Menu
×
West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 5 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 1 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 5 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 5 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 5 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 5 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 5 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 5 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 2 p.m.
*open the 2nd and 4th Saturday
*open the 2nd and 4th Saturday
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 1 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 5 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 5 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 5 p.m.
Phone: (843) 795-6679
Main Library
9 a.m. - 5 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Today's Hours
West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 5 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 1 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 5 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 5 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 5 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 5 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 5 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 5 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 2 p.m.
*open the 2nd and 4th Saturday
*open the 2nd and 4th Saturday
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 1 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 5 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 5 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 5 p.m.
Phone: (843) 795-6679
Main Library
9 a.m. - 5 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
The dynamic molecular characteristics of neutrophils are associated with disease progression in dengue patients.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Ou G;Ou G;Ou G; Liu J; Liu J; Zou R; Zou R; Gu Y; Gu Y; Gu Y; Niu S; Niu S; Niu S; Yin J; Yin J; Yin J; Yuan J; Yuan J; Qu Z; Qu Z; Yang Y; Yang Y; Liu Y; Liu Y
- Source:
Journal of medical virology [J Med Virol] 2024 Jun; Vol. 96 (6), pp. e29729.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 7705876 Publication Model: Print Cited Medium: Internet ISSN: 1096-9071 (Electronic) Linking ISSN: 01466615 NLM ISO Abbreviation: J Med Virol Subsets: MEDLINE
- Publication Information: Publication: New York Ny : Wiley-Liss
Original Publication: New York, Liss. - Subject Terms: Neutrophils*/immunology ; Dengue*/immunology ; Disease Progression* ; Biomarkers*/blood; Humans ; Female ; Male ; Adult ; Extracellular Traps/immunology ; Gene Expression Profiling ; Computational Biology ; Transcriptome ; Neutrophil Infiltration ; Neutrophil Activation ; Neutropenia/immunology ; Middle Aged ; Young Adult ; ROC Curve ; Machine Learning
- Abstract: Dengue, the most prevalent mosquito-borne disease worldwide, poses a significant health burden. This study integrates clinical data and transcriptomic datasets from different phases of dengue to investigate distinctive and shared cellular and molecular features. Clinical data from 29 dengue patients were collected and analyzed alongside a public transcriptomic data set (GSE28405) to perform differential gene expression analysis, functional enrichment, immune landscape assessment, and development of machine learning model. Neutropenia was observed in 54.79% of dengue patients, particularly during the defervescence phase (65.79%) in clinical cohorts. Bioinformatics analyses corroborated a significant reduction in neutrophil immune infiltration in dengue patients. Receiver operating characteristic curve analysis demonstrated that dynamic changes in neutrophil infiltration levels could predict disease progression, especially during the defervescence phase, with the area under the curve of 0.96. Three neutrophil-associated biomarkers-DHRS12, Transforming growth factor alpha, and ZDHHC19-were identified as promising for diagnosing and predicting dengue progression. In addition, the activation of neutrophil extracellular traps was significantly enhanced and linked to FcγR-mediated signaling pathways and Toll-like receptor signaling pathways. Neutrophil activation and depletion play a critical role in dengue's immune response. The identified biomarkers and their associated pathways offer potential for improved diagnosis and understanding of dengue pathogenesis and progression.
(© 2024 Wiley Periodicals LLC.) - References: Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature. 2013;496:504‐507. doi:10.1038/nature12060.
Du M, Jing W, Liu M, Liu J. The global trends and regional differences in incidence of dengue infection from 1990 to 2019: an analysis from the global burden of disease study 2019. Infect Dis Ther. 2021;10:1625‐1643. doi:10.1007/s40121-021-00470-2.
Yang X, Quam MBM, Zhang T, Sang S. Global burden for dengue and the evolving pattern in the past 30 years. J Travel Med. 2021;28:1‐11. doi:10.1093/jtm/taab146.
Messina JP, Brady OJ, Golding N, et al. The current and future global distribution and population at risk of dengue. Nat Microbiol. 2019;4:1508‐1515. doi:10.1038/s41564-019-0476-8.
2019: A Year of Challenges and Change. (2019). MEDICC review 21, 3, doi:10.37757/mr2019.V21.N1.1.
Sharif N, Sharif N, Khan A, Dey SK. The epidemiologic and clinical characteristics of the 2023 dengue outbreak in Bangladesh. Open Forum Infect Dis. 2024;11:ofae066. doi:10.1093/ofid/ofae066.
Khadka S, Proshad R, Thapa A, Acharya KP, Kormoker T. Wolbachia: a possible weapon for controlling dengue in Nepal. Trop Med Health. 2020;48:50. doi:10.1186/s41182-020-00237-4.
Zhang H, Mehmood K, Chang YF, Zhao Y, Lin W, Chang Z. Increase in cases of dengue in China, 2004‐2016: a retrospective observational study. Travel Med Infect Dis. 2020;37:101674. doi:10.1016/j.tmaid.2020.101674.
Lai WT, Chen CH, Hung H, Chen RB, Shete S, Wu CC. Recognizing spatial and temporal clustering patterns of dengue outbreaks in Taiwan. BMC Infect Dis. 2018;18:256. doi:10.1186/s12879-018-3159-9.
Wu T, Wu Z, Li YP. Dengue fever and dengue virus in the People's Republic of China. Rev Med Virol. 2022;32:e2245. doi:10.1002/rmv.2245.
Cheng L, Liu WL, Su MP, Huang SC, Wang JR, Chen CH. Prohemocytes are the main cells infected by dengue virus in Aedes aegypti and Aedes albopictus. Parasit Vectors. 2022;15:137. doi:10.1186/s13071-022-05276-w.
Weaver SC, Reisen WK. Present and future arboviral threats. Antiviral Res. 2010;85:328‐345. doi:10.1016/j.antiviral.2009.10.008.
Islam MT, Quispe C, Herrera‐Bravo J, et al. Production, transmission, pathogenesis, and control of dengue virus: a literature‐based undivided perspective. BioMed Res Int. 2021;2021:4224816. doi:10.1155/2021/4224816.
Messina JP, Brady OJ, Scott TW, et al. Global spread of dengue virus types: mapping the 70 year history. TIM. 2014;22:138‐146. doi:10.1016/j.tim.2013.12.011.
Screaton G, Mongkolsapaya J, Yacoub S, Roberts C. New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol. 2015;15:745‐759. doi:10.1038/nri3916.
Kok BH, Lim HT, Lim CP, Lai NS, Leow CY, Leow CH. Dengue virus infection ‐ a review of pathogenesis, vaccines, diagnosis and therapy. Virus Res. 2023;324:199018. doi:10.1016/j.virusres.2022.199018.
Katzelnick LC, Gresh L, Halloran ME, et al. Antibody‐dependent enhancement of severe dengue disease in humans. Science. 2017;358:929‐932. doi:10.1126/science.aan6836.
Nanaware N, Banerjee A, Mullick Bagchi S, Bagchi P, Mukherjee A. Dengue virus infection: a tale of viral exploitations and host responses. Viruses. 2021;13:1967. doi:10.3390/v13101967.
Huang CH, Tsai YT, Wang SF, Wang WH, Chen YH. Dengue vaccine: an update. Expert Rev Anti Infect Ther. 2021;19:1495‐1502. doi:10.1080/14787210.2021.1949983.
Katzelnick LC, Coello Escoto A, Huang AT, et al. Antigenic evolution of dengue viruses over 20 years. Science. 2021;374:999‐1004. doi:10.1126/science.abk0058.
Pollett S, Melendrez MC, Maljkovic Berry I, et al. Understanding dengue virus evolution to support epidemic surveillance and counter‐measure development. Infect Genet Evol. 2018;62:279‐295. doi:10.1016/j.meegid.2018.04.032.
Rathore APS, St John AL. Immune responses to dengue virus in the skin. Open Biol. 2018;8:180087. doi:10.1098/rsob.180087.
Uno N, Ross TM. Dengue virus and the host innate immune response. Emerg Microbes Infect. 2018;7:1‐11. doi:10.1038/s41426-018-0168-0.
Patel AA, Ginhoux F, Yona S. Monocytes, macrophages, dendritic cells and neutrophils: an update on lifespan kinetics in health and disease. Immunology. 2021;163:250‐261. doi:10.1111/imm.13320.
Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22:240‐273. Table of Contents. doi:10.1128/cmr.00046-08.
Suresh R, Mosser DM. Pattern recognition receptors in innate immunity, host defense, and immunopathology. Adv Physiol Ed. 2013;37:284‐291. doi:10.1152/advan.00058.2013.
Kell AM, Gale Jr. M. RIG‐I in RNA virus recognition. Virology. 2015;479‐480:110‐121. doi:10.1016/j.virol.2015.02.017.
King CA, Wegman AD, Endy TP. Mobilization and activation of the innate immune response to dengue virus. Front Cell Infect Microbiol. 2020;10:574417. doi:10.3389/fcimb.2020.574417.
Sprokholt J, Helgers LC, Geijtenbeek TB. Innate immune receptors drive dengue virus immune activation and disease. Future Virol. 2018;13:287‐305. doi:10.2217/fvl-2017-0146.
Tolfvenstam T, Lindblom A, Schreiber MJ, et al. Characterization of early host responses in adults with dengue disease. BMC Infect Dis. 2011;11:209. doi:10.1186/1471-2334-11-209.
Clough E, Barrett T. The gene expression omnibus database. Methods Mol Biol. 2016;1418:93‐110. doi:10.1007/978-1-4939-3578-9_5.
Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA‐sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. doi:10.1093/nar/gkv007.
Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA‐seq data. BMC Bioinformatics. 2013;14:7. doi:10.1186/1471-2105-14-7.
Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453‐457. doi:10.1038/nmeth.3337.
Zeng D, Ye Z, Shen R, et al. IOBR: Multi‐omics immuno‐oncology biological research to decode tumor microenvironment and signatures. Front Immunol. 2021;12:687975. doi:10.3389/fimmu.2021.687975.
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. doi:10.1186/1471-2105-9-559.
Robin X, Turck N, Hainard A, et al. pROC: an open‐source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77. doi:10.1186/1471-2105-12-77.
Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011;11:519‐531. doi:10.1038/nri3024.
Liew PX, Kubes P. The neutrophil's role during health and disease. Physiol Rev. 2019;99:1223‐1248. doi:10.1152/physrev.00012.2018.
Schwartzberg LS. Neutropenia: etiology and pathogenesis. Clin Cornerstone. 2006;8(suppl 5):S5‐S11. doi:10.1016/s1098-3597(06)80053-0.
Liu KT, Liu YH, Lin CY, et al. Serum neutrophil gelatinase‐associated lipocalin and resistin are associated with dengue infection in adults. BMC Infect Dis. 2016;16:441. doi:10.1186/s12879-016-1759-9.
Kunder M, Lakshmaiah V, Moideen Kutty AV. Plasma neutrophil elastase, α(1)‐Antitrypsin, α(2)‐Macroglobulin and neutrophil Elastase‐α(1)‐Antitrypsin complex levels in patients with dengue fever. Indian J Clin Biochem. 2018;33:218‐221. doi:10.1007/s12291-017-0658-1.
Waickman AT, Friberg H, Gromowski GD, et al. Temporally integrated single cell RNA sequencing analysis of PBMC from experimental and natural primary human DENV‐1 infections. PLoS Pathog. 2021;17:e1009240. doi:10.1371/journal.ppat.1009240.
Arora JK, Opasawatchai A, Poonpanichakul T, et al. Single‐cell temporal analysis of natural dengue infection reveals skin‐homing lymphocyte expansion one day before defervescence. iScience. 2022;25:104034. doi:10.1016/j.isci.2022.104034.
Chia PY, Teo A, Yeo TW. Association of neutrophil mediators with dengue disease severity and cardiac impairment in adults. J Infect Dis. 2022;226:1974‐1984. doi:10.1093/infdis/jiac383.
Hanley JP, Tu HA, Dragon JA, et al. Immunotranscriptomic profiling the acute and clearance phases of a human challenge dengue virus serotype 2 infection model. Nat Commun. 2021;12:3054. doi:10.1038/s41467-021-22930-6.
Banerjee A, Shukla S, Pandey AD, et al. RNA‐Seq analysis of peripheral blood mononuclear cells reveals unique transcriptional signatures associated with disease progression in dengue patients. Transl Res. 2017;186:62‐78.e9.e69. doi:10.1016/j.trsl.2017.06.007.
Bartuma H, Nord KH, Macchia G, et al. Gene expression and single nucleotide polymorphism array analyses of spindle cell lipomas and conventional lipomas with 13q14 deletion. Genes Chromosomes Cancer. 2011;50:619‐632. doi:10.1002/gcc.20884.
Singh B, Coffey RJ. From wavy hair to naked proteins: the role of transforming growth factor alpha in health and disease. Semin Cell Dev Biol. 2014;28:12‐21. doi:10.1016/j.semcdb.2014.03.003.
Wu Y, Zhang X, Zhang X, et al. ZDHHC19 localizes to the cell membrane of spermatids and is involved in spermatogenesis. Biol Reprod. 2022;106:477‐486. doi:10.1093/biolre/ioab224.
Garishah FM, Rother N, Riswari SF, et al. Neutrophil extracellular traps in dengue are mainly generated NOX‐independently. Front Immunol. 2021;12:629167. doi:10.3389/fimmu.2021.629167.
Sung PS, Huang TF, Hsieh SL. Extracellular vesicles from CLEC2‐activated platelets enhance dengue virus‐induced lethality via CLEC5A/TLR2. Nat Commun. 2019;10:2402. doi:10.1038/s41467-019-10360-4.
Kawai T, Akira S. Toll‐like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34:637‐650. doi:10.1016/j.immuni.2011.05.006.
Moresco EMY, LaVine D, Beutler B. Toll‐like receptors. Curr Biol. 2011;21:R488‐R493. doi:10.1016/j.cub.2011.05.039. - Grant Information: 2023YFA0915600 National Key R&D Program of China; 2023YFC3041500 National Key R&D Program of China; 2021YFC2301803 National Key R&D Program of China; D2301014 Shenzhen Medical Research Funding
- Contributed Indexing: Keywords: bioinformatics; biomarker; dengue; immune microenvironment; machine learning; neutrophil
- Accession Number: 0 (Biomarkers)
- Publication Date: Date Created: 20240611 Date Completed: 20240611 Latest Revision: 20240611
- Publication Date: 20240611
- Accession Number: 10.1002/jmv.29729
- Accession Number: 38860590
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.