Vaccination reduces central nervous system IL-1β and memory deficits after COVID-19 in mice.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature America Inc Country of Publication: United States NLM ID: 100941354 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1529-2916 (Electronic) Linking ISSN: 15292908 NLM ISO Abbreviation: Nat Immunol Subsets: MEDLINE
    • Publication Information:
      Original Publication: New York, NY : Nature America Inc. c2000-
    • Subject Terms:
    • Abstract:
      Up to 25% of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibit postacute cognitive sequelae. Although millions of cases of coronavirus disease 2019 (COVID-19)-mediated memory dysfunction are accumulating worldwide, the underlying mechanisms and how vaccination lowers risk are unknown. Interleukin-1 (IL-1), a key component of innate immune defense against SARS-CoV-2 infection, is elevated in the hippocampi of individuals with COVID-19. Here we show that intranasal infection of C57BL/6J mice with SARS-CoV-2 Beta variant leads to central nervous system infiltration of Ly6C hi monocytes and microglial activation. Accordingly, SARS-CoV-2, but not H1N1 influenza virus, increases levels of brain IL-1β and induces persistent IL-1R1-mediated loss of hippocampal neurogenesis, which promotes postacute cognitive deficits. Vaccination with a low dose of adenoviral-vectored spike protein prevents hippocampal production of IL-1β during breakthrough SARS-CoV-2 infection, loss of neurogenesis and subsequent memory deficits. Our study identifies IL-1β as one potential mechanism driving SARS-CoV-2-induced cognitive impairment in a new mouse model that is prevented by vaccination.
      (© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.)
    • References:
      Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733 (2020). (PMID: 319789457092803)
      Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020). (PMID: 320155077095418)
      O’Mahoney, L. L. et al. The prevalence and long-term health effects of long COVID among hospitalised and non-hospitalised populations: a systematic review and meta-analysis. EClinicalMedicine 55, 101762 (2023). (PMID: 36474804)
      Han, Q., Zheng, B., Daines, L. & Sheikh, A. Long-term sequelae of COVID-19: a systematic review and meta-analysis of one-year follow-up studies on post-COVID symptoms. Pathogens 11, 269 (2022). (PMID: 352152128875269)
      Centers for Disease Control and Prevention, National Center for Health Statistics. Long COVID—Household Pulse Survey. https://www.cdc.gov/nchs/covid19/pulse/long-covid.htm (2023).
      Hua, M. J. et al. Prevalence and characteristics of long COVID 7–12 months after hospitalization among patients from an urban safety-net hospital: a pilot study. AJPM Focus 2, 100091 (2023). (PMID: 3713153610036151)
      Perlis, R. H. et al. Prevalence and correlates of long COVID symptoms among US adults. JAMA Netw. Open 5, e2238804 (2022). (PMID: 363015429614581)
      Taquet, M. et al. Incidence, co-occurrence, and evolution of long-COVID features: a 6-month retrospective cohort study of 273,618 survivors of COVID-19. PLoS Med. 18, e1003773 (2021). (PMID: 345824418478214)
      Xu, E., Xie, Y. & Al-Aly, Z. Long-term neurologic outcomes of COVID-19. Nat. Med. 28, 2406–2415 (2022). (PMID: 361381549671811)
      Mehandru, S. & Merad, M. Pathological sequelae of long-haul COVID. Nat. Immunol. 23, 194–202 (2022). (PMID: 351059859127978)
      Méndez, R. et al. Long-term neuropsychiatric outcomes in COVID-19 survivors: a 1-year longitudinal study. J. Intern. Med. 291, 247–251 (2022). (PMID: 34569681)
      Douaud, G. et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 604, 697–707 (2022).
      Hampshire, A. et al. Cognitive deficits in people who have recovered from COVID-19. EClinicalMedicine 39, 101044 (2021). (PMID: 343165518298139)
      Guo, P. et al. COVCOG 2: cognitive and memory deficits in long COVID: a second publication from the COVID and cognition study. Front. Aging Neurosci. 14, 804937 (2022). (PMID: 353706208967943)
      Graham, E. L. et al. Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized COVID-19 ‘long haulers’. Ann. Clin. Transl. Neurol. 8, 1073–1085 (2021). (PMID: 337553448108421)
      Monje, M. & Iwasaki, A. The neurobiology of long COVID. Neuron 110, 3484–3496 (2022). (PMID: 362887269537254)
      Klein, R. S. Mechanisms of coronavirus infectious disease 2019-related neurologic diseases. Curr. Opin. Neurol. 35, 392–398 (2022). (PMID: 352834619186403)
      Soung, A. L. et al. COVID-19 induces CNS cytokine expression and loss of hippocampal neurogenesis. Brain 145, 4193–4201 (2022). (PMID: 360046639452175)
      Grant, R. A. et al. Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia. Nature 590, 635–641 (2021). (PMID: 334294187987233)
      Schwabenland, M. et al. Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia–T-cell interactions. Immunity 54, 1594–1610 (2021). (PMID: 341741838188302)
      Jensen, M. P. et al. Neuropathological findings in two patients with fatal COVID-19. Neuropathol. Appl. Neurobiol. 47, 17–25 (2021). (PMID: 32895961)
      Matschke, J. et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 19, 919–929 (2020). (PMID: 330317357535629)
      Thakur, K. T. et al. COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain 144, 2696–2708 (2021).
      Bird, C. M. & Burgess, N. The hippocampus and memory: insights from spatial processing. Nat. Rev. Neurosci. 9, 182–194 (2008). (PMID: 18270514)
      Zemla, R. & Basu, J. Hippocampal function in rodents. Curr. Opin. Neurobiol. 43, 187–197 (2017). (PMID: 284775115690575)
      Basu, J. & Siegelbaum, S. A. The corticohippocampal circuit, synaptic plasticity, and memory. Cold Spring Harb. Perspect. Biol. 7, a021733 (2015). (PMID: 265251524632668)
      Toda, T., Parylak, S. L., Linker, S. B. & Gage, F. H. The role of adult hippocampal neurogenesis in brain health and disease. Mol. Psychiatry 24, 67–87 (2019). (PMID: 29679070)
      Kumar, A., Pareek, V., Faiq, M. A., Ghosh, S. K. & Kumari, C. Adult neurogenesis in humans: a review of basic concepts, history, current research, and clinical implications. Innov. Clin. Neurosci. 16, 30–37 (2019). (PMID: 314403996659986)
      Hein, A. M. et al. Sustained hippocampal IL-1β overexpression impairs contextual and spatial memory in transgenic mice. Brain Behav. Immun. 24, 243–253 (2010). (PMID: 19825412)
      Wu, M. D. et al. Adult murine hippocampal neurogenesis is inhibited by sustained IL-1β and not rescued by voluntary running. Brain Behav. Immun. 26, 292–300 (2012). (PMID: 21983279)
      Soung, A. L. et al. IL-1 reprogramming of adult neural stem cells limits neurocognitive recovery after viral encephalitis by maintaining a proinflammatory state. Brain Behav. Immun. 99, 383–396 (2022). (PMID: 34695572)
      Garber, C. et al. Astrocytes decrease adult neurogenesis during virus-induced memory dysfunction via IL-1. Nat. Immunol. 19, 151–161 (2018). (PMID: 292923855786497)
      Schultheiß, C. et al. The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep. Med. 3, 100663 (2022). (PMID: 357321539214726)
      Català, M. et al. The effectiveness of COVID-19 vaccines to prevent long COVID symptoms: staggered cohort study of data from the UK, Spain, and Estonia. Lancet Respir. Med. 12, 225–236 (2024). (PMID: 38219763)
      Al-Aly, Z., Bowe, B. & Xie, Y. Long COVID after breakthrough SARS-CoV-2 infection. Nat. Med. 28, 1461–1467 (2022). (PMID: 356142339307472)
      Huapaya, J. A. et al. Vaccination ameliorates cellular inflammatory responses in SARS-CoV-2 breakthrough infections. J. Infect. Dis. 228, 46–58 (2023). (PMID: 3680194610304754)
      Zhu, X. et al. Dynamics of inflammatory responses after SARS-CoV-2 infection by vaccination status in the USA: a prospective cohort study. Lancet Microbe 4, e692–e703 (2023). (PMID: 3765941910475695)
      Fan, Q. et al. Clinical characteristics and immune profile alterations in vaccinated individuals with breakthrough Delta SARS-CoV-2 infections. Nat. Commun. 13, 3979 (2022). (PMID: 358101749271076)
      Vanderheiden, A. et al. CCR2 signaling restricts SARS-CoV-2 infection. mBio 12, e0274921 (2021). (PMID: 34749524)
      Shuai, H. et al. Emerging SARS-CoV-2 variants expand species tropism to murines. EBioMedicine 73, 103643 (2021). (PMID: 346890868530107)
      Pan, T. et al. Infection of wild-type mice by SARS-CoV-2 B.1.351 variant indicates a possible novel cross-species transmission route. Signal Transduct. Target. Ther. 6, 420 (2021). (PMID: 349071548669038)
      Leger, M. et al. Object recognition test in mice. Nat. Protoc. 8, 2531–2537 (2013). (PMID: 24263092)
      Vasek, M. J. et al. A complement–microglial axis drives synapse loss during virus-induced memory impairment. Nature 534, 538–543 (2016). (PMID: 273373405452615)
      Rosen, S. F. et al. Single-cell RNA transcriptome analysis of CNS immune cells reveals CXCL16/CXCR6 as maintenance factors for tissue-resident T cells that drive synapse elimination. Genome Med. 14, 108 (2022). (PMID: 361536309509564)
      Brannock, M. D. et al. Long COVID risk and pre-COVID vaccination in an EHR-based cohort study from the RECOVER program. Nat. Commun. 14, 2914 (2023). (PMID: 3721747110201472)
      Notarte, K. I. et al. Impact of COVID-19 vaccination on the risk of developing long-COVID and on existing long-COVID symptoms: a systematic review. EClinicalMedicine 53, 101624 (2022). (PMID: 360512479417563)
      Bricker, T. L. et al. A single intranasal or intramuscular immunization with chimpanzee adenovirus-vectored SARS-CoV-2 vaccine protects against pneumonia in hamsters. Cell Rep. 36, 109400 (2021). (PMID: 342456728238649)
      Antunes, M. & Biala, G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn. Process. 13, 93–110 (2012). (PMID: 22160349)
      Yang, A. C. et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 595, 565–571 (2021). (PMID: 341539748400927)
      Fullard, J. F. et al. Single-nucleus transcriptome analysis of human brain immune response in patients with severe COVID-19. Genome Med. 13, 118 (2021). (PMID: 342816038287557)
      Lee, M. H. et al. Neurovascular injury with complement activation and inflammation in COVID-19. Brain 145, 2555–2568 (2022). (PMID: 35788639)
      Lage, S. L. et al. Persistent oxidative stress and inflammasome activation in CD14 high CD16 monocytes from COVID-19 patients. Front. Immunol. 12, 799558 (2021). (PMID: 35095880)
      Junqueira, C. et al. FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature 606, 576–584 (2022).
      Fernández-Castañeda, A. et al. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell 185, 2452–2468 (2022). (PMID: 357680069189143)
      Reagin, K. L. & Funk, K. E. The role of antiviral CD8 + T cells in cognitive impairment. Curr. Opin. Neurobiol. 76, 102603 (2022). (PMID: 358105349489663)
      Garber, C. et al. T cells promote microglia-mediated synaptic elimination and cognitive dysfunction during recovery from neuropathogenic flaviviruses. Nat. Neurosci. 22, 1276–1288 (2019). (PMID: 312359306822175)
      Sun, Y., Koyama, Y. & Shimada, S. Inflammation from peripheral organs to the brain: how does systemic inflammation cause neuroinflammation? Front. Aging Neurosci. 14, 903455 (2022). (PMID: 357831479244793)
      Lee, J. S. et al. Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19. Sci. Immunol. 5, eabd1554 (2020). (PMID: 326512127402635)
      Frere, J. J. et al. SARS-CoV-2 infection in hamsters and humans results in lasting and unique systemic perturbations after recovery. Sci. Transl. Med. 14, eabq3059 (2022). (PMID: 35857629)
      Grønkjær, C. S., Christensen, R. H. B., Kondziella, D. & Benros, M. E. Long-term neurological outcome after COVID-19 using all SARS-CoV-2 test results and hospitalisations in Denmark with 22-month follow-up. Nat. Commun. 14, 4235 (2023). (PMID: 3745415110349860)
      Zarifkar, P., Peinkhofer, C., Benros, M. E. & Kondziella, D. Frequency of neurological diseases after COVID-19, influenza A/B and bacterial pneumonia. Front. Neurol. 13, 904796 (2022). (PMID: 358121089259944)
      Dinarello, C. A. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev. Immunol. 27, 519–550 (2009). (PMID: 19302047)
      Trevino, T. N. et al. Engineered Wnt7a ligands rescue blood–brain barrier and cognitive deficits in a COVID-19 mouse model. Brain 147, 1636–1643 (2024).
      Wenzel, J. et al. The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nat. Neurosci. 24, 1522–1533 (2021). (PMID: 346754368553622)
      Bowe, B., Xie, Y. & Al-Aly, Z. Post acute sequelae of COVID-19 at 2 years. Nat. Med. 29, 2347–2357 (2023). (PMID: 3760507910504070)
      Chen, R. E. et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat. Med. 27, 717–726 (2021). (PMID: 336644948058618)
      Zang, R. et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol. 5, eabc3582 (2020). (PMID: 324044367285829)
      Szretter, K. J. et al. 2′-O-Methylation of the viral mRNA cap by West Nile virus evades IFIT1-dependent and -independent mechanisms of host restriction in vivo. PLoS Pathog. 8, e1002698 (2012). (PMID: 225897273349756)
      Williams, G. D. et al. Nucleotide resolution mapping of influenza A virus nucleoprotein–RNA interactions reveals RNA features required for replication. Nat. Commun. 9, 465 (2018). (PMID: 293866215792457)
      Case, J. B., Bailey, A. L., Kim, A. S., Chen, R. E. & Diamond, M. S. Growth, detection, quantification, and inactivation of SARS-CoV-2. Virology 548, 39–48 (2020). (PMID: 32838945)
      Hassan, A. O. et al. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell 183, 169–184 (2020). (PMID: 329317347437481)
      Vanderheiden, A. et al. Development of a rapid focus reduction neutralization test assay for measuring SARS-CoV-2 neutralizing antibodies. Curr. Protoc. Immunol. 131, e116 (2020). (PMID: 332158587864545)
    • Grant Information:
      R35NS122310 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS); R01NS104471 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS); R01AI139251 U.S. Department of Health & Human Services | National Institutes of Health (NIH); F32NS128065 Division of Intramural Research, National Institute of Allergy and Infectious Diseases (Division of Intramural Research of the NIAID); F32 NS128065 United States NS NINDS NIH HHS
    • Accession Number:
      0 (Interleukin-1beta)
      0 (Spike Glycoprotein, Coronavirus)
      0 (COVID-19 Vaccines)
      0 (spike protein, SARS-CoV-2)
      0 (IL1B protein, mouse)
      0 (Receptors, Interleukin-1 Type I)
    • Subject Terms:
      SARS-CoV-2 variants
    • Publication Date:
      Date Created: 20240620 Date Completed: 20240704 Latest Revision: 20240810
    • Publication Date:
      20240812
    • Accession Number:
      10.1038/s41590-024-01868-z
    • Accession Number:
      38902519