A multicrosslinked network composite hydrogel scaffold based on DLP photocuring printing for nasal cartilage repair.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: United States NLM ID: 7502021 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0290 (Electronic) Linking ISSN: 00063592 NLM ISO Abbreviation: Biotechnol Bioeng Subsets: MEDLINE
    • Publication Information:
      Publication: <2005->: Hoboken, NJ : Wiley
      Original Publication: New York, Wiley.
    • Subject Terms:
    • Abstract:
      Natural hydrogels are widely employed in tissue engineering and have excellent biodegradability and biocompatibility. Unfortunately, the utilization of such hydrogels in the field of three-dimensional (3D) printing nasal cartilage is constrained by their subpar mechanical characteristics. In this study, we provide a multicrosslinked network hybrid ink made of photocurable gelatin, hyaluronic acid, and acrylamide (AM). The ink may be processed into intricate 3D hydrogel structures with good biocompatibility and high stiffness properties using 3D printing technology based on digital light processing (DLP), including intricate shapes resembling noses. By varying the AM content, the mechanical behavior and biocompatibility of the hydrogels can be adjusted. In comparison to the gelatin methacryloyl (GelMA)/hyaluronic acid methacryloyl (HAMA) hydrogel, adding AM considerably enhances the hydrogel's mechanical properties while also enhancing printing quality. Meanwhile, the biocompatibility of the multicrosslinked network hydrogels and the development of cartilage were assessed using neonatal Sprague-Dawley (SD) rat chondrocytes (CChons). Cells sown on the hydrogels considerably multiplied after 7 days of culture and kept up the expression of particular proteins. Together, our findings point to GelMA/HAMA/polyacrylamide (PAM) hydrogel as a potential material for nasal cartilage restoration. The photocuring multicrosslinked network ink composed of appropriate proportions of GelMA/HAMA/PAM is very suitable for DLP 3D printing and will play an important role in the construction of nasal cartilage, ear cartilage, articular cartilage, and other tissues and organs in the future. Notably, previous studies have not explored the application of 3D-printed GelMA/HAMA/PAM hydrogels for nasal cartilage regeneration.
      (© 2024 Wiley Periodicals LLC.)
    • References:
      Abbadessa, A., Blokzijl, M. M., Mouser, V. H. M., Marica, P., Malda, J., Hennink, W. E., & Vermonden, T. (2016). A thermo‐responsive and photo‐polymerizable chondroitin sulfate‐based hydrogel for 3D printing applications. Carbohydrate Polymers, 149, 163–174.
      Aldana, A., Malatto, L., Rehman, M., Boccaccini, A., & Abraham, G. (2019). Fabrication of gelatin methacrylate (GelMA) scaffolds with nano‐ and micro‐topographical and morphological features. Nanomaterials, 9(1), 120.
      Andrews, S. H. J., Kunze, M., Mulet‐Sierra, A., Williams, L., Ansari, K., Osswald, M., & Adesida, A. B. (2017). Strategies to mitigate variability in engineering human nasal cartilage. Scientific Reports, 7(1), 6490.
      Bakaic, E., Smeets, N. M. B., & Hoare, T. (2015). Injectable hydrogels based on poly(ethylene glycol) and derivatives as functional biomaterials. RSC Advances, 5(45), 35469–35486.
      Byun, J. S., & Kim, K. K. (2013). Correction of asian short nose with lower lateral cartilage repositioning and ear cartilage grafting. Plastic and Reconstructive Surgery Global Open, 1(6), e45.
      Cao, Y. (2017). Recent progress in cartilage tissue engineering—Our experience and future directions. Engineering, 3(1), 28–35.
      Cao, Y., Sang, S., An, Y., Xiang, C., Li, Y., & Zhen, Y. (2021). Progress of 3D printing techniques for nasal cartilage regeneration. Aesthetic Plastic Surgery, 46(2), 947–964.
      Cao, Y., Sang, S., An, Y., Xiang, C., Li, Y., & Zhen, Y. (2022). Progress of 3D printing techniques for nasal cartilage regeneration. Aesthetic Plastic Surgery, 46(2), 947–964. https://doi.org/10.1007/s00266-021-02472-4.
      Chatelin, S., Bernal, M., Deffieux, T., Papadacci, C., Flaud, P., Nahas, A., Boccara, C., Gennisson, J. L., Tanter, M., & Pernot, M. (2014). Anisotropic polyvinyl alcohol hydrogel phantom for shear wave elastography in fibrous biological soft tissue: A multimodality characterization. Physics in Medicine and Biology, 59, 6923–6940.
      Chen, J., Yang, J., Wang, L., Zhang, X., Heng, B. C., Wang, D. A., & Ge, Z. (2021). Modified hyaluronic acid hydrogels with chemical groups that facilitate adhesion to host tissues enhance cartilage regeneration. Bioactive Materials, 6(6), 1689–1698.
      Chen, Q., Zhu, L., Chen, H., Yan, H., Huang, L., Yang, J., & Zheng, J. (2015). A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self‐healing properties. Advanced Functional Materials, 25(10), 1598–1607.
      Chung, J. H., Kade, J. C., Jeiranikhameneh, A., Ruberu, K., & Wallace, G. G. (2019). 3D hybrid printing platform for auricular cartilage reconstruction. Biomedical Physics & Engineering Express, 6(3), 035003.
      Cui, N., Qian, J., Liu, T., Zhao, N., & Wang, H. (2015). Hyaluronic acid hydrogel scaffolds with a triple degradation behavior for bone tissue engineering. Carbohydrate Polymers Scientific & Technological Aspects of Industrially Important Polysaccharides, 126, 192–198.
      Deshmukh, M., Singh, Y., Gunaseelan, S., Gao, D., Stein, S., & Sinko, P. J. (2010). Biodegradable poly(ethylene glycol) hydrogels based on a self‐elimination degradation mechanism. Biomaterials, 31(26), 6675–6684.
      Fan, Y., Yue, Z., Lucarelli, E., & Wallace, G. G. (2020). Hybrid printing using cellulose nanocrystals reinforced GelMA/HAMA hydrogels for improved structural integration. Advanced Healthcare Materials, 9(24), e2001410.
      Fu, Z., Naghieh, S., Xu, C., Wang, C., Sun, W., & Chen, X. (2021). Printability in extrusion bioprinting. Biofabrication, 13(3):033001.
      Han, L., Xu, J., Lu, X., Gan, D., Wang, Z., Wang, K., Zhang, H., Yuan, H., & Weng, J. (2017). Biohybrid methacrylated gelatin/polyacrylamide hydrogels for cartilage repair. Journal of Materials Chemistry B, 5, 731–741.
      Himeles, J. R. R., & Ratner, D. (2023). Cartilage tissue engineering for nasal alar and auricular reconstruction: A critical review of the literature and implications for practice in dermatologic surgery. Dermatologic Surgery, 49(8), 732–742.
      Jodat, Y. A., Kiaee, K., Vela Jarquin, D., De la Garza Hernández, R. L., Wang, T., Joshi, S., Rezaei, Z., de Melo, B. A. G., Ge, D., Mannoor, M. S., & Shin, S. R. (2020). A 3D‐printed hybrid nasal cartilage with functional electronic olfaction. Advanced Science, 7(5), 1901878.
      Johnstone, B., Alini, M., Cucchiarini, M., Dodge, G. R., Eglin, D., Guilak, F., & Semino, C. E. (2013). Tissue engineering for articular cartilage repair—The state of the art. European Cells & Materials, 25, 248–267.
      Kim, J., Cai, Z., Lee, H. S., Choi, G. S., Lee, D. H., & Jo, C. (2011). Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. Journal of Polymer Research, 18(4), 739–744.
      Kim, S. H., Yeon, Y. K., Lee, J. M., Chao, J. R., Lee, Y. J., Seo, Y. B., Sultan, M. T., Lee, O. J., Lee, J. S., Yoon, S., Hong, I. S., Khang, G., Lee, S. J., Yoo, J. J., & Park, C. H. (2018). Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nature Communications, 9(1), 1620.
      Kucur, C., Kuduban, O., Ozturk, A., Gozeler, M. S., Ozbay, I., Deveci, E., Simsek, E., & Kaya, Z. (2016). Psychological evaluation of patients seeking rhinoplasty. The Eurasian Journal of Medicine, 48(2), 102–106.
      Lam, T., Dehne, T., Krüger, J. P., Hondke, S., Endres, M., Thomas, A., Lauster, R., Sittinger, M., & Kloke, L. (2019). Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue‐engineered cartilage. Journal of Biomedical Materials Research, Part B: Applied Biomaterials, 107, 2649–2657.
      Lavernia, L., Brown, W. E., Wong, B. J. F., Hu, J. C., & Athanasiou, K. A. (2019). Toward tissue‐engineering of nasal cartilages. Acta Biomaterialia, 88, 42–56.
      Li, H., Wang, J., & Song, T. (2022). 3D printing technique assisted autologous costal cartilage augmentation rhinoplasty for patients with radix augmentation needs and nasal deformity after cleft lip repair. Journal of Clinical Medicine, 11(24), 7439.
      Liao, J., Qu, Y., Chu, B., Zhang, X., & Qian, Z. (2015). Biodegradable CSMA/PECA/graphene porous hybrid scaffold for cartilage tissue engineering. Scientific Reports, 5, 9879.
      Lin, H., Beck, A. M., Shimomura, K., Sohn, J., Fritch, M. R., Deng, Y., Kilroy, E. J., Tang, Y., Alexander, P. G., & Tuan, R. S. (2019). Optimization of photocrosslinked gelatin/hyaluronic acid hybrid scaffold for the repair of cartilage defect. Journal of Tissue Engineering and Regenerative Medicine, 13(8), 1418–1429.
      Liu, J., Sun, L., Xu, W., Wang, Q., Yu, S., & Sun, J. (2019). Current advances and future perspectives of 3D printing natural‐derived biopolymers. Carbohydrate Polymers, 207, 297–316.
      Ma, K., Zhao, T., Yang, L., Wang, P., Jin, J., Teng, H., Xia, D., Zhu, L., Li, L., Jiang, Q., & Wang, X. (2020). Application of robotic‐assisted in situ 3D printing in cartilage regeneration with HAMA hydrogel: An in vivo study. Journal of Advanced Research, 23, 123–132.
      Martin, S., McBride, M., Stewart, R., McBride, G., & Hill, C. (2019). Single centre review of the use of costal cartilage for reconstruction of the nasal dorsum. European Journal of Plastic Surgery, 42, 423–430.
      Neaman, K. C., Boettcher, A. K., Do, V. H., Mulder, C., Baca, M., Renucci, J. D., & Vanderwoude, D. L. (2013). Cosmetic rhinoplasty: Revision rates revisited. Aesthetic Surgery Journal, 33, 31–37.
      Ng, K. W., Torzilli, P. A., Warren, R. F., & Maher, S. A. (2012). Characterization of a macroporous polyvinyl alcohol scaffold for the repair of focal articular cartilage defects. Journal of Tissue Engineering and Regenerative Medicine, 8(2), 164–168.
      Ng, W. L., Lee, J. M., Zhou, M., Chen, Y.‐W., Lee, K.‐X. A., Yeong, W. Y., & Shen, Y.‐F. (2020). Vat polymerization‐based bioprinting—Process, materials, applications and regulatory challenges. Biofabrication, 12(2), 022001.
      Pirsig, W., Kern, E. B., & Verse, T. (2004). Reconstruction of anterior nasal septum: Back‐to‐back autogenous ear cartilage graft. The Laryngoscope, 114(4), 627–638.
      Rahman, C. V., Kuhn, G., White, L. J., Kirby, G. T. S., Varghese, O. P., Mclaren, J. S., Cox, H. C., Rose, F. R. A. J., Müller, R., Hilborn, J., & Shakesheff, K. M. (2013). PLGA/PEG‐hydrogel composite scaffolds with controllable mechanical properties. Journal of Biomedical Materials Research, Part B: Applied Biomaterials, 101B(4), 648–655.
      Roy, A., Saxena, V., & Pandey, L. M. (2018). 3D printing for cardiovascular tissue engineering: A review. Materials Technology, 33(6), 433–442.
      Sakamoto, Y., Miyamoto, J., Tamada, I., & Kishi, K. (2014). Nasal tip surgery for cleft nose in Asians. Journal of Craniofacial Surgery, 25(5), 1671–1673.
      Sang, S., Ma, Z., Cao, Y., Shen, Z., Duan, J., Zhang, Y., Wang, L., An, Y., Mao, X., An, Y., & Zhang, Q. (2023). BC enhanced photocurable hydrogel based on 3D bioprinting for nasal cartilage repair. International Journal of Polymeric Materials and Polymeric Biomaterials, 72(9), 702–713. https://doi.org/10.1080/00914037.2022.2052727.
      Sargeant, T. D., Desai, A. P., Banerjee, S., Agawu, A., & Stopek, J. B. (2012). An in situ forming collagen–PEG hydrogel for tissue regeneration. Acta Biomaterialia, 8(1), 124–132.
      Serafim, A., Tucureanu, C., Petre, D. G., Dragusin, D. M., Salageanu, A., Vlierberghe, S. V., & Stancu, I. C. (2014). One‐pot synthesis of superabsorbent hybrid hydrogels based on methacrylamide gelatin and polyacrylamide. Effortless control of hydrogel properties through composition design. New Journal of Chemistry, 38(7), 3112–3126.
      Shokrgozar, M. A., Bonakdar, S., Dehghan, M. M., Hojjati Emami, S., Montazeri, L., Azari, S., & Rabbani, M. (2013). Biological evaluation of polyvinyl alcohol hydrogel crosslinked by polyurethane chain for cartilage tissue engineering in rabbit model. Journal of Materials Science Materials in Medicine, 24(10), 2449–2460.
      Soares, C. S., Barros, L. C., Virginia, S., Manuel, G. F., Babo, P. S., Dias, I. R., & Gomes, M. E. (2018). Bioengineered surgical repair of a chronic oronasal fistula in a cat using autologous platelet‐rich fibrin and bone marrow with a tailored 3D printed implant. Journal of Feline Medicine & Surgery, 20(9), 835–843.
      Sun, A., He, X., Ji, X., Hu, D., Pan, M., Zhang, L., & Qian, Z. (2021). Current research progress of photopolymerized hydrogels in tissue engineering. Chinese Chemical Letters, 32(7), 2117–2126.
      Sun, M., Sun, X., Wang, Z., Guo, S., Yu, G., & Yang, H. (2018). Synthesis and properties of gelatin methacryloyl (GelMA) hydrogels and their recent applications in load‐bearing tissue. Polymers, 10(11), 1290.
      Suntornnond, R., Ng, W. L., Huang, X., Yeow, C. H. E., & Yeong, W. Y. (2022). Improving printability of hydrogel‐based bio‐inks for thermal inkjet bioprinting applications via saponification and heat treatment processes. Journal of Materials Chemistry B, 10(31), 5989–6000.
      Wang, S., Zhao, S., Yu, J., Gu, Z., & Zhang, Y. (2022). Advances in translational 3D printing for cartilage, bone, and osteochondral tissue engineering. Small, 18(36), 2201869.
      Wu, Q., Therriault, D., & Heuzey, M.‐C. (2018). Processing and properties of chitosan inks for 3D printing of hydrogel microstructures. ACS Biomaterials Science & Engineering, 4(7), 2643–2652.
      Xia, H., Zhao, D., Zhu, H., Hua, Y., Xiao, K., Xu, Y., Liu, Y., Chen, W., Liu, Y., Zhang, W., Liu, W., Tang, S., Cao, Y., Wang, X., Chen, H. H., & Zhou, G. (2018). Lyophilized scaffolds fabricated from 3D‐printed photocurable natural hydrogel for cartilage regeneration. ACS Applied Materials & Interfaces, 10(37), 31704–31715.
      Yan, Q., Xiao, L. Q., Tan, L., Sun, W., Wu, T., Chen, L. W., Mei, Y., & Shi, B. (2015). Controlled release of simvastatin‐loaded thermo‐sensitive PLGA‐PEG‐PLGA hydrogel for bone tissue regeneration: In vitro and in vivo characteristics. Journal of Biomedical Materials Research. Part A, 103(11), 3580–3589.
      Yan, S., Zhang, X., Di, H., Feng, L., Li, G., Fang, J., Cui, L., Chen, X., & Yin, J. (2016). Injectable in situ forming poly(L‐glutamic acid) hydrogels for cartilage tissue engineering. Journal of Materials Chemistry B, 4(5), 947–961.
      Yh, A., Fan, W. B., Xin, W. B., Jz, B., Dw, C., & Xh, B. (2021). A photocurable hybrid chitosan/acrylamide bioink for DLP based 3D bioprinting. Materials & Design, 202, 109588.
      Yue, K., Santiago, T. D., Alvarez, M. M., Tamayol, A., Annabi, N., & Khademhosseini, A. (2015). Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 73, 254–271.
      Zhang, B., Li, S., Hingorani, H., Serjouei, A., Larush, L., Pawar, A. A., Goh, W. H., Sakhaei, A. H., Hashimoto, M., Kowsari, K., Magdassi, S., & Ge, Q. (2018). Highly stretchable hydrogels for UV curing based high‐resolution multimaterial 3D printing. Journal of Materials Chemistry B, 6(20), 3246–3253.
      Zhang, H., & Wu, C. (2023). 3D printing of biomaterials for vascularized and innervated tissue regeneration. International Journal of Bioprinting, 9(3), 706.
      Zhao, W., Xing, J., Yang, C., Liu, Y., & Fu, J. (2013). Degradable natural polymer hydrogels for articular cartilage tissue engineering. Journal of Chemical Technology & Biotechnology, 88(3), 327.
      Zhu, H., Yao, C., Wei, B., Xu, C., Huang, X., Liu, Y., He, J., Zhang, J., & Li, D. (2023). 3D printing of functional bioengineered constructs for neural regeneration: A review. International Journal of Extreme Manufacturing, 5(4), 042004.
      Zhu, J., & Marchant, R. E. (2011). Design properties of hydrogel tissue‐engineering scaffolds. Expert Review of Medical Devices, 8(5), 607–626.
    • Grant Information:
      Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi; Key Clinical Projects of Peking University Third Hospital; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering; National Natural Science Foundation of China; Shanxi Provincial Key Medical Scientific Research Project; Shanxi Provincial Basic Research Project
    • Contributed Indexing:
      Keywords: GelMA; HAMA; biocompatible; biodegradable; nasal cartilage repair; natural‐synthetic polymer biohybrid hydrogel
    • Accession Number:
      0 (Hydrogels)
      9004-61-9 (Hyaluronic Acid)
      9000-70-8 (Gelatin)
    • Publication Date:
      Date Created: 20240615 Date Completed: 20240814 Latest Revision: 20240814
    • Publication Date:
      20240814
    • Accession Number:
      10.1002/bit.28769
    • Accession Number:
      38877732