Single-Use, Metabolite Absorbing, Resonant Transducer (SMART) Culture Vessels for Label-Free, Continuous Cell Culture Progression Monitoring.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: WILEY-VCH Country of Publication: Germany NLM ID: 101664569 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2198-3844 (Electronic) Linking ISSN: 21983844 NLM ISO Abbreviation: Adv Sci (Weinh) Subsets: MEDLINE
    • Publication Information:
      Original Publication: Weinheim : WILEY-VCH, [2014]-
    • Subject Terms:
    • Abstract:
      Secreted metabolites are an important class of bio-process analytical technology (PAT) targets that can correlate to cell conditions. However, current strategies for measuring metabolites are limited to discrete measurements, resulting in limited understanding and ability for feedback control strategies. Herein, a continuous metabolite monitoring strategy is demonstrated using a single-use metabolite absorbing resonant transducer (SMART) to correlate with cell growth. Polyacrylate is shown to absorb secreted metabolites from living cells containing hydroxyl and alkenyl groups such as terpenoids, that act as a plasticizer. Upon softening, the polyacrylate irreversibly conformed into engineered voids above a resonant sensor, changing the local permittivity which is interrogated, contact-free, with a vector network analyzer. Compared to sensing using the intrinsic permittivity of cells, the SMART approach yields a 20-fold improvement in sensitivity. Tracking growth of many cell types such as Chinese hamster ovary, HEK293, K562, HeLa, and E. coli cells as well as perturbations in cell proliferation during drug screening assays are demonstrated. The sensor is benchmarked to show continuous measurement over six days, ability to track different growth conditions, selectivity to transducing active cell growth metabolites against other components found in the media, and feasibility to scale out for high throughput campaigns.
      (© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.)
    • References:
      Adv Sci (Weinh). 2024 Aug;11(32):e2401260. (PMID: 38900081)
      Biotechnol Bioeng. 2015 Dec;112(12):2495-504. (PMID: 26108810)
      Toxicol Rep. 2020 Feb 07;7:335-344. (PMID: 32090021)
      Biotechnol Prog. 2019 May;35(3):e2782. (PMID: 30707503)
      Mol Cell. 2013 Feb 7;49(3):379-87. (PMID: 23395268)
      Biotechnol Bioeng. 2011 May;108(5):1215-21. (PMID: 21449033)
      Trends Biotechnol. 2020 Oct;38(10):1099-1112. (PMID: 31982150)
      Biotechnol Bioeng. 2022 Dec;119(12):3497-3508. (PMID: 36000349)
      Bioengineering (Basel). 2022 Dec 03;9(12):. (PMID: 36550968)
      Anal Bioanal Chem. 2017 Sep;409(24):5711-5721. (PMID: 28730310)
      Acta Histochem. 2018 Apr;120(3):159-167. (PMID: 29496266)
      Biotechnol Adv. 2022 Dec;61:108048. (PMID: 36208846)
      Eng Life Sci. 2017 Aug 28;17(8):940-952. (PMID: 32624843)
      Bioprocess Biosyst Eng. 2020 Feb;43(2):193-205. (PMID: 31549309)
      J Biomol Screen. 2011 Jul;16(6):575-87. (PMID: 21518825)
      Analyst. 2021 Jul 7;146(13):4326-4339. (PMID: 34106111)
      Sci Technol Adv Mater. 2021 Jan 6;21(1):768-786. (PMID: 33488297)
      Bioengineering (Basel). 2020 Jul 20;7(3):. (PMID: 32698462)
      Biosens Bioelectron. 2016 Feb 15;76:131-44. (PMID: 26189406)
      PLoS One. 2012;7(10):e46536. (PMID: 23094027)
      ACS Nano. 2016 Jan 26;10(1):280-8. (PMID: 26643251)
      Trends Biotechnol. 2020 Oct;38(10):1128-1140. (PMID: 32941792)
      Mol Ther Methods Clin Dev. 2016 Dec 31;4:92-101. (PMID: 28344995)
      J Immunol. 2018 Feb 1;200(3):1220-1226. (PMID: 29288205)
      Onco Targets Ther. 2014 Jun 12;7:985-94. (PMID: 24959085)
      Molecules. 2018 Dec 11;23(12):. (PMID: 30544947)
      Curr Opin Biotechnol. 2018 Oct;53:164-181. (PMID: 29462761)
      Cells. 2022 Jun 15;11(12):. (PMID: 35741058)
      Magn Reson Chem. 2019 Aug;57(10):794-804. (PMID: 30586475)
      J Pharm Biomed Anal. 2022 Jan 5;207:114379. (PMID: 34607168)
      J Appl Microbiol. 2017 Mar;122(3):640-650. (PMID: 27930835)
      J Expo Sci Environ Epidemiol. 2022 Mar;32(2):244-258. (PMID: 34302044)
      Biotechnol Prog. 2020 Jul;36(4):e2977. (PMID: 32012476)
      Molecules. 2020 Oct 13;25(20):. (PMID: 33066296)
      Exp Ther Med. 2017 Sep;14(3):1866-1870. (PMID: 28962095)
      Biotechnol Bioeng. 2012 Jun;109(6):1404-14. (PMID: 22407794)
      J Ind Microbiol Biotechnol. 2020 Nov;47(11):947-964. (PMID: 32895764)
      Curr Opin Biotechnol. 2021 Oct;71:225-230. (PMID: 34482018)
      ACS Sens. 2023 Mar 24;8(3):943-955. (PMID: 36916021)
      J Biotechnol. 2005 Aug 22;118(3):316-27. (PMID: 16019100)
      ACS Omega. 2019 Jul 11;4(7):12036-12042. (PMID: 31460316)
      PLoS One. 2021 Jan 22;16(1):e0244200. (PMID: 33481792)
      Biotechnol Bioeng. 2019 Oct;116(10):2575-2586. (PMID: 31231792)
    • Grant Information:
      2042503 National Science Foundation
    • Contributed Indexing:
      Keywords: continuous cell growth monitoring; inductive‐capacitive sensor; non‐destructive metabolite sensing; polyacrylate; process analytical technology
    • Publication Date:
      Date Created: 20240620 Date Completed: 20240827 Latest Revision: 20240829
    • Publication Date:
      20240830
    • Accession Number:
      PMC11348071
    • Accession Number:
      10.1002/advs.202401260
    • Accession Number:
      38900081