Comparative in vitro evaluation of microgap in titanium stock versus cobalt-chrome custom abutments on a conical connection implant: Effect of crown cementation and ceramic veneering.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: John Wiley and Sons, Inc Country of Publication: Denmark NLM ID: 9105713 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1600-0501 (Electronic) Linking ISSN: 09057161 NLM ISO Abbreviation: Clin Oral Implants Res Subsets: MEDLINE
    • Publication Information:
      Publication: 2009- : Copenhagen : John Wiley and Sons, Inc.
      Original Publication: Copenhagen : Munksgaard, c1990-
    • Subject Terms:
    • Abstract:
      Objective: To compare the implant-abutment connection microgap between computer-aided design and computer-aided manufacturing (CAD/CAM) milled or laser-sintered cobalt-chrome custom abutments with or without ceramic veneering and titanium stock abutments with or without crown cementation.
      Material and Methods: Six groups of six abutments each were prepared: (1) CAD/CAM cobalt-chrome custom abutments: milled, milled with ceramic veneering, laser-sintered, and laser-sintered with ceramic veneering (four groups: MIL, MIL-C, SIN, and SIN-C, respectively) and (2) titanium stock abutments with or without zirconia crown cementation (two groups: STK and STK-Z, respectively). Abutments were screwed to the implants by applying 30 Ncm torque. All 36 samples were sectioned along their long axes. The implant-abutment connection microgap was measured using scanning electron microscopy on the right and left sides of the connection at the upper, middle, and lower levels. Data were analyzed using the Kruskal-Wallis test (p < .05).
      Results: Mean values (μm) of the microgap were 0.54 ± 0.44 (STK), 0.55 ± 0.48 (STK-Z), 1.53 ± 1.30 (MIL), 2.30 ± 2.2 (MIL-C), 1.53 ± 1.37 (SIN), and 1.87 ± 1.8 (SIN-C). Although significant differences were observed between the STK and STK-Z groups and the other groups (p < .05), none were observed between the milled and laser-sintered groups before or after ceramic veneering. The largest microgap was observed at the upper level in all groups.
      Conclusions: Titanium stock abutments provided a closer fit than cobalt-chrome custom abutments. Neither crown cementation nor ceramic veneering resulted in significant changes in the implant-abutment connection microgap.
      (© 2024 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.)
    • References:
      Alonso‐Pérez, R., Bartolomé, J. F., Ferreiroa, A., Salido, M. P., & Pradíes, G. (2018). Original vs. non‐original abutments for screw‐retained single implant crowns: An in vitro evaluation of internal fit, mechanical behaviour and screw loosening. Clinical Oral Implants Research, 29(12), 1230–1238. https://doi.org/10.1111/clr.13390.
      Alonso‐Pérez, R., Bartolomé, J. F., Fraile, C., & Pradíes, G. (2021). Original versus nonoriginal cast‐to‐gold abutment‐implant connection: Analysis of the internal fit and long‐term fatigue performance. The Journal of Prosthetic Dentistry, 126(1), 94.e1–94.e9. https://doi.org/10.1016/j.prosdent.2021.03.020.
      Ates, S. M., Yesil Duymus, Z., Caglar, I., & Hologlu, B. (2017). The effect of veneering on the marginal fit of CAD/CAM‐generated, copy‐milled, and cast metal copings. Clinical Oral Investigations, 21(8), 2553–2560. https://doi.org/10.1007/s00784‐017‐2054‐x.
      Batista, R., Moreira, A., Oliveira, S. J., Mesquita, P., Sampaio‐Fernandes, J., & Figueiral, M. H. (2022). Deformation of implant retaining screws‐study with stereoscopic microscopy and microCT. Journal of Esthetic and Restorative Dentistry, 34(8), 1147–1155. https://doi.org/10.1111/jerd.12959.
      Berberi, A., Tehini, G., Rifai, K., Bou Nasser Eddine, F., El Zein, N., Badran, B., & Akl, H. (2014). In vitro evaluation of leakage at implant‐abutment connection of three implant systems having the same prosthetic interface using rhodamine B. International Journal of Dentistry, 2014, 351263. https://doi.org/10.1155/2014/351263.
      Block, M. S. (2022). Evidence‐based criteria for an ideal abutment implant connection‐a narrative review. Journal of Oral and Maxillofacial Surgery, 80(10), 1670–1675. https://doi.org/10.1016/j.joms.2022.07.002.
      Bozkaya, D., & Müftü, S. (2004). Efficiency considerations for the purely tapered interference fit (TIF) abutments used in dental implants. Journal of Biomechanical Engineering, 126(4), 393–401. https://doi.org/10.1115/1.1784473.
      Breeding, L. C., Dixon, D. L., Nelson, E. W., & Tietge, J. D. (1993). Torque required to loosen single‐tooth implant abutment screws before and after simulated function. The International Journal of Prosthodontics, 6(5), 435–439.
      Camps‐Font, O., Rubianes‐Porta, L., Valmaseda‐Castellón, E., Jung, R. E., Gay‐Escoda, C., & Figueiredo, R. (2021). Comparison of external, internal flat‐to‐flat, and conical implant abutment connections for implant‐supported prostheses: A systematic review and network meta‐analysis of randomized clinical trials. The Journal of Prosthetic Dentistry, 130, 327–340. https://doi.org/10.1016/j.prosdent.2021.09.029.
      Canullo, L. (2007). Clinical outcome study of customized zirconia abutments for single‐implant restorations. The International Journal of Prosthodontics, 20(5), 489–493.
      Caricasulo, R., Malchiodi, L., Ghensi, P., Fantozzi, G., & Cucchi, A. (2018). The influence of implant‐abutment connection to peri‐implant bone loss: A systematic review and meta‐analysis. Clinical Implant Dentistry and Related Research, 20(4), 653–664. https://doi.org/10.1111/cid.12620.
      Delgado‐Ruiz, R., & Romanos, G. (2018). Potential causes of titanium particle and ion release in implant dentistry: A systematic review. International Journal of Molecular Sciences, 19(11), 3585. https://doi.org/10.3390/ijms19113585.
      FEPA. (1984) FEPA standard for coated abrasive grains of fused aluminium oxide and silicon carbide. http://www.fepa‐abrasives.org.
      Fernández, M., Delgado, L., Molmeneu, M., García, D., & Rodríguez, D. (2014). Analysis of the misfit of dental implant‐supported prostheses made with three manufacturing processes. The Journal of Prosthetic Dentistry, 111(2), 116–123. https://doi.org/10.1016/j.prosdent.2013.09.006.
      Fokas, G., Ma, L., Chronopoulos, V., Janda, M., & Mattheos, N. (2019). Differences in micromorphology of the implant‐abutment junction for original and third‐party abutments on a representative dental implant. The Journal of Prosthetic Dentistry, 121(1), 143–150. https://doi.org/10.1016/j.prosdent.2018.02.015.
      Fonseca, J. C., Henriques, G. E., Sobrinho, L. C., & de Góes, M. F. (2003). Stress‐relieving and porcelain firing cycle influence on marginal fit of commercially pure titanium and titanium‐aluminum‐vanadium copings. Dental Materials, 19(7), 686–691. https://doi.org/10.1016/s0109‐5641(03)00014‐9.
      Gehrke, S. A., Delgado‐Ruiz, R. A., Prados Frutos, J. C., Prados‐Privado, M., Dedavid, B. A., Granero Marín, J. M., & Calvo Guirado, J. L. (2017). Misfit of three different implant‐abutment connections before and after cyclic load application: An in vitro study. The International Journal of Oral & Maxillofacial Implants, 32(4), 822–829. https://doi.org/10.11607/jomi.5629.
      Gehrke, S. A., & Pereira, F. A. (2014). Changes in the abutment‐implant interface in Morse taper implant connections after mechanical cycling: A pilot study. The International Journal of Oral & Maxillofacial Implants, 29(4), 791–797. https://doi.org/10.11607/jomi.3113.
      Gehrke, S. A., Shibli, J. A., Aramburú Junior, J. S., de Val, J. E., Calvo‐Girardo, J. L., & Dedavid, B. A. (2016). Effects of different torque levels on the implant‐abutment interface in a conical internal connection. Brazilian Oral Research, 30, S1806‐83242016000100233. https://doi.org/10.1590/1807‐3107BOR‐2016.vol30.0040.
      Gemalmaz, D., & Alkumru, H. N. (1995). Marginal fit changes during porcelain firing cycles. The Journal of Prosthetic Dentistry, 73(1), 49–54. https://doi.org/10.1016/s0022‐3913(05)80272‐0.
      Gemalmaz, D., Berksun, S., Alkumru, H. N., & Kasapoglu, C. (1998). Thermal cycling distortion of porcelain fused to metal fixed partial dentures. The Journal of Prosthetic Dentistry, 80(6), 654–660. https://doi.org/10.1016/s0022‐3913(98)70051‐4.
      Gomes, J. M. L., Moraes, S. L. D., Lemos, C. A. A., Cruz, R. S., Oliveira, H. F. F. E., & Pellizzer, E. P. (2019). Systematic review and meta‐analysis of welding procedures in one‐piece cast implant‐supported frameworks. Brazilian Oral Research, 33, e110. https://doi.org/10.1590/1807‐3107bor‐2019.vol33.0110.
      Gonzalo, E., Vizoso, B., Lopez‐Suarez, C., Diaz, P., Pelaez, J., & Suarez, M. J. (2020). Evaluation of milled titanium versus laser sintered Co‐Cr abutments on the marginal misfit in internal implant‐abutment connection. Materials, 13(21), 4873. https://doi.org/10.3390/ma13214873.
      Hamilton, A., Judge, R. B., Palamara, J. E., & Evans, C. (2013). Evaluation of the fit of CAD/CAM abutments. The International Journal of Prosthodontics, 26(4), 370–380. https://doi.org/10.11607/ijp.3501.
      Hjalmarsson, L., Smedberg, J. I., & Wennerberg, A. (2011). Material degradation in implant‐retained cobalt‐chrome and titanium frameworks. Journal of Oral Rehabilitation, 38(1), 61–71. https://doi.org/10.1111/j.1365‐2842.2010.02127.x.
      Jansen, V. K., Conrads, G., & Richter, E. J. (1997). Microbial leakage and marginal fit of the implant‐abutment interface. The International Journal of Oral & Maxillofacial Implants, 12(4), 527–540.
      Jokstad, A., Pjetursson, B. E., Mühlemann, S., Wismeijer, D., Wolfart, S., Fehmer, V., Güth, J. F., Holtzman, L. P., Hämmerle, C. H. F., Makarov, N., Meijer, H. J. A., Milinkovic, I., Sailer, I., Spitznagel, F. A., Vandeweghe, S., de Velde, T. V., Zwahlen, M., & Giertmuehlen, P. C. (2021). Fabrication, workflow and delivery of reconstruction: Summary and consensus statements of group 4. The 6th EAO Consensus Conference 2021. Clinical Oral Implants Research, 32(Suppl 21), 336–341. https://doi.org/10.1111/clr.13797.
      Kapos, T., & Evans, C. (2014). CAD/CAM technology for implant abutments, crowns, and superstructures. The International Journal of Oral & Maxillofacial Implants, 29(Suppl), 117–136. https://doi.org/10.11607/jomi.2014suppl.g2.3.
      Kassapidou, M., Stenport, V. F., Johansson, C. B., Syverud, M., Hammarström Johansson, P., Börjesson, J., & Hjalmarsson, L. (2023). Cobalt chromium alloys in fixed prosthodontics: Investigations of mechanical properties and microstructure. The Journal of Prosthetic Dentistry, 130(2), 255.e1–255.e10. https://doi.org/10.1016/j.prosdent.2023.05.005.
      Katsoulis, J., Mericske‐Stern, R., Enkling, N., Katsoulis, K., & Blatz, M. B. (2015). In vitro precision of fit of computer‐aided designed and computer‐aided manufactured titanium screw‐retained fixed dental prostheses before and after ceramic veneering. Clinical Oral Implants Research, 26(1), 44–49. https://doi.org/10.1111/clr.12299.
      Koutouzis, T. (2019). Implant‐abutment connection as contributing factor to peri‐implant diseases. Periodontology 2000, 81(1), 152–166. https://doi.org/10.1111/prd.12289.
      Laleman, I., & Lambert, F. (2023). Implant connection and abutment selection as a predisposing and/or precipitating factor for peri‐implant diseases: A review. Clinical Implant Dentistry and Related Research, 25(4), 723–733. https://doi.org/10.1111/cid.13185.
      Lauritano, D., Moreo, G., Lucchese, A., Viganoni, C., Limongelli, L., & Carinci, F. (2020). The impact of implant‐abutment connection on clinical outcomes and microbial colonization: A narrative review. Materials, 13(5), 1131. https://doi.org/10.3390/ma13051131.
      Lemos, C. A. A., Verri, F. R., Bonfante, E. A., Santiago Júnior, J. F., & Pellizzer, E. P. (2018). Comparison of external and internal implant‐abutment connections for implant supported prostheses. A systematic review and meta‐analysis. Journal of Dentistry, 70, 14–22. https://doi.org/10.1016/j.jdent.2017.12.001.
      Liu, Y., & Wang, J. (2017). Influences of microgap and micromotion of implant‐abutment interface on marginal bone loss around implant neck. Archives of Oral Biology, 83, 153–160. https://doi.org/10.1016/j.archoralbio.2017.07.022.
      Liu, Y., Xie, D., Zhou, R., & Zhang, Y. (2021). 3D X‐ray micro‐computed tomography imaging for the microarchitecture evaluation of porous metallic implants and scaffolds. Micron, 142, 102994. https://doi.org/10.1016/j.micron.2020.102994.
      Long, L., Alqarni, H., & Masri, R. (2017). Influence of implant abutment fabrication method on clinical outcomes: A systematic review. European Journal of Oral Implantology, 10(Suppl 1), 67–77.
      Lops, D., Meneghello, R., Sbricoli, L., Savio, G., Bressan, E., & Stellini, E. (2018). Precision of the connection between implant and standard or computer‐aided design/computer‐aided manufacturing abutments: A novel evaluation method. The International Journal of Oral & Maxillofacial Implants, 33(1), 23–30. https://doi.org/10.11607/jomi.5411.
      Ma, T., Nicholls, J. I., & Rubenstein, J. E. (1997). Tolerance measurements of various implant components. The International Journal of Oral & Maxillofacial Implants, 12(3), 371–375.
      Ortorp, A., Jemt, T., Bäck, T., & Jälevik, T. (2003). Comparisons of precision of fit between cast and CNC‐milled titanium implant frameworks for the edentulous mandible. The International Journal of Prosthodontics, 16(2), 194–200.
      Papadiochou, S., & Pissiotis, A. L. (2018). Marginal adaptation and CAD‐CAM technology: A systematic review of restorative material and fabrication techniques. The Journal of Prosthetic Dentistry, 119(4), 545–551. https://doi.org/10.1016/j.prosdent.2017.07.001.
      Passos, S. P., Gressler May, L., Faria, R., Özcan, M., & Bottino, M. A. (2013). Implant‐abutment gap versus microbial colonization: Clinical significance based on a literature review. Journal of Biomedical Materials Research: Part B, Applied Biomaterials, 101(7), 1321–1328. https://doi.org/10.1002/jbm.b.32945.
      Pjetursson, B. E., Zarauz, C., Strasding, M., Sailer, I., Zwahlen, M., & Zembic, A. (2018). A systematic review of the influence of the implant‐abutment connection on the clinical outcomes of ceramic and metal implant abutments supporting fixed implant reconstructions. Clinical Oral Implants Research, 29(Suppl 18), 160–183. https://doi.org/10.1111/clr.13362.
      Priest, G. (2017). A current perspective on screw‐retained single‐implant restorations: A review of pertinent literature. Journal of Esthetic and Restorative Dentistry, 29(3), 161–171. https://doi.org/10.1111/jerd.12283.
      Revilla‐León, M., Gómez‐Polo, M., Park, S. H., Barmak, A. B., & Özcan, M. (2022). Adhesion of veneering porcelain to cobalt‐chromium dental alloys processed with casting, milling, and additive manufacturing methods: A systematic review and meta‐analysis. The Journal of Prosthetic Dentistry, 128(4), 575–588. https://doi.org/10.1016/j.prosdent.2021.01.001.
      Revilla‐León, M., Sánchez‐Rubio, J. L., Pérez‐López, J., Rubenstein, J., & Özcan, M. (2021). Discrepancy at the implant abutment‐prosthesis interface of complete‐arch cobalt‐chromium implant frameworks fabricated by additive and subtractive technologies before and after ceramic veneering. The Journal of Prosthetic Dentistry, 125(5), 795–803. https://doi.org/10.1016/j.prosdent.2020.03.018.
      Rizvi, N., Alyahya, Y., Rizvi, A., Narvekar, U., & Petridis, H. (2022). Accuracy of original vs. non‐original abutments using various connection geometries for single unit restorations: A systematic review. Journal of Prosthodontics, 31(7), e21–e52. https://doi.org/10.1111/jopr.13464.
      Roberts, H. W., Berzins, D. W., Moore, B. K., & Charlton, D. G. (2009). Metal‐ceramic alloys in dentistry: A review. Journal of Prosthodontics, 18(2), 188–194. https://doi.org/10.1111/j.1532‐849x.2008.00377.x.
      Sailer, I., Karasan, D., Todorovic, A., Ligoutsikou, M., & Pjetursson, B. E. (2022). Prosthetic failures in dental implant therapy. Periodontology 2000, 88(1), 130–144. https://doi.org/10.1111/prd.12416.
      Schmitt, C. M., Nogueira‐Filho, G., Tenenbaum, H. C., Lai, J. Y., Brito, C., Döring, H., & Nonhoff, J. (2014). Performance of conical abutment (Morse Taper) connection implants: A systematic review. Journal of Biomedical Materials Research: Part A, 102(2), 552–574. https://doi.org/10.1002/jbm.a.34709.
      Schwarz, F., Hegewald, A., & Becker, J. (2014). Impact of implant‐abutment connection and positioning of the machined collar/microgap on crestal bone level changes: A systematic review. Clinical Oral Implants Research, 25(4), 417–425. https://doi.org/10.1111/clr.12215.
      Sumi, T., Braian, M., Shimada, A., Shibata, N., Takeshita, K., Vandeweghe, S., Coelho, P. G., Wennerberg, A., & Jimbo, R. (2012). Characteristics of implant‐CAD/CAM abutment connections of two different internal connection systems. Journal of Oral Rehabilitation, 39(5), 391–398. https://doi.org/10.1111/j.1365‐2842.2011.02273.x.
      Svanborg, P., & Hjalmarsson, L. (2020). A systematic review on the accuracy of manufacturing techniques for cobalt chromium fixed dental prostheses. Biomaterial Investigations in Dentistry, 7(1), 31–40. https://doi.org/10.1080/26415275.2020.1714445.
      Svanborg, P., Stenport, V., & Eliasson, A. (2015). Fit of cobalt‐chromium implant frameworks before and after ceramic veneering in comparison with CNC‐milled titanium frameworks. Clinical and Experimental Dental Research, 1(2), 49–56. https://doi.org/10.1002/cre2.9.
      Tallarico, M., Caneva, M., Baldini, N., Gatti, F., Duvina, M., Billi, M., Iannello, G., Piacentini, G., Meloni, S. M., & Cicciù, M. (2018). Patient‐centered rehabilitation of single, partial, and complete edentulism with cemented‐ or screw‐retained fixed dental prosthesis: The First Osstem Advanced Dental Implant Research and Education Center Consensus Conference 2017. European Journal of Dentistry, 12(4), 617–626. https://doi.org/10.4103/ejd.ejd_243_18.
      Tallarico, M., Canullo, L., Caneva, M., & Özcan, M. (2017). Microbial colonization at the implant‐abutment interface and its possible influence on periimplantitis: A systematic review and meta‐analysis. Journal of Prosthodontic Research, 61(3), 233–241. https://doi.org/10.1016/j.jpor.2017.03.001.
      Tiossi, R., Rodrigues, R. C., de Mattos, M. G., & Ribeiro, R. F. (2008). Comparative analysis of the fit of 3‐unit implant‐supported frameworks cast in nickel‐chromium and cobalt‐chromium alloys and commercially pure titanium after casting, laser welding, and simulated porcelain firings. The International Journal of Prosthodontics, 21(2), 121–123.
      Tsuge, T., Hagiwara, Y., & Matsumura, H. (2008). Marginal fit and microgaps of implant‐abutment interface with internal anti‐rotation configuration. Dental Materials Journal, 27(1), 29–34. https://doi.org/10.4012/dmj.27.29.
      van Eekeren, P., Tahmaseb, A., & Wismeijer, D. (2016). Crestal bone changes in macrogeometrically similar implants with the implant‐abutment connection at the crestal bone level or 2.5 mm above: A prospective randomized clinical trial. Clinical Oral Implants Research, 27(12), 1479–1484. https://doi.org/10.1111/clr.12581.
      Vásárhelyi, L., Kónya, Z., Kukovecz, Á., & Vajtai, R. (2020). Microcomputed tomography–based characterization of advanced materials: A review. Materials Today Advances, 8, 100084. https://doi.org/10.1016/j.mtadv.2020.100084.
      Vélez, J., Peláez, J., López‐Suárez, C., Agustín‐Panadero, R., Tobar, C., & Suárez, M. J. (2020). Influence of implant connection, abutment design and screw insertion torque on implant‐abutment misfit. Journal of Clinical Medicine, 9(8), 2365. https://doi.org/10.3390/jcm9082365.
      Vinhas, A. S., Aroso, C., Salazar, F., López‐Jarana, P., Ríos‐Santos, J. V., & Herrero‐Climent, M. (2020). Review of the mechanical behavior of different implant‐abutment connections. International Journal of Environmental Research and Public Health, 17(22), 8685. https://doi.org/10.3390/ijerph17228685.
      Wismeijer, D., Brägger, U., Evans, C., Kapos, T., Kelly, J. R., Millen, C., Wittneben, J. G., Zembic, A., & Taylor, T. D. (2014). Consensus statements and recommended clinical procedures regarding restorative materials and techniques for implant dentistry. The International Journal of Oral & Maxillofacial Implants, 29(Suppl), 137–140. https://doi.org/10.11607/jomi.2013.g2.
      Yildirim, B. (2020). Effect of porcelain firing and cementation on the marginal fit of implant‐supported metal‐ceramic restorations fabricated by additive or subtractive manufacturing methods. The Journal of Prosthetic Dentistry, 124(4), 476.e1–476.e6. https://doi.org/10.1016/j.prosdent.2020.03.014.
      Zarauz, C., Pitta, J., Pradies, G., & Sailer, I. (2020). Clinical recommendations for implant abutment selection for single‐implant reconstructions: Customized vs standardized ceramic and metallic solutions. The International Journal of Periodontics & Restorative Dentistry, 40(1), 31–37. https://doi.org/10.11607/prd.3913.
      Zervas, P. J., Papazoglou, E., Beck, F. M., & Carr, A. B. (1999). Distortion of three‐unit implant frameworks during casting, soldering, and simulated porcelain firings. Journal of Prosthodontics, 8(3), 171–179. https://doi.org/10.1111/j.1532‐849x.1999.tb00032.x.
    • Grant Information:
      UCM 510-2019 SOADCO SL, Spain
    • Contributed Indexing:
      Keywords: computer‐aided design; dental implants; dental implant–abutment design; implant‐supported dental prosthesis; in vitro techniques; scanning electron microscopy
    • Accession Number:
      D1JT611TNE (Titanium)
      0 (Chromium Alloys)
      S38N85C5G0 (zirconium oxide)
      C6V6S92N3C (Zirconium)
    • Publication Date:
      Date Created: 20240617 Date Completed: 20241008 Latest Revision: 20241008
    • Publication Date:
      20241008
    • Accession Number:
      10.1111/clr.14317
    • Accession Number:
      38884385