Genome-Wide Identification and Characterization of miRNAs and Natural Antisense Transcripts Show the Complexity of Gene Regulatory Networks for Secondary Metabolism in Aristolochia contorta .

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: MDPI Country of Publication: Switzerland NLM ID: 101092791 Publication Model: Electronic Cited Medium: Internet ISSN: 1422-0067 (Electronic) Linking ISSN: 14220067 NLM ISO Abbreviation: Int J Mol Sci Subsets: MEDLINE
    • Publication Information:
      Original Publication: Basel, Switzerland : MDPI, [2000-
    • Subject Terms:
    • Abstract:
      Aristolochia contorta Bunge is an academically and medicinally important plant species. It belongs to the magnoliids, with an uncertain phylogenetic position, and is one of the few plant species lacking a whole-genome duplication (WGD) event after the angiosperm-wide WGD. A. contorta has been an important traditional Chinese medicine material. Since it contains aristolochic acids (AAs), chemical compounds with nephrotoxity and carcinogenicity, the utilization of this plant has attracted widespread attention. Great efforts are being made to increase its bioactive compounds and reduce or completely remove toxic compounds. MicroRNAs (miRNAs) and natural antisense transcripts (NATs) are two classes of regulators potentially involved in metabolism regulation. Here, we report the identification and characterization of 223 miRNAs and 363 miRNA targets. The identified miRNAs include 51 known miRNAs belonging to 20 families and 172 novel miRNAs belonging to 107 families. A negative correlation between the expression of miRNAs and their targets was observed. In addition, we identified 441 A. contorta NATs and 560 NAT-sense transcript (ST) pairs, of which 12 NATs were targets of 13 miRNAs, forming 18 miRNA-NAT-ST modules. Various miRNAs and NATs potentially regulated secondary metabolism through the modes of miRNA-target gene-enzyme genes, NAT-STs, and NAT-miRNA-target gene-enzyme genes, suggesting the complexity of gene regulatory networks in A. contorta . The results lay a solid foundation for further manipulating the production of its bioactive and toxic compounds.
    • References:
      Nat Rev Mol Cell Biol. 2015 Dec;16(12):727-41. (PMID: 26530390)
      BMC Plant Biol. 2018 Jun 20;18(1):125. (PMID: 29925317)
      Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W70-4. (PMID: 18424795)
      Nucleic Acids Res. 2015 Jan;43(Database issue):D1049-56. (PMID: 25428369)
      Nucleic Acids Res. 2012 Jul;40(Web Server issue):W22-8. (PMID: 22693224)
      J Exp Bot. 2018 Jan 4;69(2):291-301. (PMID: 28992186)
      Sci Rep. 2021 Feb 26;11(1):4769. (PMID: 33637790)
      Nucleic Acids Res. 2021 Jul 2;49(W1):W317-W325. (PMID: 34086934)
      Annu Rev Plant Biol. 2019 Apr 29;70:489-525. (PMID: 30848930)
      Nucleic Acids Res. 2019 Jan 8;47(D1):D155-D162. (PMID: 30423142)
      Front Plant Sci. 2021 Feb 24;12:643213. (PMID: 33719323)
      Bioinformatics. 2009 Jan 1;25(1):130-1. (PMID: 19017659)
      Plant Cell Environ. 2021 Oct;44(10):3302-3321. (PMID: 34164822)
      J Fungi (Basel). 2021 Nov 11;7(11):. (PMID: 34829242)
      Curr Opin Plant Biol. 2017 Feb;35:61-67. (PMID: 27886593)
      Plant Cell. 2005 Aug;17(8):2186-203. (PMID: 15994906)
      BMC Genomics. 2021 Nov 19;22(1):838. (PMID: 34794378)
      Bioinformatics. 2018 Sep 15;34(18):3101-3110. (PMID: 29617966)
      Nat Commun. 2020 Oct 22;11(1):5351. (PMID: 33093449)
      BMC Plant Biol. 2019 Jun 11;19(1):247. (PMID: 31185902)
      PLoS Genet. 2011 Jul;7(7):e1002169. (PMID: 21750686)
      Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73. (PMID: 24275495)
      Int J Biol Macromol. 2024 Feb;258(Pt 2):129123. (PMID: 38163496)
      Bioconjug Chem. 2022 Apr 20;33(4):544-554. (PMID: 35302753)
      BMC Bioinformatics. 2014 Sep 19;15:311. (PMID: 25239089)
      OMICS. 2012 May;16(5):284-7. (PMID: 22455463)
      Nucleic Acids Res. 2012 Jan;40(1):37-52. (PMID: 21911355)
      Nat Protoc. 2012 Mar 01;7(3):562-78. (PMID: 22383036)
      Int J Mol Sci. 2022 Oct 01;23(19):. (PMID: 36232906)
      Sci Rep. 2018 May 8;8(1):7143. (PMID: 29739980)
      Front Plant Sci. 2022 Mar 31;13:777308. (PMID: 35432399)
      Biomedicines. 2020 May 06;8(5):. (PMID: 32384613)
      J Biotechnol. 2021 Nov 10;340:75-101. (PMID: 34371054)
      Plant Cell. 2011 Feb;23(2):431-42. (PMID: 21317375)
      J Integr Plant Biol. 2011 Nov;53(11):879-91. (PMID: 22013976)
      Mol Plant. 2020 Aug 3;13(8):1194-1202. (PMID: 32585190)
      Int J Mol Sci. 2024 May 09;25(10):. (PMID: 38791194)
      Dev Biol. 2013 Aug 15;380(2):133-44. (PMID: 23707900)
      Essays Biochem. 2013;54:91-101. (PMID: 23829529)
      J Exp Bot. 2014 Nov;65(20):5945-58. (PMID: 25151616)
      Plant Mol Biol. 2024 Apr 10;114(3):36. (PMID: 38598012)
      Hortic Res. 2023 Apr 13;10(6):uhad069. (PMID: 37293533)
      Brief Funct Genomics. 2019 Feb 14;18(1):13-22. (PMID: 30335137)
      Plant Physiol. 2015 Feb;167(2):295-306. (PMID: 25501946)
      Gene. 2020 Apr 20;735:144403. (PMID: 32004668)
      Expert Opin Drug Metab Toxicol. 2016;12(2):149-59. (PMID: 26670420)
      Plant J. 2007 Sep;51(6):1077-98. (PMID: 17635765)
      Nat Biotechnol. 2015 Mar;33(3):290-5. (PMID: 25690850)
      Mol Hortic. 2023 Jun 6;3(1):11. (PMID: 37789448)
      Sci Rep. 2020 Aug 24;10(1):14110. (PMID: 32839470)
      Methods Mol Biol. 2011;744:145-57. (PMID: 21533691)
      Sci Rep. 2017 Mar 17;7:44622. (PMID: 28304398)
      Plant J. 2024 Jun;118(5):1439-1454. (PMID: 38379355)
      Nucleic Acids Res. 2018 Jul 2;46(W1):W49-W54. (PMID: 29718424)
      Curr Pharm Biotechnol. 2021;22(3):341-359. (PMID: 32469697)
      Sci China Life Sci. 2014 Jan;57(1):36-45. (PMID: 24369344)
      Bioinformatics. 2005 Sep 15;21(18):3674-6. (PMID: 16081474)
      Plant Cell. 2009 May;21(5):1453-72. (PMID: 19454733)
      Mol Biol Evol. 2003 May;20(5):735-47. (PMID: 12679534)
      Front Plant Sci. 2022 Jun 21;13:879874. (PMID: 35800609)
      Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):E7846-E7855. (PMID: 27856735)
      Plant J. 2008 Jul;55(1):131-51. (PMID: 18363789)
      Gene. 2009 Feb 15;431(1-2):61-6. (PMID: 19073239)
      Hortic Res. 2024 Feb 23;11(4):uhae047. (PMID: 38706582)
      Genome Res. 2005 Jan;15(1):78-91. (PMID: 15632092)
      Nat Rev Mol Cell Biol. 2014 Aug;15(8):509-24. (PMID: 25027649)
      Mol Cell Biol. 1997 Sep;17(9):5087-96. (PMID: 9271386)
      Nucleic Acids Res. 2013 Sep;41(17):e166. (PMID: 23892401)
      Nat Methods. 2015 Apr;12(4):357-60. (PMID: 25751142)
      Cell. 2009 Aug 21;138(4):738-49. (PMID: 19703399)
      Nucleic Acids Res. 2017 Jul 3;45(W1):W12-W16. (PMID: 28521017)
      Nucleic Acids Res. 2000 Jan 1;28(1):27-30. (PMID: 10592173)
      Hortic Res. 2023 May 31;10(7):uhad114. (PMID: 37577393)
      Hortic Res. 2022 Feb 11;:. (PMID: 35147168)
      Int J Mol Sci. 2021 Nov 12;22(22):. (PMID: 34830118)
      Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10848-53. (PMID: 23754401)
      Annu Rev Cell Dev Biol. 2019 Oct 6;35:407-431. (PMID: 31403819)
      Sci Rep. 2016 Feb 09;6:21666. (PMID: 26858106)
      J Mol Biol. 1990 Oct 5;215(3):403-10. (PMID: 2231712)
      Crit Rev Biotechnol. 2020 Sep;40(6):750-776. (PMID: 32522044)
    • Grant Information:
      32370275 National Natural Science Foundation of China; 2021-I2M-1-022 The CAMS Innovation Fund for Medical Sciences (CIFMS)
    • Contributed Indexing:
      Keywords: Aristolochia contorta; aristolochic acid; benzylisoquinoline alkaloid; long non-coding RNA; microRNA; natural antisense transcript
    • Accession Number:
      0 (MicroRNAs)
      0 (RNA, Antisense)
      0 (RNA, Plant)
    • Publication Date:
      Date Created: 20240619 Date Completed: 20240619 Latest Revision: 20240620
    • Publication Date:
      20240620
    • Accession Number:
      PMC11172604
    • Accession Number:
      10.3390/ijms25116043
    • Accession Number:
      38892231