Electrophysiological Profile of Different Antiviral Therapies in a Rabbit Whole-Heart Model.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Humana Press Country of Publication: United States NLM ID: 101135818 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0259 (Electronic) Linking ISSN: 15307905 NLM ISO Abbreviation: Cardiovasc Toxicol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Totowa, NJ : Humana Press, c2001-
    • Subject Terms:
    • Abstract:
      Antiviral therapies for treatment of COVID-19 may be associated with significant proarrhythmic potential. In the present study, the potential cardiotoxic side effects of these therapies were evaluated using a Langendorff model of the isolated rabbit heart. 51 hearts of female rabbits were retrogradely perfused, employing a Langendorff-setup. Eight catheters were placed endo- and epicardially to perform an electrophysiology study, thus obtaining cycle length-dependent action potential duration at 90% of repolarization (APD 90 ), QT intervals and dispersion of repolarization. After generating baseline data, the hearts were assigned to four groups: In group 1 (HXC), hearts were treated with 1 µM hydroxychloroquine. Thereafter, 3 µM hydroxychloroquine were infused additionally. Group 2 (HXC + AZI) was perfused with 3 µM hydroxychloroquine followed by 150 µM azithromycin. In group 3 (LOP) the hearts were perfused with 3 µM lopinavir followed by 5 µM and 10 µM lopinavir. Group 4 (REM) was perfused with 1 µM remdesivir followed by 5 µM and 10 µM remdesivir. Hydroxychloroquine- and azithromycin-based therapies have a significant proarrhythmic potential mediated by action potential prolongation and an increase in dispersion. Lopinavir and remdesivir showed overall significantly less pronounced changes in electrophysiology. In accordance with the reported bradycardic events under remdesivir, it significantly reduced the rate of the ventricular escape rhythm.
      (© 2024. The Author(s).)
    • References:
      Consortium WHOST, Pan, H., Peto, R., Henao-Restrepo, A. M., Preziosi, M. P., Sathiyamoorthy, V., et al. (2021). Repurposed antiviral drugs for covid-19—interim WHO solidarity trial results. New England Journal of Medicine, 384(6), 497–511. https://doi.org/10.1056/NEJMoa2023184. (PMID: 10.1056/NEJMoa2023184)
      Gautret, P., Lagier, J. C., Parola, P., Hoang, V. T., Meddeb, L., Mailhe, M., et al. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, 56(1), 105949. https://doi.org/10.1016/j.ijantimicag.2020.105949. (PMID: 10.1016/j.ijantimicag.2020.105949322052047102549)
      Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., et al. (2020). A trial of lopinavir-ritonavir in adults hospitalized with severe covid-19. New England Journal of Medicine, 382(19), 1787–1799. https://doi.org/10.1056/NEJMoa2001282. (PMID: 10.1056/NEJMoa200128232187464)
      Gottlieb, R. L., Vaca, C. E., Paredes, R., Mera, J., Webb, B. J., Perez, G., et al. (2022). Early remdesivir to prevent progression to severe covid-19 in outpatients. New England Journal of Medicine, 386(4), 305–315. https://doi.org/10.1056/NEJMoa2116846. (PMID: 10.1056/NEJMoa211684634937145)
      Popp, M., Stegemann, M., Riemer, M., Metzendorf, M. I., Romero, C. S., Mikolajewska, A., et al. (2021). Antibiotics for the treatment of COVID-19. Cochrane Database System Review., 10(10), CD015025. https://doi.org/10.1002/14651858.CD015025. (PMID: 10.1002/14651858.CD015025)
      Group RC. (2020). Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet, 396(10259), 1345–1352. https://doi.org/10.1016/S0140-6736(20)32013-4. (PMID: 10.1016/S0140-6736(20)32013-4)
      Sanchez-Chapula, J. A., Salinas-Stefanon, E., Torres-Jacome, J., Benavides-Haro, D. E., & Navarro-Polanco, R. A. (2001). Blockade of currents by the antimalarial drug chloroquine in feline ventricular myocytes. Journal of Pharmacology and Experimental Therapeutics, 297(1), 437–445. (PMID: 11259572)
      Eveleens Maarse, B. C., Graff, C., Kanters, J. K., van Esdonk, M. J., Kemme, M. J. B., et al. (2022). Effect of hydroxychloroquine on the cardiac ventricular repolarization: A randomized clinical trial. British Journal of Clinical Pharmacology., 88(3), 1054–62. https://doi.org/10.1111/bcp.15013. (PMID: 10.1111/bcp.1501334327732)
      Lo, C. H., Wang, Y. H., Tsai, C. F., Chan, K. C., Li, L. C., Lo, T. H., et al. (2021). Association of hydroxychloroquine and cardiac arrhythmia in patients with systemic lupus erythematosus: A population-based case control study. PLoS ONE, 16(5), e0251918. https://doi.org/10.1371/journal.pone.0251918. (PMID: 10.1371/journal.pone.0251918340150308136629)
      Mercuro, N. J., Yen, C. F., Shim, D. J., Maher, T. R., McCoy, C. M., Zimetbaum, P. J., et al. (2020). Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for coronavirus disease 2019 (COVID-19). JAMA Cardiology., 5(9), 1036–1041. https://doi.org/10.1001/jamacardio.2020.1834. (PMID: 10.1001/jamacardio.2020.183432936252)
      Chorin, E., Dai, M., Shulman, E., Wadhwani, L., Bar-Cohen, R., Barbhaiya, C., et al. (2020). The QT interval in patients with COVID-19 treated with hydroxychloroquine and azithromycin. Nature Medicine, 26(6), 808–809. https://doi.org/10.1038/s41591-020-0888-2. (PMID: 10.1038/s41591-020-0888-232488217)
      Furtado, R. H. M., Barros, E. S. P. G. M., Fonseca, H. A. R., Serpa-Neto, A., Correa, T. D., Guimaraes, H. P., et al. (2024). Cardiovascular safety of azithromycin in patients hospitalized with COVID-19: A prespecified pooled analysis of the COALITION I and COALITION II randomized clinical trials. American Journal Cardiology, 214, 18–24. https://doi.org/10.1016/j.amjcard.2023.11.069. (PMID: 10.1016/j.amjcard.2023.11.069)
      Milberg, P., Eckardt, L., Bruns, H. J., Biertz, J., Ramtin, S., Reinsch, N., et al. (2002). Divergent proarrhythmic potential of macrolide antibiotics despite similar QT prolongation: Fast phase 3 repolarization prevents early afterdepolarizations and torsade de pointes. Journal of Pharmacology and Experimental Therapeutics, 303(1), 218–225. https://doi.org/10.1124/jpet.102.037911. (PMID: 10.1124/jpet.102.03791112235254)
      Anson, B. D., Weaver, J. G., Ackerman, M. J., Akinsete, O., Henry, K., January, C. T., et al. (2005). Blockade of HERG channels by HIV protease inhibitors. Lancet, 365(9460), 682–686. https://doi.org/10.1016/S0140-6736(05)17950-1. (PMID: 10.1016/S0140-6736(05)17950-115721475)
      Choi, S. W., Shin, J. S., Park, S. J., Jung, E., Park, Y. G., Lee, J., et al. (2020). Antiviral activity and safety of remdesivir against SARS-CoV-2 infection in human pluripotent stem cell-derived cardiomyocytes. Antiviral Research, 184, 104955. https://doi.org/10.1016/j.antiviral.2020.104955. (PMID: 10.1016/j.antiviral.2020.104955330914347571425)
      Al-Moubarak, E., Sharifi, M., & Hancox, J. C. (2021). In silico exploration of interactions between potential COVID-19 antiviral treatments and the pore of the hERG potassium channel-A drug antitarget. Front Cardiovascular Medicine, 8, 645172. https://doi.org/10.3389/fcvm.2021.645172. (PMID: 10.3389/fcvm.2021.645172)
      Gubitosa, J. C., Kakar, P., Gerula, C., Nossa, H., Finkel, D., Wong, K., et al. (2020). Marked sinus bradycardia associated with remdesivir in COVID-19: A case and literature review. JACC Case Reports, 2(14), 2260–2264. https://doi.org/10.1016/j.jaccas.2020.08.025. (PMID: 10.1016/j.jaccas.2020.08.025331639777598346)
      Day, L. B., Abdel-Qadir, H., & Fralick, M. (2021). Bradycardia associated with remdesivir therapy for COVID-19 in a 59-year-old man. CMAJ, 193(17), E612–E615. https://doi.org/10.1503/cmaj.210300. (PMID: 10.1503/cmaj.210300339031338101980)
      Chow, E. J., Maust, B., Kazmier, K. M., & Stokes, C. (2021). Sinus bradycardia in a pediatric patient treated with remdesivir for acute coronavirus disease 2019: A case report and a review of the literature. Journal of Pediatric Infectious Diseases Society, 10(9), 926–929. https://doi.org/10.1093/jpids/piab029. (PMID: 10.1093/jpids/piab029)
      Wolfes, J., Ellermann, C., Kirchner, L. M., Willy, K., Rath, B., Leitz, P. R., et al. (2022). Electrophysiological safety profile of antiestrogenic therapies in the isolated rabbit heart. Pharmacology, 107(11–12), 608–614. https://doi.org/10.1159/000526612. (PMID: 10.1159/00052661236174497)
      Frommeyer, G., Milberg, P., Witte, P., Stypmann, J., Koopmann, M., Lucke, M., et al. (2011). A new mechanism preventing proarrhythmia in chronic heart failure: Rapid phase-III repolarization explains the low proarrhythmic potential of amiodarone in contrast to sotalol in a model of pacing-induced heart failure. European Journal of Heart Failure, 13(10), 1060–1069. https://doi.org/10.1093/eurjhf/hfr107. (PMID: 10.1093/eurjhf/hfr10721873342)
      Milberg, P., Reinsch, N., Wasmer, K., Monnig, G., Stypmann, J., Osada, N., et al. (2005). Transmural dispersion of repolarization as a key factor of arrhythmogenicity in a novel intact heart model of LQT3. Cardiovascular Research, 65(2), 397–404. https://doi.org/10.1016/j.cardiores.2004.10.016. (PMID: 10.1016/j.cardiores.2004.10.01615639478)
      Borsini, F., Crumb, W., Pace, S., Ubben, D., Wible, B., Yan, G. X., et al. (2012). In vitro cardiovascular effects of dihydroartemisin-piperaquine combination compared with other antimalarials. Antimicrobial Agents and Chemotherapy, 56(6), 3261–3270. https://doi.org/10.1128/AAC.05688-11. (PMID: 10.1128/AAC.05688-11223915283370756)
      Sanchez-Chapula, J. A., Navarro-Polanco, R. A., Culberson, C., Chen, J., & Sanguinetti, M. C. (2002). Molecular determinants of voltage-dependent human ether-a-go-go related gene (HERG) K+ channel block. Journal of Biological Chemistry, 277(26), 23587–23595. https://doi.org/10.1074/jbc.M200448200. (PMID: 10.1074/jbc.M20044820011960982)
      Chen, C. Y., Wang, F. L., & Lin, C. C. (2006). Chronic hydroxychloroquine use associated with QT prolongation and refractory ventricular arrhythmia. Clinical Toxicology (Philadelphia, PA), 44(2), 173–175. https://doi.org/10.1080/15563650500514558. (PMID: 10.1080/1556365050051455816615675)
      Yao, X., Ye, F., Zhang, M., Cui, C., Huang, B., Niu, P., et al. (2020). In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical Infectious Diseases, 71(15), 732–739. https://doi.org/10.1093/cid/ciaa237. (PMID: 10.1093/cid/ciaa23732150618)
      Zequn, Z., Yujia, W., Dingding, Q., & Jiangfang, L. (2021). Off-label use of chloroquine, hydroxychloroquine, azithromycin and lopinavir/ritonavir in COVID-19 risks prolonging the QT interval by targeting the hERG channel. European Journal of Pharmacology, 893, 173813. https://doi.org/10.1016/j.ejphar.2020.173813. (PMID: 10.1016/j.ejphar.2020.17381333345848)
      Ray, W. A., Murray, K. T., Hall, K., Arbogast, P. G., & Stein, C. M. (2012). Azithromycin and the risk of cardiovascular death. New England Journal of Medicine, 366(20), 1881–1890. https://doi.org/10.1056/NEJMoa1003833. (PMID: 10.1056/NEJMoa100383322591294)
      Frommeyer, G., & Eckardt, L. (2016). Drug-induced proarrhythmia: Risk factors and electrophysiological mechanisms. Nature Reviews. Cardiology, 13(1), 36–47. https://doi.org/10.1038/nrcardio.2015.110. (PMID: 10.1038/nrcardio.2015.11026194552)
      Yang, Z., Prinsen, J. K., Bersell, K. R., Shen, W., Yermalitskaya, L., Sidorova, T., et al. (2017). Azithromycin causes a novel proarrhythmic syndrome. Circulation Arrhythm Electrophysiology. https://doi.org/10.1161/CIRCEP.115.003560. (PMID: 10.1161/CIRCEP.115.003560)
      Varro, A., & Baczko, I. (2011). Cardiac ventricular repolarization reserve: A principle for understanding drug-related proarrhythmic risk. British Journal of Pharmacology, 164(1), 14–36. https://doi.org/10.1111/j.1476-5381.2011.01367.x. (PMID: 10.1111/j.1476-5381.2011.01367.x215455743171857)
      Araujo, F. G., Shepard, R. M., & Remington, J. S. (1991). In vivo activity of the macrolide antibiotics azithromycin, roxithromycin and spiramycin against Toxoplasma gondii. European Journal of Clinical Microbiology and Infectious Diseases, 10(6), 519–524. https://doi.org/10.1007/BF01963942. (PMID: 10.1007/BF019639421655433)
      Choy, K. T., Wong, A. Y., Kaewpreedee, P., Sia, S. F., Chen, D., Hui, K. P. Y., et al. (2020). Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Research, 178, 104786. https://doi.org/10.1016/j.antiviral.2020.104786. (PMID: 10.1016/j.antiviral.2020.104786322517677127386)
      Alvarez, J. C., Moine, P., Davido, B., Etting, I., Annane, D., Larabi, I. A., et al. (2021). Population pharmacokinetics of lopinavir/ritonavir in Covid-19 patients. European Journal of Clinical Pharmacology, 77(3), 389–397. https://doi.org/10.1007/s00228-020-03020-w. (PMID: 10.1007/s00228-020-03020-w33048175)
      Soliman, E. Z., Lundgren, J. D., Roediger, M. P., Duprez, D. A., Temesgen, Z., Bickel, M., et al. (2011). Boosted protease inhibitors and the electrocardiographic measures of QT and PR durations. AIDS, 25(3), 367–377. https://doi.org/10.1097/QAD.0b013e328341dcc0. (PMID: 10.1097/QAD.0b013e328341dcc021150558)
      Sarapa, N., Nickens, D. J., Raber, S. R., Reynolds, R. R., & Amantea, M. A. (2008). Ritonavir 100 mg does not cause QTc prolongation in healthy subjects: A possible role as CYP3A inhibitor in thorough QTc studies. Clinical Pharmacology and Therapeutics, 83(1), 153–159. https://doi.org/10.1038/sj.clpt.6100263. (PMID: 10.1038/sj.clpt.610026317581594)
      Pilote, S., Simard, C., & Drolet, B. (2022). Remdesivir (VEKLURY) for treating COVID-19: Guinea Pig Ex Vivo and In Vivo cardiac electrophysiological effects. Journal of Cardiovascular Pharmacology, 80(4), 616–622. https://doi.org/10.1097/FJC.0000000000001321. (PMID: 10.1097/FJC.000000000000132135881906)
      Varga, Z. V., Ferdinandy, P., Liaudet, L., & Pacher, P. (2015). Drug-induced mitochondrial dysfunction and cardiotoxicity. American Journal of Physiology Heart and Circulatory Physiology, 309(9), H1453–H1467. https://doi.org/10.1152/ajpheart.00554.2015. (PMID: 10.1152/ajpheart.00554.2015263861124666974)
      Gordon, C. J., Tchesnokov, E. P., Woolner, E., Perry, J. K., Feng, J. Y., Porter, D. P., et al. (2020). Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. Journal of Biological Chemistry, 295(20), 6785–6797. https://doi.org/10.1074/jbc.RA120.013679. (PMID: 10.1074/jbc.RA120.013679322843267242698)
      Jorgensen, S. C. J., Kebriaei, R., & Dresser, L. D. (2020). Remdesivir: Review of pharmacology, pre-clinical data, and emerging clinical experience for COVID-19. Pharmacotherapy, 40(7), 659–671. https://doi.org/10.1002/phar.2429. (PMID: 10.1002/phar.2429324462877283864)
      Humeniuk, R., Mathias, A., Cao, H., Osinusi, A., Shen, G., Chng, E., et al. (2020). Safety, tolerability, and pharmacokinetics of remdesivir, an antiviral for treatment of COVID-19 Healthy Subjects. Clin Transl Sci., 13(5), 896–906. https://doi.org/10.1111/cts.12840. (PMID: 10.1111/cts.12840325897757361781)
      Wolfes, J., Ellermann, C., Burde, S., Leitz, P., Bogeholz, N., Willy, K., et al. (2021). Divergent electrophysiological effects of loperamide and naloxone in a sensitive whole-heart model. Cardiovascular Toxicology, 21(3), 248–254. https://doi.org/10.1007/s12012-020-09616-z. (PMID: 10.1007/s12012-020-09616-z33125619)
      Stoll, M., Quentin, M., Molojavyi, A., Thamer, V., & Decking, U. K. (2008). Spatial heterogeneity of myocardial perfusion predicts local potassium channel expression and action potential duration. Cardiovascular Research, 77(3), 489–496. https://doi.org/10.1093/cvr/cvm060. (PMID: 10.1093/cvr/cvm06018006439)
      Shah, R. R., & Hondeghem, L. M. (2005). Refining detection of drug-induced proarrhythmia: QT interval and TRIaD. Heart Rhythm, 2(7), 758–772. https://doi.org/10.1016/j.hrthm.2005.03.023. (PMID: 10.1016/j.hrthm.2005.03.02315992736)
      Lu, H. R., Remeysen, P., Somers, K., Saels, A., & De Clerck, F. (2001). Female gender is a risk factor for drug-induced long QT and cardiac arrhythmias in an in vivo rabbit model. Journal of Cardiovascular Electrophysiology, 12(5), 538–545. https://doi.org/10.1046/j.1540-8167.2001.00538.x. (PMID: 10.1046/j.1540-8167.2001.00538.x11386514)
    • Contributed Indexing:
      Keywords: Anitviral; Arrhythmia; Azithromycin; Hydroxychloroquine; Long QT syndrome; Lopinavir; Remdesivir; Sudden cardiac death
    • Accession Number:
      0 (Antiviral Agents)
      4QWG6N8QKH (Hydroxychloroquine)
      OF5P57N2ZX (Alanine)
      415SHH325A (Adenosine Monophosphate)
      3QKI37EEHE (remdesivir)
    • Publication Date:
      Date Created: 20240608 Date Completed: 20240627 Latest Revision: 20241211
    • Publication Date:
      20241211
    • Accession Number:
      PMC11211193
    • Accession Number:
      10.1007/s12012-024-09872-3
    • Accession Number:
      38851664