013) Cardiovascular function in individuals with incomplete spinal cord injury: a systematic review. Top Spinal Cord Inj Rehabil 19(4):267–278. https://doi.org/10.1310/sci1904-267. (PMID: 10.1310/sci1904-267242440923816721)
      Ravensbergen HJ, Walsh ML, Krassioukov AV, Claydon VE (2012) Electrocardiogram-based predictors for arrhythmia after spinal cord injury. Clin Auton Res 22:265–273. https://doi.org/10.1007/s10286-012-0166-6. (PMID: 10.1007/s10286-012-0166-622562253)
      Draghici AE, Taylor JA (2018) Baroreflex autonomic control in human spinal cord injury: physiology, measurement, and potential alterations. Auton Neurosci 209:37–42. https://doi.org/10.1016/j.autneu.2017.08.007. (PMID: 10.1016/j.autneu.2017.08.00728844537)
      Vogel ER, Sandroni P, Low PA (2005) Blood pressure recovery from Valsalva maneuver in patients with autonomic failure. Neurology 65(10):1533–1537. https://doi.org/10.1212/01.wnl.0000184504.13173.ef. (PMID: 10.1212/01.wnl.0000184504.13173.ef16301478)
      Hou S, Rabchevsky AG (2014) Autonomic consequences of spinal cord injury. Compr Physiol 4(4):1419–1453. https://doi.org/10.1002/cphy.c130045. (PMID: 10.1002/cphy.c13004525428850)
      Squair JW, Dhaliwal R, Cragg JJ, Charbonneau R, Grant C, Phillips AA (2019) National survey of bladder and gastrointestinal dysfunction in people with spinal cord injury. J Neurotrauma 36(12):2011–2019. https://doi.org/10.1089/neu.2018.5967. (PMID: 10.1089/neu.2018.596730501555)
      Bellinger DL, Lorton D (2014) Autonomic regulation of cellular immune function. Auton Neurosci 182:15–41. https://doi.org/10.1016/j.autneu.2014.01.006. (PMID: 10.1016/j.autneu.2014.01.00624685093)
      Carpenter RS, Marbourg JM, Brennan FH, Mifflin KA, Hall JC, Jiang RR, Mo XM, Karunasiri M, Burke MH, Dorrance AM, Popovich PG (2020) Spinal cord injury causes chronic bone marrow failure. Nat commun 11(1):3702. https://doi.org/10.1038/s41467-020-17564-z. (PMID: 10.1038/s41467-020-17564-z327100817382469)
      Mironets E, Fischer R, Bracchi-Ricard V, Saltos TM, Truglio TS, O’Reilly ML, Swanson KA, Bethea JR, Tom VJ (2020) Attenuating neurogenic sympathetic hyperreflexia robustly improves antibacterial immunity after chronic spinal cord injury. J Neurosci 40(2):478–492. https://doi.org/10.1523/jneurosci.2417-19.2019. (PMID: 10.1523/jneurosci.2417-19.2019317540146948947)
      Hubli M, Gee CM, Krassioukov AV (2015) Refined assessment of blood pressure instability after spinal cord injury. Am J Hypertens 28(2):173–181. https://doi.org/10.1093/ajh/hpu122. (PMID: 10.1093/ajh/hpu12224990527)
      Sletten DM, Suarez GA, Low PA, Mandrekar J, Singer W (2012) COMPASS 31: a refined and abbreviated composite autonomic symptom score. Mayo Clin Proc 87(12):1196–1201. https://doi.org/10.1016/j.mayocp.2012.10.013. (PMID: 10.1016/j.mayocp.2012.10.013232180873541923)
      Kirshblum S, Waring W (2014) Updates for the international standards for neurological classification of spinal cord injury. Phys Med Rehabil Clin 25(3):505–517. https://doi.org/10.1016/j.pmr.2014.04.001. (PMID: 10.1016/j.pmr.2014.04.001)
      Porth CJ, Bamrah VS, Tristani FE, Smith JJ (1984) The Valsalva maneuver: mechanisms and clinical implications. Heart Lung: J Crit Care 13(5):507–518.
      Nishimura RA, Tajik AJ (1986) The Valsalva maneuver and response revisited. Mayo Clin Proc 61(3):211–217. https://doi.org/10.1016/s0025-6196(12)61852-7. (PMID: 10.1016/s0025-6196(12)61852-73511334)
      Freeman R, Illigens BM, Lapusca R, Campagnolo M, Abuzinadah AR, Bonyhay I, Sinn DI, Miglis M, White J, Gibbons CH (2020) Symptom recognition is impaired in patients with orthostatic hypotension. Hypertens 75(5):1325–1332. https://doi.org/10.1161/hypertensionaha.119.13619. (PMID: 10.1161/hypertensionaha.119.13619)
      Vogel ER, Corfits JL, Sandroni P, Sletten DM, Benarroch EE, Fealey RD, Suarez GA, Gehrking TL, Gehrking JA, Low PA (2008) Effect of position on Valsalva maneuver: supine vs. 20 degree position. J Clin Neurophysiol 25(5):313. https://doi.org/10.1097/wnp.0b013e318182d319. (PMID: 10.1097/wnp.0b013e318182d319187914762729588)
      Palma JA, Gomez-Esteban JC, Norcliffe-Kaufmann L, Martinez J, Tijero B, Berganzo K, Kaufmann H (2015) Orthostatic hypotension in Parkinson disease: how much you fall or how low you go? Mov Disord 30(5):639–645. https://doi.org/10.1002/mds.26079. (PMID: 10.1002/mds.26079256781944397106)
      Arbogast SD, Alshekhlee A, Hussain Z, McNeeley K, Chelimsky TC (2009) Hypotension unawareness in profound orthostatic hypotension. Am J Med 122(6):574–580. https://doi.org/10.1016/j.amjmed.2008.10.040. (PMID: 10.1016/j.amjmed.2008.10.04019486719)
      Previnaire JG, Soler JM, Leclercq V, Denys P (2012) Severity of autonomic dysfunction in patients with complete spinal cord injury. Clin Autonom Res 22:9–15. https://doi.org/10.1007/s10286-011-0132-8. (PMID: 10.1007/s10286-011-0132-8)
      Hubli M, Krassioukov AV (2015) How reliable are sympathetic skin responses in subjects with spinal cord injury? Clin Autonom Res 25:117–124. https://doi.org/10.1007/s10286-015-0276-z. (PMID: 10.1007/s10286-015-0276-z)
      Claydon VE, Krassioukov AV (2008) Clinical correlates of frequency analyses of cardiovascular control after spinal cord injury. Am J Physiol-Heart Circ Physiol 294(2):H668–H678. https://doi.org/10.1152/ajpheart.00869.2007. (PMID: 10.1152/ajpheart.00869.200718024546)
      Sahota IS, Lucci VE, McGrath MS, Ravensbergen HJ, Claydon VE (2022) Cardiovascular and cerebrovascular responses to urodynamics testing after spinal cord injury: the influence of autonomic injury. Front physiol 13:977772. https://doi.org/10.3389/fphys.2022.977772. (PMID: 10.3389/fphys.2022.977772361877869525190)
      Pinna GD, Maestri R, La Rovere MT, Gobbi E, Fanfulla F (2006) Effect of paced breathing on ventilatory and cardiovascular variability parameters during short-term investigations of autonomic function. Am J Physiol-Heart Circ Physiol 290(1):H424–H433. https://doi.org/10.1152/ajpheart.00438.2005. (PMID: 10.1152/ajpheart.00438.200516155106)
      Solinsky R, Schleifer GD, Draghici AE, Hamner JW, Taylor JA (2022) Methodologic implications for rehabilitation research: differences in heart rate variability introduced by respiration. PM&R 14(12):1483–1489. https://doi.org/10.1002/pmrj.12770. (PMID: 10.1002/pmrj.12770)
      Mar PL, Nwazue V, Black BK, Biaggioni I, Diedrich A, Paranjape SY, Loyd JE, Hemnes AR, Robbins IM, Robertson D, Raj SR (2016) Valsalva maneuver in pulmonary arterial hypertension: susceptibility to syncope and autonomic dysfunction. Chest 149(5):1252–1260. https://doi.org/10.1016/j.chest.2015.11.015. (PMID: 10.1016/j.chest.2015.11.015268369064944774)
    • Grant Information:
      K23HD102663 National Institute of Child Health and Human Development; P2CHD086844 Eunice Kennedy Shriver National Institute of Child Health and Human Development
    • Contributed Indexing:
      Keywords: Orthostatic hypotension; Pressure recovery time; Spinal cord injury; Valsalva maneuver
    • Publication Date:
      Date Created: 20240625 Date Completed: 20240830 Latest Revision: 20240830
    • Publication Date:
      20240830
    • Accession Number:
      10.1007/s10286-024-01040-5
    • Accession Number:
      38916658