Item request has been placed!
×
Item request cannot be made.
×
Processing Request
The influence of digestive tract protein on cytotoxicity of polyvinyl chloride microplastics.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: Elsevier Country of Publication: Netherlands NLM ID: 0330500 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1879-1026 (Electronic) Linking ISSN: 00489697 NLM ISO Abbreviation: Sci Total Environ Subsets: MEDLINE
- Publication Information:
Original Publication: Amsterdam, Elsevier.
- Subject Terms:
- Abstract:
Microplastics in food and drinking water can enter the human body through oral exposure, posing potential health risks to the human health. Most studies on the toxic effects of microplastics have focused on aquatic organisms, but the effects of the human digestive environment on the physicochemical properties of microplastics and their potential toxicity during gastrointestinal digestion are often limited. In this study, we first studied the influence of interactions between digestive tract protein (α-amylase, pepsin, and trypsin) and microplastics on the activity and conformation of digestive enzymes, and the physicochemical properties of polyvinyl chloride microplastics (PVC-MPs). Subsequently, a simulated digestion assay was performed to determine the biotransformation of PVC-MPs in the digestive tract and the intestinal toxicity of PVC-MPs. The in vitro experiments showed that the protein structure and activity of digestive enzymes were changed after adsorption by microplastics. After digestion, the static contact angle of PVC-MPs was decreased, indicating that the hydrophilicity of the PVC-MPs increased, which will increase its mobility in organisms. Cell experiment showed that the altered physicochemical property of PVC-MPs after digestion process also affect its cytotoxicity, including cellular uptake, cell viability, cell membrane integrity, reactive oxygen species levels, and mitochondrial membrane potential. Transcriptome analyses further confirmed the enhanced biotoxic effect of PVC-MPs after digestion treatment. Therefore, the ecological risk of microplastics may be underestimated owing to the interactions of microplastics and digestive tract protein during biological ingestion.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 Elsevier B.V. All rights reserved.)
- Contributed Indexing:
Keywords: Cytotoxicity; Digestive process; Digestive tract protein; Interaction; Polyvinyl chloride microplastics
- Accession Number:
9002-86-2 (Polyvinyl Chloride)
0 (Microplastics)
0 (Water Pollutants, Chemical)
- Publication Date:
Date Created: 20240617 Date Completed: 20240706 Latest Revision: 20240706
- Publication Date:
20240706
- Accession Number:
10.1016/j.scitotenv.2024.174023
- Accession Number:
38885711
No Comments.