Menu
×
West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 5 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 1 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 5 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 5 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 5 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 5 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 5 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 5 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 2 p.m.
*open the 2nd and 4th Saturday
*open the 2nd and 4th Saturday
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 1 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 5 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 5 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 5 p.m.
Phone: (843) 795-6679
Main Library
9 a.m. - 5 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Today's Hours
West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 5 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 1 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 5 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 5 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 5 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 5 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 5 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 5 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 2 p.m.
*open the 2nd and 4th Saturday
*open the 2nd and 4th Saturday
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 1 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 5 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 5 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 5 p.m.
Phone: (843) 795-6679
Main Library
9 a.m. - 5 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
LPS-related muscle loss is associated with the alteration of Bacteroidetes abundance, systemic inflammation, and mitochondrial morphology in a weaned piglet model.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Yu J;Yu J;Yu J; Zheng C; Zheng C; Guo Q; Guo Q; Yin Y; Yin Y; Yin Y; Yin Y; Duan Y; Duan Y; Duan Y; Li F; Li F; Li F
- Source:
Science China. Life sciences [Sci China Life Sci] 2024 Sep; Vol. 67 (9), pp. 1970-1988. Date of Electronic Publication: 2024 Jun 21.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Science China Press, co-published with Springer Country of Publication: China NLM ID: 101529880 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1869-1889 (Electronic) Linking ISSN: 16747305 NLM ISO Abbreviation: Sci China Life Sci Subsets: MEDLINE
- Publication Information: Original Publication: Beijing : Science China Press, co-published with Springer
- Subject Terms: Lipopolysaccharides* ; Inflammation* ; Bacteroidetes* ; Cytokines*/metabolism; Animals ; Swine ; Muscle, Skeletal/pathology ; Weaning ; Mitochondria/metabolism ; Dynamins/metabolism ; Dynamins/genetics ; Mice ; Humans ; Mitochondrial Dynamics ; Disease Models, Animal ; Interleukin-6/metabolism ; Signal Transduction
- Abstract: We previously demonstrated that lipopolysaccharide (LPS) injection-induced immune stress could impair muscle growth in weaned piglets, but the precise mechanisms behind this remain elusive. Here, we found that chronic immune stress induced by LPS resulted in a significant reduction of 36.86% in the total muscle mass of piglets at 5 d post-treatment compared with the control group. At 1 d, prior to muscle mass loss, multiple alterations were noted in response to LPS treatment. These included a reduction in the abundance of Bacteroidetes, an increase in serum concentrations of pro-inflammatory cytokines, compromised mitochondrial morphology, and an upregulation in the expression of dynamin-related protein 1 (Drp1), a critical protein involved in mitochondrial fission. We highlight a strong negative correlation between Bacteroidetes abundance and the levels of serum pro-inflammatory cytokines, corroborated by in vivo intervention strategies in the musculature of both pig and mouse models. Mechanistically, the effects of Bacteroidetes on inflammation and muscle mass loss may involve the signaling pathway of the tauro-β-muricholic acid-fibroblast growth factor 15. Furthermore, the induction of overexpression of inflammatory cytokines, achieved without LPS treatment through oral administration of recombinant human IL-6 (rhIL-6), led to increased levels of circulating cytokines, subsequently causing a decrease in muscle mass. Notably, pre-treatment with Mdivi-1, an inhibitor of Drp-1, markedly attenuated the LPS-induced elevation in reactive oxygen species levels and rescued the associated decline in muscle mass. Collectively, these data indicate that LPS-induced muscle mass loss was linked to the reduction of Bacteroidetes abundance, increased inflammation, and the disruption of mitochondrial morphology. These insights offer promising avenues for the identification of potential therapeutic targets aimed at mitigating muscle mass loss.
(© 2024. Science China Press.) - References: Abrigo, J., Simon, F., Cabrera, D., Vilos, C., and Cabello-Verrugio, C. (2019). Mitochondrial dysfunction in skeletal muscle pathologies. Curr Protein Pept Sci 20, 536–546. (PMID: 3094766810.2174/1389203720666190402100902)
Ali, Q., Ma, S., Farooq, U., Niu, J., Li, F., Li, D., Wang, Z., Sun, H., Cui, Y., and Shi, Y. (2022). Pasture intake protects against commercial diet-induced lipopolysaccharide production facilitated by gut microbiota through activating intestinal alkaline phosphatase enzyme in meat geese. Front Immunol 13, 1041070. (PMID: 36569878977452210.3389/fimmu.2022.1041070)
Altenhöfer, S., Radermacher, K.A., Kleikers, P.W.M., Wingler, K., and Schmidt, H.H.H.W. (2015). Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid Redox Signal 23, 406–427. (PMID: 24383718454348410.1089/ars.2013.5814)
Arias, N., Arboleya, S., Allison, J., Kaliszewska, A., Higarza, S.G., Gueimonde, M., and Arias, J.L. (2020). The relationship between choline bioavailability from diet, intestinal microbiota composition, and its modulation of human diseases. Nutrients 12, 2340. (PMID: 32764281746895710.3390/nu12082340)
Bowen, T.S., Schuler, G., and Adams, V. (2015). Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle 6, 197–207. (PMID: 26401465457555010.1002/jcsm.12043)
Bratek-Gerej, E., Ziembowicz, A., Godlewski, J., and Salinska, E. (2021). The mechanism of the neuroprotective effect of kynurenic acid in the experimental model of neonatal hypoxia-ischemia: the link to oxidative stress. Antioxidants 10, 1775. (PMID: 34829646861528110.3390/antiox10111775)
Brown, J.L., Rosa-Caldwell, M.E., Lee, D.E., Blackwell, T.A., Brown, L.A., Perry, R.A., Haynie, W.S., Hardee, J.P., Carson, J.A., Wiggs, M.P., et al. (2017). Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumour-bearing mice. J Cachexia Sarcopenia Muscle 8, 926–938. (PMID: 28845591570043310.1002/jcsm.12232)
Cao, S., Wu, H., Wang, C.C., Zhang, Q., Jiao, L., Lin, F., and Hu, C.H. (2018). Diquat-induced oxidative stress increases intestinal permeability, impairs mitochondrial function, and triggers mitophagy in piglets. J Anim Sci 96, 1795–1805. (PMID: 29562342614095710.1093/jas/sky104)
Chen, S., Zhang, P., Duan, H., Wang, J., Qiu, Y., Cui, Z., Yin, Y., Wan, D., and Xie, L. (2023). Gut microbiota in muscular atrophy development, progression, and treatment: New therapeutic targets and opportunities. Innovation 4, 100479. (PMID: 3753944010394038)
Chen, Y.Y., Chen, D.Q., Chen, L., Liu, J.R., Vaziri, N.D., Guo, Y., and Zhao, Y.Y. (2019). Microbiome-metabolome reveals the contribution of gut-kidney axis on kidney disease. J Transl Med 17, 5. (PMID: 30602367631719810.1186/s12967-018-1756-4)
Clemente, J.C., Ursell, L.K., Parfrey, L.W., and Knight, R. (2012). The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270. (PMID: 22424233505001110.1016/j.cell.2012.01.035)
Costamagna, D., Costelli, P., Sampaolesi, M., and Penna, F. (2015). Role of inflammation in muscle homeostasis and myogenesis. Mediators Inflamm 2015, 1–14. (PMID: 10.1155/2015/805172)
de Castro, G.S., Simoes, E., Lima, J.D.C.C., Ortiz-Silva, M., Festuccia, W.T., Tokeshi, F., Alcântara, P.S., Otoch, J.P., Coletti, D., and Seelaender, M. (2019). Human cachexia induces changes in mitochondria, autophagy and apoptosis in the skeletal muscle. Cancers 11, 1264. (PMID: 31466311677012410.3390/cancers11091264)
Doyle, A., Zhang, G., Fattah, E.A.A., Eissa, N.T., and Li, Y. (2011). Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. FASEB J 25, 99–110. (PMID: 20826541300543010.1096/fj.10-164152)
Duan, G., Huang, P., Zheng, C., Zheng, J., Yu, J., Zhang, P., Wan, M., Li, F., Guo, Q., Yin, Y., et al. (2023). Development and recovery of liver injury in piglets by incremental injection of LPS. Antioxidants 12, 1143. (PMID: 373718731029549510.3390/antiox12061143)
Duan, Y., Guo, Q., Wen, C., Wang, W., Li, Y., Tan, B., Li, F., and Yin, Y. (2016). Free amino acid profile and expression of genes implicated in protein metabolism in skeletal muscle of growing pigs fed low-protein diets supplemented with branched-chain amino acids. J Agric Food Chem 64, 9390–9400. (PMID: 2796029410.1021/acs.jafc.6b03966)
Duan, Y., Zeng, L., Li, F., Wang, W., Li, Y., Guo, Q., Ji, Y., Tan, B., and Yin, Y. (2017). Effect of branched-chain amino acid ratio on the proliferation, differentiation, and expression levels of key regulators involved in protein metabolism of myocytes. Nutrition 36, 8–16. (PMID: 2833611310.1016/j.nut.2016.10.016)
Duan, Y., Zheng, C., Zhong, Y., Song, B., Yan, Z., Kong, X., Deng, J., Li, F., and Yin, Y. (2019a). Beta-hydroxy beta-methyl butyrate decreases muscle protein degradation via increased Akt/FoxO3a signaling and mitochondrial biogenesis in weanling piglets after lipopolysaccharide challenge. Food Funct 10, 5152–5165. (PMID: 3137359410.1039/C9FO00769E)
Duan, Y., Zhong, Y., Xiao, H., Zheng, C., Song, B., Wang, W., Guo, Q., Li, Y., Han, H., Gao, J., et al. (2019b). Gut microbiota mediates the protective effects of dietary β-hydroxy-β-methylbutyrate (HMB) against obesity induced by high-fat diets. FASEB J 33, 10019–10033. (PMID: 3116708010.1096/fj.201900665RR)
Dutt, V., Gupta, S., Dabur, R., Injeti, E., and Mittal, A. (2015). Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action. Pharmacol Res 99, 86–100. (PMID: 2604827910.1016/j.phrs.2015.05.010)
Farini, A., Tripodi, L., Villa, C., Strati, F., Facoetti, A., Baselli, G., Troisi, J., Landolfi, A., Lonati, C., Molinaro, D., et al. (2023). Microbiota dysbiosis influences immune system and muscle pathophysiology of dystrophin-deficient mice. EMBO Mol Med 15, e16244. (PMID: 3653329410.15252/emmm.202216244)
Fearon, K., Strasser, F., Anker, S.D., Bosaeus, I., Bruera, E., Fainsinger, R.L., Jatoi, A., Loprinzi, C., MacDonald, N., Mantovani, G., et al. (2011). Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 12, 489–495. (PMID: 2129661510.1016/S1470-2045(10)70218-7)
Fischer, F., Hamann, A., and Osiewacz, H.D. (2012). Mitochondrial quality control: an integrated network of pathways. Trends Biochem Sci 37, 284–292. (PMID: 2241019810.1016/j.tibs.2012.02.004)
Fontes-Oliveira, C.C., Busquets, S., Toledo, M., Penna, F., Aylwin, M.P., Sirisi, S., Silva, A.P., Orpí, M., García, A., Sette, A., et al. (2013). Mitochondrial and sarcoplasmic reticulum abnormalities in cancer cachexia: altered energetic efficiency? Biochim Biophys Acta 1830, 2770–2778. (PMID: 2320074510.1016/j.bbagen.2012.11.009)
Gan, Z., Fu, T., Kelly, D.P., and Vega, R.B. (2018). Skeletal muscle mitochondrial remodeling in exercise and diseases. Cell Res 28, 969–980. (PMID: 30108290617044810.1038/s41422-018-0078-7)
Giron, M., Thomas, M., Dardevet, D., Chassard, C., and Savary-Auzeloux, I. (2022). Gut microbes and muscle function: can probiotics make our muscles stronger? J Cachexia Sarcopenia Muscle 13, 1460–1476. (PMID: 35278043917837510.1002/jcsm.12964)
Guo, J., Qin, X., Wang, Y., Li, X., Wang, X., Zhu, H., Chen, S., Zhao, J., Xiao, K., and Liu, Y. (2023). Necroptosis mediates muscle protein degradation in a cachexia model of weanling pig with lipopolysaccharide challenge. Int J Mol Sci 24, 10923. (PMID: 374460991034155310.3390/ijms241310923)
Honda, K., and Littman, D.R. (2012). The microbiome in infectious disease and inflammation. Annu Rev Immunol 30, 759–795. (PMID: 22224764442696810.1146/annurev-immunol-020711-074937)
Huang, W., Ma, T., Liu, Y., Kwok, L.Y., Li, Y., Jin, H., Zhao, F., Shen, X., Shi, X., Sun, Z., et al. (2023). Spraying compound probiotics improves growth performance and immunity and modulates gut microbiota and blood metabolites of suckling piglets. Sci China Life Sci 66, 1092–1107. (PMID: 3654399610.1007/s11427-022-2229-1)
Ivanov, I.I., and Honda, K. (2012). Intestinal commensal microbes as immune modulators. Cell Host Microbe 12, 496–508. (PMID: 23084918351649310.1016/j.chom.2012.09.009)
Janssen, S.P.M., Gayan-Ramirez, G., Van Den Bergh, A., Herijgers, P., Maes, K., Verbeken, E., and Decramer, M. (2005). Interleukin-6 causes myocardial failure and skeletal muscle atrophy in rats. Circulation 111, 996–1005. (PMID: 1571076510.1161/01.CIR.0000156469.96135.0D)
Kang, P., Wang, X., Wu, H., Zhu, H., Hou, Y., Wang, L., and Liu, Y. (2017). Glutamate alleviates muscle protein loss by modulating TLR4, NODs, Akt/FOXO and mTOR signaling pathways in LPS-challenged piglets. PLoS ONE 12, e0182246. (PMID: 28783736554422410.1371/journal.pone.0182246)
Lahiri, S., Kim, H., Garcia-Perez, I., Reza, M.M., Martin, K.A., Kundu, P., Cox, L.M., Selkrig, J., Posma, J.M., Zhang, H., et al. (2019). The gut microbiota influences skeletal muscle mass and function in mice. Sci Transl Med 11, eaan5662. (PMID: 31341063750173310.1126/scitranslmed.aan5662)
Leduc-Gaudet, J.P., Hussain, S.N.A., Barreiro, E., and Gouspillou, G. (2021). Mitochondrial dynamics and mitophagy in skeletal muscle health and aging. Int J Mol Sci 22, 8179. (PMID: 34360946834812210.3390/ijms22158179)
Li, J., Liu, F., Mo, K., Ni, H., and Yin, Y. (2024). Effects of weaning on intestinal longitudinal muscle-myenteric plexus function in piglets. Sci China Life Sci 67, 379–390. (PMID: 3782402910.1007/s11427-022-2391-x)
Liu, C., Cheung, W., Li, J., Chow, S.K., Yu, J., Wong, S.H., Ip, M., Sung, J.J.Y., and Wong, R.M.Y. (2021). Understanding the gut microbiota and sarcopenia: a systematic review. J Cachexia Sarcopenia Muscle 12, 1393–1407. (PMID: 34523250871803810.1002/jcsm.12784)
Liu, H., Xi, Y., Liu, G., Zhao, Y., Li, J., and Lei, M. (2018). Comparative transcriptomic analysis of skeletal muscle tissue during prenatal stages in Tongcheng and Yorkshire pig using RNA-seq. Funct Integr Genomics 18, 195–209. (PMID: 2932226310.1007/s10142-017-0584-6)
Liu, J., Peng, Y., Wang, X., Fan, Y., Qin, C., Shi, L., Tang, Y., Cao, K., Li, H., Long, J., et al. (2016a). Mitochondrial dysfunction launches dexamethasone-induced skeletal muscle atrophy via AMPK/FOXO3 signaling. Mol Pharm 13, 73–84. (PMID: 2659273810.1021/acs.molpharmaceut.5b00516)
Liu, Y., Wang, X., Leng, W., Pi, D., Tu, Z., Zhu, H., Shi, H., Li, S., Hou, Y., and Hu, C.A.A. (2017). Aspartate inhibits LPS-induced MAFbx and MuRF1 expression in skeletal muscle in weaned pigs by regulating Akt, AMPKα and FOXO1. Innate Immun 23, 34–43. (PMID: 2806456410.1177/1753425916673443)
Liu, Y., Wang, X., Wu, H., Chen, S., Zhu, H., Zhang, J., Hou, Y., Hu, C.A.A., and Zhang, G. (2016b). Glycine enhances muscle protein mass associated with maintaining Akt-mTOR-FOXO1 signaling and suppressing TLR4 and NOD2 signaling in piglets challenged with LPS. Am J Physiol Regul Integr Comp Physiol 311, R365–R373. (PMID: 2722594710.1152/ajpregu.00043.2016)
López-Armada, M.J., Riveiro-Naveira, R.R., Vaamonde-García, C., and Valcárcel-Ares, M.N. (2013). Mitochondrial dysfunction and the inflammatory response. Mitochondrion 13, 106–118. (PMID: 2333340510.1016/j.mito.2013.01.003)
Lunney, J.K., Van Goor, A., Walker, K.E., Hailstock, T., Franklin, J., and Dai, C. (2021). Importance of the pig as a human biomedical model. Sci Transl Med 13, eabd5758. (PMID: 3481805510.1126/scitranslmed.abd5758)
Mancin, L., Wu, G.D., and Paoli, A. (2023). Gut microbiota-bile acid-skeletal muscle axis. Trends Microbiol 31, 254–269. (PMID: 3631950610.1016/j.tim.2022.10.003)
NRC. (2012). Nutrient Requirements of Swine. Eleventh Revised Edition. Washington: National Academic Press.
Patel, J., Baptiste, B.A., Kim, E., Hussain, M., Croteau, D.L., and Bohr, V.A. (2020). DNA damage and mitochondria in cancer and aging. Carcinogenesis 41, 1625–1634. (PMID: 33146705779162610.1093/carcin/bgaa114)
Pei, T., Zhu, D., Yang, S., Hu, R., Wang, F., Zhang, J., Yan, S., Ju, L., He, Z., Han, Z., et al. (2022). Bacteroides plebeius improves muscle wasting in chronic kidney disease by modulating the gut-renal muscle axis. J Cell Mol Medi 26, 6066–6078. (PMID: 10.1111/jcmm.17626)
Penna, F., Ballarò, R., and Costelli, P. (2020). The redox balance: a target for interventions against muscle wasting in cancer cachexia? Antioxid Redox Signal 33, 542–558. (PMID: 3203785610.1089/ars.2020.8041)
Qaisar, R., Bhaskaran, S., Premkumar, P., Ranjit, R., Natarajan, K.S., Ahn, B., Riddle, K., Claflin, D.R., Richardson, A., Brooks, S.V., et al. (2018). Oxidative stress-induced dysregulation of excitation-contraction coupling contributes to muscle weakness. J Cachexia Sarcopenia Muscle 9, 1003–1017. (PMID: 30073804620458810.1002/jcsm.12339)
Qi, M., Liao, S., Wang, J., Deng, Y., Zha, A., Shao, Y., Cui, Z., Song, T., Tang, Y., Tan, B., et al. (2022). MyD88 deficiency ameliorates weight loss caused by intestinal oxidative injury in an autophagy-dependent mechanism. J Cachexia Sarcopenia Muscle 13, 677–695. (PMID: 3481194610.1002/jcsm.12858)
Qiu, Y., Shen, L., Fu, L., Yang, J., Cui, C., Li, T., Li, X., Fu, C., Gao, X., Wang, W., et al. (2020). The glucose-lowering effects of α-glucosidase inhibitor require a bile acid signal in mice. Diabetologia 63, 1002–1016. (PMID: 32034442714578110.1007/s00125-020-05095-7)
Qiu, Y., Yu, J., Li, Y., Yang, F., Yu, H., Xue, M., Zhang, F., Jiang, X., Ji, X., and Bao, Z. (2021). Depletion of gut microbiota induces skeletal muscle atrophy by FXR-FGF15/19 signalling. Ann Med 53, 508–522. (PMID: 33783283801855410.1080/07853890.2021.1900593)
Ren, W., Yu, B., Yu, J., Zheng, P., Huang, Z., Luo, J., Mao, X., He, J., Yan, H., Wu, J., et al. (2022). Lower abundance of Bacteroides and metabolic dysfunction are highly associated with the post-weaning diarrhea in piglets. Sci China Life Sci 65, 2062–2075. (PMID: 3546731810.1007/s11427-021-2068-6)
Robinson, K.A., Baker, L.A., Graham-Brown, M.P.M., and Watson, E.L. (2020). Skeletal muscle wasting in chronic kidney disease: the emerging role of microRNAs. Nephrol Dial Transplant 35, 1469–1478. (PMID: 3160322910.1093/ndt/gfz193)
Romanello, V., Guadagnin, E., Gomes, L., Roder, I., Sandri, C., Petersen, Y., Milan, G., Masiero, E., Del Piccolo, P., Foretz, M., et al. (2010). Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J 29, 1774–1785. (PMID: 20400940287696510.1038/emboj.2010.60)
Romanello, V., and Sandri, M. (2020). The connection between the dynamic remodeling of the mitochondrial network and the regulation of muscle mass. Cell Mol Life Sci 78, 1305–1328. (PMID: 33078210790455210.1007/s00018-020-03662-0)
Sartori, R., Romanello, V., and Sandri, M. (2021). Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun 12, 330. (PMID: 33436614780374810.1038/s41467-020-20123-1)
Swindle, M.M., Makin, A., Herron, A.J., Clubb Jr, F.J., and Frazier, K.S. (2012). Swine as models in biomedical research and toxicology testing. Vet Pathol 49, 344–356. (PMID: 2144111210.1177/0300985811402846)
Tan, H., Zhao, J., Zhang, H., Zhai, Q., and Chen, W. (2019). Novel strains of Bacteroides fragilis and Bacteroides ovatus alleviate the LPS-induced inflammation in mice. Appl Microbiol Biotechnol 103, 2353–2365. (PMID: 3066636110.1007/s00253-019-09617-1)
Tan, P.L., Shavlakadze, T., Grounds, M.D., and Arthur, P.G. (2015). Differential thiol oxidation of the signaling proteins Akt, PTEN or PP2A determines whether Akt phosphorylation is enhanced or inhibited by oxidative stress in C2C12 myotubes derived from skeletal muscle. Int J Biochem Cell Biol 62, 72–79. (PMID: 2573725010.1016/j.biocel.2015.02.015)
Tezze, C., Romanello, V., Desbats, M.A., Fadini, G.P., Albiero, M., Favaro, G., Ciciliot, S., Soriano, M.E., Morbidoni, V., Cerqua, C., et al. (2017). Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence. Cell Metab 25, 1374–1389.e6. (PMID: 28552492546253310.1016/j.cmet.2017.04.021)
Touvier, T., De Palma, C., Rigamonti, E., Scagliola, A., Incerti, E., Mazelin, L., Thomas, J.L., D’Antonio, M., Politi, L., Schaeffer, L., et al. (2015). Muscle-specific Drp1 overexpression impairs skeletal muscle growth via translational attenuation. Cell Death Dis 6, e1663. (PMID: 25719247466980210.1038/cddis.2014.595)
Tuttle, C.S.L., Thang, L.A.N., and Maier, A.B. (2020). Markers of inflammation and their association with muscle strength and mass: a systematic review and metaanalysis. Ageing Res Rev 64, 101185. (PMID: 3299204710.1016/j.arr.2020.101185)
van Horssen, J., van Schaik, P., and Witte, M. (2019). Inflammation and mitochondrial dysfunction: a vicious circle in neurodegenerative disorders? Neurosci Lett 710, 132931. (PMID: 2866838210.1016/j.neulet.2017.06.050)
Wang, C., Guan, Y., Lv, M., Zhang, R., Guo, Z., Wei, X., Du, X., Yang, J., Li, T., Wan, Y., et al. (2018). Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA viruses. Immunity 48, 675–687.e7. (PMID: 2965369610.1016/j.immuni.2018.03.017)
Wang, D., Kuang, Y., Lv, Q., Xie, W., Xu, X., Zhu, H., Zhang, Y., Cong, X., Cheng, S., and Liu, Y. (2023). Selenium-enriched Cardamine violifolia protects against sepsis-induced intestinal injury by regulating mitochondrial fusion in weaned pigs. Sci China Life Sci 66, 2099–2111. (PMID: 3681404710.1007/s11427-022-2274-7)
Wen, C., Li, F., Guo, Q., Zhang, L., Duan, Y., Wang, W., Li, J., He, S., Chen, W., and Yin, Y. (2020). Protective effects of taurine against muscle damage induced by diquat in 35 days weaned piglets. J Anim Sci Biotechnol 11, 56. (PMID: 32514342726831910.1186/s40104-020-00463-0)
Westermann, B. (2010). Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11, 872–884. (PMID: 2110261210.1038/nrm3013)
Xiao, L., Tang, R., Wang, J., Wan, D., Yin, Y., and Xie, L. (2023). Gut microbiota bridges the iron homeostasis and host health. Sci China Life Sci 66, 1952–1975. (PMID: 3751568710.1007/s11427-022-2302-5)
Yang, W., and Hu, P. (2018). Skeletal muscle regeneration is modulated by inflammation. J Orthop Transl 13, 25–32.
Yu, J., Zheng, C., Zheng, J., Duan, G., Guo, Q., Zhang, P., Wan, M., and Duan, Y. (2022). Development of intestinal injury and restoration of weaned piglets under chronic immune stress. Antioxidants 11, 2215. (PMID: 36358587968657110.3390/antiox11112215)
Yu, T., Ferdjallah, I., Elenberg, F., Chen, S.K., Deuster, P., and Chen, Y. (2018). Mitochondrial fission contributes to heat-induced oxidative stress in skeletal muscle but not hyperthermia in mice. Life Sci 200, 6–14. (PMID: 2949928210.1016/j.lfs.2018.02.031)
Zeng, H.G., Fu, J.H., Deng, H., Yu, Z., Jiang, H., Han, X.Y., and Cai, Y. (2011). Effects of Bacteroides on immune function of piglets. Chin J Microecol 23, 989–990.
Zheng, C., Zhang, S., Duan, Y., Li, F., Song, B., Guo, Q., Zheng, J., Zhang, L., Lian, G., and Duan, G. (2022). Dietary beta-hydroxy-beta-methyl butyrate supplementation improves meat quality of Bama Xiang mini-pigs through manipulation of muscle fiber characteristics. J Funct Foods 88, 104885. (PMID: 10.1016/j.jff.2021.104885)
Zheng, C., Song, B., Guo, Q., Zheng, J., Li, F., Duan, Y., and Peng, C. (2021). Alterations of the muscular fatty acid composition and serum metabolome in Bama Xiang mini-pigs exposed to dietary beta-hydroxy beta-methyl butyrate. Animals 11, 1190. (PMID: 33919223814316510.3390/ani11051190) - Contributed Indexing: Keywords: Bacteroidetes; inflammation; mitochondrial morphology; muscle mass loss; piglets
- Accession Number: 0 (Lipopolysaccharides)
0 (Cytokines)
EC 3.6.5.5 (Dynamins)
0 (Interleukin-6) - Publication Date: Date Created: 20240624 Date Completed: 20240827 Latest Revision: 20240827
- Publication Date: 20240828
- Accession Number: 10.1007/s11427-023-2552-7
- Accession Number: 38913237
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.