Emerging Roles of Galectin-3 in Pulmonary Diseases.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: United States NLM ID: 7701875 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1750 (Electronic) Linking ISSN: 03412040 NLM ISO Abbreviation: Lung Subsets: MEDLINE
    • Publication Information:
      Publication: New York : Springer Verlag
      Original Publication: Heidelberg, Springer International.
    • Subject Terms:
    • Abstract:
      Galectin-3 is a multifunctional protein that is involved in various physiological and pathological events. Emerging evidence suggests that galectin-3 also plays a critical role in the pathogenesis of pulmonary diseases. Galectin-3 can be produced and secreted by various cell types in the lungs, and the overexpression of galectin-3 has been found in acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary hypertension (PH), pulmonary fibrosis diseases, lung cancer, lung infection, chronic obstructive pulmonary disease (COPD), and asthma. Galectin-3 exerts diverse effects on the inflammatory response, immune cell activation, fibrosis and tissue remodeling, and tumorigenesis in these pulmonary disorders, and genetic and pharmacologic modulation of galectin-3 has therapeutic effects on the treatment of pulmonary illnesses. In this review, we summarize the structure and function of galectin-3 and the underlying mechanisms of galectin-3 in pulmonary disease pathologies; we also discuss preclinical and clinical evidence regarding the therapeutic potential of galectin-3 inhibitors in these pulmonary disorders. Additionally, targeting galectin-3 may be a very promising therapeutic approach for the treatment of pulmonary diseases.
      (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Jia Q, Ouyang Y, Yang Y, Yao S, Chen X, Hu Z (2024) Osteopontin: a novel therapeutic target for pulmonary diseases. Lung 202:25–39. (PMID: 3806006010.1007/s00408-023-00665-z)
      Liu FT, Stowell SR (2023) The role of galectins in immunity and infection. Nat Rev Immunol 23:479–494. (PMID: 3664684810.1038/s41577-022-00829-7)
      Mariño KV, Cagnoni AJ, Croci DO, Rabinovich GA (2023) Targeting galectin-driven regulatory circuits in cancer and fibrosis. Nat Rev Drug Discov 22:295–316. (PMID: 3675955710.1038/s41573-023-00636-2)
      Li P, Liu S, Lu M, Bandyopadhyay G, Oh D, Imamura T et al (2016) Hematopoietic-derived galectin-3 causes cellular and systemic insulin resistance. Cell 167:973-984.e912. (PMID: 27814523517932910.1016/j.cell.2016.10.025)
      Ohshima S, Kuchen S, Seemayer CA, Kyburz D, Hirt A, Klinzing S et al (2003) Galectin 3 and its binding protein in rheumatoid arthritis. Arthritis Rheum 48:2788–2795. (PMID: 1455808410.1002/art.11287)
      Hu G, Wu J, Gu H, Deng X, Xu W, Feng S et al (2023) Galectin-3-centered paracrine network mediates cardiac inflammation and fibrosis upon β-adrenergic insult. Sci China Life Sci 66:1067–1078. (PMID: 3644921410.1007/s11427-022-2189-x)
      Van den Brûle FA, Fernandez PL, Buicu C, Liu FT, Jackers P, Lambotte R, Castronovo V (1997) Differential expression of galectin-1 and galectin-3 during first trimester human embryogenesis. Dev Dyn 209:399–405. (PMID: 926426310.1002/(SICI)1097-0177(199708)209:4<399::AID-AJA7>3.0.CO;2-D)
      Aliberti S, Dela Cruz CS, Amati F, Sotgiu G, Restrepo MI (2021) Community-acquired pneumonia. Lancet 398:906–919. (PMID: 3448157010.1016/S0140-6736(21)00630-9)
      MacKinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson KM, Leffler H et al (2008) Regulation of alternative macrophage activation by galectin-3. J Immunol 180:2650–2658. (PMID: 1825047710.4049/jimmunol.180.4.2650)
      Erriah M, Pabreja K, Fricker M, Baines KJ, Donnelly LE, Bylund J, Karlsson A, Simpson JL (2019) Galectin-3 enhances monocyte-derived macrophage efferocytosis of apoptotic granulocytes in asthma. Respir Res 20:1. (PMID: 30606211631888910.1186/s12931-018-0967-9)
      Farnworth SL, Henderson NC, Mackinnon AC, Atkinson KM, Wilkinson T, Dhaliwal K et al (2008) Galectin-3 reduces the severity of pneumococcal pneumonia by augmenting neutrophil function. Am J Pathol 172:395–405. (PMID: 18202191231237110.2353/ajpath.2008.070870)
      Seguin L, Camargo MF, Wettersten HI, Kato S, Desgrosellier JS, von Schalscha T et al (2017) Galectin-3, a druggable vulnerability for KRAS-addicted cancers. Cancer Discov 7:1464–1479. (PMID: 28893801571895910.1158/2159-8290.CD-17-0539)
      Hirani N, MacKinnon AC, Nicol L, Ford P, Schambye H, Pedersen A et al (2021) Target inhibition of galectin-3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis. Eur Respir J. https://doi.org/10.1183/13993003.02559-2020. (PMID: 10.1183/13993003.02559-2020332142098156151)
      Gaughan EE, Quinn TM, Mills A, Bruce AM, Antonelli J, MacKinnon AC et al (2023) An inhaled galectin-3 inhibitor in COVID-19 pneumonitis: a phase Ib/IIa randomized controlled clinical trial (DEFINE). Am J Respir Crit Care Med 207:138–149. (PMID: 3597298710.1164/rccm.202203-0477OC)
      Krześlak A, Lipińska A (2004) Galectin-3 as a multifunctional protein. Cell Mol Biol Lett 9:305–328. (PMID: 15213811)
      Tan Y, Zheng Y, Xu D, Sun Z, Yang H, Yin Q (2021) Galectin-3: a key player in microglia-mediated neuroinflammation and Alzheimer’s disease. Cell Biosci 11:78. (PMID: 33906678807795510.1186/s13578-021-00592-7)
      Yu F, Finley RL Jr, Raz A, Kim HR (2002) Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria: a role for synexin in galectin-3 translocation. J Biol Chem 277:15819–15827. (PMID: 1183975510.1074/jbc.M200154200)
      Liu L, Sakai T, Sano N, Fukui K (2004) Nucling mediates apoptosis by inhibiting expression of galectin-3 through interference with nuclear factor kappaB signalling. Biochem J 380:31–41. (PMID: 14961764122415010.1042/bj20031300)
      Fukumori T, Takenaka Y, Oka N, Yoshii T, Hogan V, Inohara H, Kanayama HO, Kim HR, Raz A (2004) Endogenous galectin-3 determines the routing of CD95 apoptotic signaling pathways. Cancer Res 64:3376–3379. (PMID: 1515008710.1158/0008-5472.CAN-04-0336)
      Park JW, Voss PG, Grabski S, Wang JL, Patterson RJ (2001) Association of galectin-1 and galectin-3 with Gemin4 in complexes containing the SMN protein. Nucleic Acids Res 29:3595–3602. (PMID: 115228295587810.1093/nar/29.17.3595)
      Coppin L, Jannin A, Ait Yahya E, Thuillier C, Villenet C, Tardivel M et al (2020) Galectin-3 modulates epithelial cell adaptation to stress at the ER-mitochondria interface. Cell Death Dis 11:360. (PMID: 32398681721795410.1038/s41419-020-2556-3)
      Jia J, Claude-Taupin A, Gu Y, Choi SW, Peters R, Bissa B et al (2020) Galectin-3 coordinates a cellular system for lysosomal repair and removal. Dev Cell 52:69-87.e68. (PMID: 3181379710.1016/j.devcel.2019.10.025)
      Feuk-Lagerstedt E, Jordan ET, Leffler H, Dahlgren C, Karlsson A (1999) Identification of CD66a and CD66b as the major galectin-3 receptor candidates in human neutrophils. J Immunol 163:5592–5598. (PMID: 1055308810.4049/jimmunol.163.10.5592)
      Piyush T, Chacko AR, Sindrewicz P, Hilkens J, Rhodes JM, Yu LG (2017) Interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in human epithelial cancer cells. Cell Death Differ 24:1937–1947. (PMID: 28731466563522010.1038/cdd.2017.119)
      Milara J, Ballester B, Montero P, Escriva J, Artigues E, Alós M, Pastor-Clerigues A, Morcillo E, Cortijo J (2020) MUC1 intracellular bioactivation mediates lung fibrosis. Thorax 75:132–142. (PMID: 3180190410.1136/thoraxjnl-2018-212735)
      Boza-Serrano A, Ruiz R, Sanchez-Varo R, García-Revilla J, Yang Y, Jimenez-Ferrer I et al (2019) Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer’s disease. Acta Neuropathol 138:251–273. (PMID: 31006066666051110.1007/s00401-019-02013-z)
      Chen YJ, Wang SF, Weng IC, Hong MH, Lo TH, Jan JT, Hsu LC, Chen HY, Liu FT (2018) Galectin-3 enhances avian H5N1 influenza a virus-induced pulmonary inflammation by promoting NLRP3 inflammasome activation. Am J Pathol 188:1031–1042. (PMID: 2936667810.1016/j.ajpath.2017.12.014)
      Almeida F, Wolf JM, da Silva TA, DeLeon-Rodriguez CM, Rezende CP, Pessoni AM et al (2017) Galectin-3 impacts Cryptococcus neoformans infection through direct antifungal effects. Nat Commun 8:1968. (PMID: 29213074571903610.1038/s41467-017-02126-7)
      Sato S, Ouellet N, Pelletier I, Simard M, Rancourt A, Bergeron MG (2002) Role of galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia. J Immunol 168:1813–1822. (PMID: 1182351410.4049/jimmunol.168.4.1813)
      Nieminen J, St-Pierre C, Bhaumik P, Poirier F, Sato S (2008) Role of galectin-3 in leukocyte recruitment in a murine model of lung infection by Streptococcus pneumoniae. J Immunol 180:2466–2473. (PMID: 1825045610.4049/jimmunol.180.4.2466)
      Gajovic N, Markovic SS, Jurisevic M, Jovanovic M, Arsenijevic N, Mijailovic Z, Jovanovic M, Jovanovic I (2023) Galectin-3 as an important prognostic marker for COVID-19 severity. Sci Rep 13:1460. (PMID: 36702907987849510.1038/s41598-023-28797-5)
      De Biasi S, Meschiari M, Gibellini L, Bellinazzi C, Borella R, Fidanza L et al (2020) Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun 11:3434. (PMID: 32632085733851310.1038/s41467-020-17292-4)
      Murphy SL, Halvorsen B, Holter JC, Huse C, Tveita A, Trøseid M et al (2023) Circulating markers of extracellular matrix remodelling in severe COVID-19 patients. J Intern Med 294:784–797. (PMID: 3771857210.1111/joim.13725)
      Wang Y, Yang C, Wang Z, Wang Y, Yan Q, Feng Y, Liu Y, Huang J, Zhou J (2023) Epithelial galectin-3 induced the mitochondrial complex inhibition and cell cycle arrest of CD8(+) T cells in severe/critical COVID-19. Int J Mol Sci 24:dmm032086.
      Caniglia JL, Guda MR, Asuthkar S, Tsung AJ, Velpula KK (2020) A potential role for galectin-3 inhibitors in the treatment of COVID-19. PeerJ 8:e9392. (PMID: 32587806730189410.7717/peerj.9392)
      Behloul N, Baha S, Shi R, Meng J (2020) Role of the GTNGTKR motif in the N-terminal receptor-binding domain of the SARS-CoV-2 spike protein. Virus Res 286:198058. (PMID: 3253123510.1016/j.virusres.2020.198058)
      Sigamani A, Mayo KH, Miller MC, Chen-Walden H, Reddy S, Platt D (2023) An oral galectin inhibitor in COVID-19-a phase II randomized controlled trial. Vaccines 11:731. (PMID: 371126431014088810.3390/vaccines11040731)
      Pedicillo MC, De Stefano IS, Zamparese R, Barile R, Meccariello M, Agostinone A et al (2023) The role of toll-like receptor-4 in macrophage imbalance in lethal COVID-19 lung disease, and its correlation with galectin-3. Int J Mol Sci 24:13259. (PMID: 376860691048750110.3390/ijms241713259)
      Portacci A, Amendolara M, Quaranta VN, Iorillo I, Buonamico E, Diaferia F et al (2024) Can Galectin-3 be a reliable predictive biomarker for post-COVID syndrome development? Respir Med 226:107628. (PMID: 3861571510.1016/j.rmed.2024.107628)
      Nita-Lazar M, Banerjee A, Feng C, Amin MN, Frieman MB, Chen WH, Cross AS, Wang LX, Vasta GR (2015) Desialylation of airway epithelial cells during influenza virus infection enhances pneumococcal adhesion via galectin binding. Mol Immunol 65:1–16. (PMID: 25597246434493910.1016/j.molimm.2014.12.010)
      Yang ML, Chen YC, Wang CT, Chong HE, Chung NH, Leu CH et al (2023) Upregulation of galectin-3 in influenza A virus infection promotes viral RNA synthesis through its association with viral PA protein. J Biomed Sci 30:14. (PMID: 36823664994842810.1186/s12929-023-00901-x)
      Snarr BD, St-Pierre G, Ralph B, Lehoux M, Sato Y, Rancourt A et al (2020) Galectin-3 enhances neutrophil motility and extravasation into the airways during Aspergillus fumigatus infection. PLoS Pathog 16:e1008741. (PMID: 32750085742828910.1371/journal.ppat.1008741)
      Rezende CP, Brito P, Da Silva TA, Pessoni AM, Ramalho LNZ, Almeida F (2021) Influence of galectin-3 on the innate immune response during experimental cryptococcosis. J Fungi (Basel) 7:492. (PMID: 34203011823415810.3390/jof7060492)
      Fermin Lee A, Chen HY, Wan L, Wu SY, Yu JS, Huang AC et al (2013) Galectin-3 modulates Th17 responses by regulating dendritic cell cytokines. Am J Pathol 183:1209–1222. (PMID: 23916470379168710.1016/j.ajpath.2013.06.017)
      Matthay MA, Ware LB, Zimmerman GA (2012) The acute respiratory distress syndrome. J Clin Invest 122:2731–2740. (PMID: 22850883340873510.1172/JCI60331)
      Fernandes Bertocchi AP, Campanhole G, Wang PH, Gonçalves GM, Damião MJ, Cenedeze MA et al (2008) A role for galectin-3 in renal tissue damage triggered by ischemia and reperfusion injury. Transpl Int 21:999–1007. (PMID: 1865709110.1111/j.1432-2277.2008.00705.x)
      Simovic Markovic B, Nikolic A, Gazdic M, Bojic S, Vucicevic L, Kosic M et al (2016) Galectin-3 plays an important pro-inflammatory role in the induction phase of acute colitis by promoting activation of NLRP3 inflammasome and production of IL-1β in macrophages. J Crohns Colitis 10:593–606. (PMID: 26786981495745810.1093/ecco-jcc/jjw013)
      Ferreira RG, Rodrigues LC, Nascimento DC, Kanashiro A, Melo PH, Borges VF et al (2018) Galectin-3 aggravates experimental polymicrobial sepsis by impairing neutrophil recruitment to the infectious focus. J Infect 77:391–397. (PMID: 3022619110.1016/j.jinf.2018.06.010)
      Portacci A, Diaferia F, Santomasi C, Dragonieri S, Boniello E, Di Serio F, Carpagnano GE (2021) Galectin-3 as prognostic biomarker in patients with COVID-19 acute respiratory failure. Respir Med 187:106556. (PMID: 34375925833274510.1016/j.rmed.2021.106556)
      Humphries DC, Mills R, Boz C, McHugh BJ, Hirani N, Rossi AG et al (2022) Galectin-3 inhibitor GB0139 protects against acute lung injury by inhibiting neutrophil recruitment and activation. Front Pharmacol 13:949264. (PMID: 36003515939321610.3389/fphar.2022.949264)
      Humphries DC, Mills R, Dobie R, Henderson NC, Sethi T, Mackinnon AC (2021) Selective myeloid depletion of galectin-3 offers protection against acute and chronic lung injury. Front Pharmacol 12:715986. (PMID: 34526900843580010.3389/fphar.2021.715986)
      Liu H, Zhang L, Liu Z, Lin J, He X, Wu S et al (2023) Galectin-3 as TREM2 upstream factor contributes to lung ischemia-reperfusion injury by regulating macrophage polarization. iScience 26:107496. (PMID: 376360611044807710.1016/j.isci.2023.107496)
      Sunil VR, Francis M, Vayas KN, Cervelli JA, Choi H, Laskin JD, Laskin DL (2015) Regulation of ozone-induced lung inflammation and injury by the β-galactoside-binding lectin galectin-3. Toxicol Appl Pharmacol 284:236–245. (PMID: 25724551440823710.1016/j.taap.2015.02.002)
      Lee JK, Lee JY, Kim DK, Yoon HI, Jeong I, Heo EY et al (2019) Substitution of ethambutol with linezolid during the intensive phase of treatment of pulmonary tuberculosis: a prospective, multicentre, randomised, open-label, phase 2 trial. Lancet Infect Dis 19:46–55. (PMID: 3047796110.1016/S1473-3099(18)30480-8)
      Beatty WL, Rhoades ER, Hsu DK, Liu FT, Russell DG (2002) Association of a macrophage galactoside-binding protein with Mycobacterium-containing phagosomes. Cell Microbiol 4:167–176. (PMID: 1190645310.1046/j.1462-5822.2002.00183.x)
      de Melo MGM, Mesquita EDD, Oliveira MM, da Silva-Monteiro C, Silveira AKA, Malaquias TS et al (2018) Imbalance of NET and alpha-1-antitrypsin in tuberculosis patients is related with hyper inflammation and severe lung tissue damage. Front Immunol 9:3147. (PMID: 3068733610.3389/fimmu.2018.03147)
      Barboni E, Coade S, Fiori A (2005) The binding of mycolic acids to galectin-3: a novel interaction between a host soluble lectin and trafficking mycobacterial lipids? FEBS Lett 579:6749–6755. (PMID: 1631077710.1016/j.febslet.2005.11.005)
      Chauhan S, Kumar S, Jain A, Ponpuak M, Mudd MH, Kimura T et al (2016) TRIMs and galectins globally cooperate and TRIM16 and galectin-3 co-direct autophagy in endomembrane damage homeostasis. Dev Cell 39:13–27. (PMID: 27693506510420110.1016/j.devcel.2016.08.003)
      Kumar S, Chauhan S, Jain A, Ponpuak M, Choi SW, Mudd M et al (2017) Galectins and TRIMs directly interact and orchestrate autophagic response to endomembrane damage. Autophagy 13:1086–1087. (PMID: 28368693548636710.1080/15548627.2017.1307487)
      Higham A, Quinn AM, Cançado JED, Singh D (2019) The pathology of small airways disease in COPD: historical aspects and future directions. Respir Res 20:49. (PMID: 30832670639990410.1186/s12931-019-1017-y)
      Pilette C, Colinet B, Kiss R, André S, Kaltner H, Gabius HJ et al (2007) Increased galectin-3 expression and intra-epithelial neutrophils in small airways in severe COPD. Eur Respir J 29:914–922. (PMID: 1725123310.1183/09031936.00073005)
      Araya J, Saito N, Hosaka Y, Ichikawa A, Kadota T, Fujita Y et al (2021) Impaired TRIM16-mediated lysophagy in chronic obstructive pulmonary disease pathogenesis. J Immunol 207:65–76. (PMID: 3413505710.4049/jimmunol.2001364)
      Sundqvist M, Andelid K, Ekberg-Jansson A, Bylund J, Karlsson-Bengtsson A, Lindén A (2021) Systemic galectin-3 in smokers with chronic obstructive pulmonary disease and chronic bronchitis: the impact of exacerbations. Int J Chron Obstruct Pulmon Dis 16:367–377. (PMID: 33642857790396510.2147/COPD.S283372)
      Pouwels SD, Hesse L, Faiz A, Lubbers J, Bodha PK, Ten Hacken NH, van Oosterhout AJ, Nawijn MC, Heijink IH (2016) Susceptibility for cigarette smoke-induced DAMP release and DAMP-induced inflammation in COPD. Am J Physiol Lung Cell Mol Physiol 311:L881-l892. (PMID: 2761296410.1152/ajplung.00135.2016)
      Kuruvilla ME, Lee FE, Lee GB (2019) Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol 56:219–233. (PMID: 30206782641145910.1007/s12016-018-8712-1)
      Fahy JV (2015) Type 2 inflammation in asthma–present in most, absent in many. Nat Rev Immunol 15:57–65. (PMID: 25534623439006310.1038/nri3786)
      Gao P, Gibson PG, Baines KJ, Yang IA, Upham JW, Reynolds PN et al (2015) Anti-inflammatory deficiencies in neutrophilic asthma: reduced galectin-3 and IL-1RA/IL-1β. Respir Res 16:5. (PMID: 25616863431474510.1186/s12931-014-0163-5)
      Gülen T, Teufelberger A, Ekoff M, Westerberg CM, Lyberg K, Dahlén SE, Dahlén B, Nilsson G (2021) Distinct plasma biomarkers confirm the diagnosis of mastocytosis and identify increased risk of anaphylaxis. J Allergy Clin Immunol 148:889–894. (PMID: 3366747510.1016/j.jaci.2021.02.023)
      Huang X, Tan X, Liang Y, Hou C, Qu D, Li M, Huang Q (2019) Differential DAMP release was observed in the sputum of COPD, asthma and asthma-COPD overlap (ACO) patients. Sci Rep 9:19241. (PMID: 31848359691778510.1038/s41598-019-55502-2)
      Sanchez-Cuellar S, de la Fuente H, Cruz-Adalia A, Lamana A, Cibrian D, Giron RM, Vara A, Sanchez-Madrid F, Ancochea J (2012) Reduced expression of galectin-1 and galectin-9 by leucocytes in asthma patients. Clin Exp Immunol 170:365–374. (PMID: 23121677351889610.1111/j.1365-2249.2012.04665.x)
      Riccio AM, Mauri P, De Ferrari L, Rossi R, Di Silvestre D, Bartezaghi M, Saccheri F, Canonica GW (2020) Plasma Galectin-3 and urine proteomics predict FEV(1) improvement in omalizumab-treated patients with severe allergic asthma: Results from the PROXIMA sub-study. World Allergy Organ J 13:100095. (PMID: 32015785699284510.1016/j.waojou.2019.100095)
      Riccio AM, Mauri P, De Ferrari L, Rossi R, Di Silvestre D, Benazzi L et al (2017) Galectin-3: an early predictive biomarker of modulation of airway remodeling in patients with severe asthma treated with omalizumab for 36 months. Clin Transl Allergy 7:6. (PMID: 28293414534527210.1186/s13601-017-0143-1)
      Mauri P, Riccio AM, Rossi R, Di Silvestre D, Benazzi L, De Ferrari L, Dal Negro RW, Holgate ST, Canonica GW (2014) Proteomics of bronchial biopsies: galectin-3 as a predictive biomarker of airway remodelling modulation in omalizumab-treated severe asthma patients. Immunol Lett 162:2–10. (PMID: 2519475510.1016/j.imlet.2014.08.010)
      Sano H, Hsu DK, Apgar JR, Yu L, Sharma BB, Kuwabara I, Izui S, Liu FT (2003) Critical role of galectin-3 in phagocytosis by macrophages. J Clin Invest 112:389–397. (PMID: 1289720616629110.1172/JCI200317592)
      Karlsson A, Christenson K, Matlak M, Björstad A, Brown KL, Telemo E, Salomonsson E, Leffler H, Bylund J (2009) Galectin-3 functions as an opsonin and enhances the macrophage clearance of apoptotic neutrophils. Glycobiology 19:16–20. (PMID: 1884932510.1093/glycob/cwn104)
      del Pozo V, Rojo M, Rubio ML, Cortegano I, Cárdaba B, Gallardo S et al (2002) Gene therapy with galectin-3 inhibits bronchial obstruction and inflammation in antigen-challenged rats through interleukin-5 gene downregulation. Am J Respir Crit Care Med 166:732–737. (PMID: 1220487310.1164/rccm.2111031)
      López E, del Pozo V, Miguel T, Sastre B, Seoane C, Civantos E et al (2006) Inhibition of chronic airway inflammation and remodeling by galectin-3 gene therapy in a murine model. J Immunol 176:1943–1950. (PMID: 1642422610.4049/jimmunol.176.3.1943)
      Zuberi RI, Hsu DK, Kalayci O, Chen HY, Sheldon HK, Yu L et al (2004) Critical role for galectin-3 in airway inflammation and bronchial hyperresponsiveness in a murine model of asthma. Am J Pathol 165:2045–2053. (PMID: 15579447161871810.1016/S0002-9440(10)63255-5)
      Ge XN, Bahaie NS, Kang BN, Hosseinkhani MR, Ha SG, Frenzel EM, Liu FT, Rao SP, Sriramarao P (2010) Allergen-induced airway remodeling is impaired in galectin-3-deficient mice. J Immunol 185:1205–1214. (PMID: 2054310010.4049/jimmunol.1000039)
      Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL, Paz-Ares L (2017) Lung cancer: current therapies and new targeted treatments. Lancet 389:299–311. (PMID: 2757474110.1016/S0140-6736(16)30958-8)
      Kim SJ, Choi IJ, Cheong TC, Lee SJ, Lotan R, Park SH, Chun KH (2010) Galectin-3 increases gastric cancer cell motility by up-regulating fascin-1 expression. Gastroenterology 138:1035–1045. (PMID: 1981878210.1053/j.gastro.2009.09.061)
      Prieto VG, Mourad-Zeidan AA, Melnikova V, Johnson MM, Lopez A, Diwan AH et al (2006) Galectin-3 expression is associated with tumor progression and pattern of sun exposure in melanoma. Clin Cancer Res 12:6709–6715. (PMID: 1712189010.1158/1078-0432.CCR-06-0758)
      Khaldoyanidi SK, Glinsky VV, Sikora L, Glinskii AB, Mossine VV, Quinn TP, Glinsky GV, Sriramarao P (2003) MDA-MB-435 human breast carcinoma cell homo- and heterotypic adhesion under flow conditions is mediated in part by Thomsen-Friedenreich antigen-galectin-3 interactions. J Biol Chem 278:4127–4134. (PMID: 1243831110.1074/jbc.M209590200)
      Song M, Pan Q, Yang J, He J, Zeng J, Cheng S et al (2020) Galectin-3 favours tumour metastasis via the activation of β-catenin signalling in hepatocellular carcinoma. Br J Cancer 123:1521–1534. (PMID: 32801345765393610.1038/s41416-020-1022-4)
      Pacis RA, Pilat MJ, Pienta KJ, Wojno K, Raz A, Hogan V, Cooper CR (2000) Decreased galectin-3 expression in prostate cancer. Prostate 44:118–123. (PMID: 1088102110.1002/1097-0045(20000701)44:2<118::AID-PROS4>3.0.CO;2-U)
      Chen X, Yu C, Liu X, Liu B, Wu X, Wu J et al (2022) Intracellular galectin-3 is a lipopolysaccharide sensor that promotes glycolysis through mTORC1 activation. Nat Commun 13:7578. (PMID: 36481721973231010.1038/s41467-022-35334-x)
      Yoshimura A, Gemma A, Hosoya Y, Komaki E, Hosomi Y, Okano T et al (2003) Increased expression of the LGALS3 (galectin 3) gene in human non-small-cell lung cancer. Genes Chromosomes Cancer 37:159–164. (PMID: 1269606410.1002/gcc.10205)
      Buttery R, Monaghan H, Salter DM, Sethi T (2004) Galectin-3: differential expression between small-cell and non-small-cell lung cancer. Histopathology 44:339–344. (PMID: 1504989910.1111/j.1365-2559.2004.01815.x)
      Puglisi F, Minisini AM, Barbone F, Intersimone D, Aprile G, Puppin C et al (2004) Galectin-3 expression in non-small cell lung carcinoma. Cancer Lett 212:233–239. (PMID: 1527990310.1016/j.canlet.2004.03.006)
      Sharma JR, Agraval H, Yadav UCS (2023) Cigarette smoke induces epithelial-to-mesenchymal transition, stemness, and metastasis in lung adenocarcinoma cells via upregulated RUNX-2/galectin-3 pathway. Life Sci 318:121480. (PMID: 3677511610.1016/j.lfs.2023.121480)
      Reticker-Flynn NE, Malta DF, Winslow MM, Lamar JM, Xu MJ, Underhill GH, Hynes RO, Jacks TE, Bhatia SN (2012) A combinatorial extracellular matrix platform identifies cell-extracellular matrix interactions that correlate with metastasis. Nat Commun 3:1122. (PMID: 2304768010.1038/ncomms2128)
      Pokhare S, Sharma UC, Attwood K, Mansoor S (2022) Clinical significance of galectin-3 expression in squamous cell carcinoma of lung. J Cancer Sci Clin Ther 6:322–327. (PMID: 360814479451108)
      Capalbo C, Scafetta G, Filetti M, Marchetti P, Bartolazzi A (2019) Predictive biomarkers for checkpoint inhibitor-based immunotherapy: the galectin-3 signature in NSCLCs. Int J Mol Sci 20:1607. (PMID: 30935099647940410.3390/ijms20071607)
      Kusuhara S, Igawa S, Ichinoe M, Nagashio R, Kuchitsu Y, Hiyoshi Y et al (2021) Prognostic significance of galectin-3 expression in patients with resected NSCLC treated with platinum-based adjuvant chemotherapy. Thorac Cancer 12:1570–1578. (PMID: 33793071810702410.1111/1759-7714.13945)
      Abdel-Aziz HO, Murai Y, Takasaki I, Tabuchi Y, Zheng HC, Nomoto K et al (2008) Targeted disruption of the galectin-3 gene results in decreased susceptibility to NNK-induced lung tumorigenesis: an oligonucleotide microarray study. J Cancer Res Clin Oncol 134:777–788. (PMID: 1820486310.1007/s00432-007-0345-3)
      Vuong L, Kouverianou E, Rooney CM, McHugh BJ, Howie SEM, Gregory CD et al (2019) An orally active galectin-3 antagonist inhibits lung adenocarcinoma growth and augments response to PD-L1 blockade. Cancer Res 79:1480–1492. (PMID: 3067453110.1158/0008-5472.CAN-18-2244)
      Zhou W, Chen X, Hu Q, Chen X, Chen Y, Huang L (2018) Galectin-3 activates TLR4/NF-κB signaling to promote lung adenocarcinoma cell proliferation through activating lncRNA-NEAT1 expression. BMC Cancer 18:580. (PMID: 29788922596491010.1186/s12885-018-4461-z)
      Cao Z, Hao Z, Xin M, Yu L, Wang L, Zhang Y, Zhang X, Guo X (2018) Endogenous and exogenous galectin-3 promote the adhesion of tumor cells with low expression of MUC1 to HUVECs through upregulation of N-cadherin and CD44. Lab Invest 98:1642–1656. (PMID: 3017120410.1038/s41374-018-0119-3)
      Kataoka Y, Ohshio Y, Teramoto K, Igarashi T, Asai T, Hanaoka J (2019) Hypoxia-induced galectin-3 enhances RhoA function to activate the motility of tumor cells in non-small cell lung cancer. Oncol Rep 41:853–862. (PMID: 30535445)
      Reck M, Carbone DP, Garassino M, Barlesi F (2021) Targeting KRAS in non-small-cell lung cancer: recent progress and new approaches. Ann Oncol 32:1101–1110. (PMID: 3408983610.1016/j.annonc.2021.06.001)
      Zhang H, Liu P, Zhang Y, Han L, Hu Z, Cai Z, Cai J (2021) Inhibition of galectin-3 augments the antitumor efficacy of PD-L1 blockade in non-small-cell lung cancer. FEBS Open Bio 11:911–920. (PMID: 33455075793122910.1002/2211-5463.13088)
      Markowska AI, Liu FT, Panjwani N (2010) Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response. J Exp Med 207:1981–1993. (PMID: 20713592293117210.1084/jem.20090121)
      Kuo HY, Hsu HT, Chen YC, Chang YW, Liu FT, Wu CW (2016) Galectin-3 modulates the EGFR signalling-mediated regulation of Sox2 expression via c-Myc in lung cancer. Glycobiology 26:155–165. (PMID: 2644718610.1093/glycob/cwv088)
      Chung LY, Tang SJ, Wu YC, Sun GH, Liu HY, Sun KH (2015) Galectin-3 augments tumor initiating property and tumorigenicity of lung cancer through interaction with β-catenin. Oncotarget 6:4936–4952. (PMID: 2566997310.18632/oncotarget.3210)
      Seguin L, Kato S, Franovic A, Camargo MF, Lesperance J, Elliott KC et al (2014) An integrin β 3 -KRAS-RalB complex drives tumour stemness and resistance to EGFR inhibition. Nat Cell Biol 16:457–468. (PMID: 24747441410519810.1038/ncb2953)
      Fukumori T, Takenaka Y, Yoshii T, Kim HR, Hogan V, Inohara H, Kagawa S, Raz A (2003) CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res 63:8302–8311. (PMID: 14678989)
      Wang W, Guo H, Geng J, Zheng X, Wei H, Sun R, Tian Z (2014) Tumor-released Galectin-3, a soluble inhibitory ligand of human NKp30, plays an important role in tumor escape from NK cell attack. J Biol Chem 289:33311–33319. (PMID: 25315772424608810.1074/jbc.M114.603464)
      Jia W, Kidoya H, Yamakawa D, Naito H, Takakura N (2013) Galectin-3 accelerates M2 macrophage infiltration and angiogenesis in tumors. Am J Pathol 182:1821–1831. (PMID: 2349946510.1016/j.ajpath.2013.01.017)
      Wang T, Chu Z, Lin H, Jiang J, Zhou X, Liang X (2014) Galectin-3 contributes to cisplatin-induced myeloid derived suppressor cells (MDSCs) recruitment in Lewis lung cancer-bearing mice. Mol Biol Rep 41:4069–4076. (PMID: 2461550310.1007/s11033-014-3276-5)
      Demotte N, Stroobant V, Courtoy PJ, Van Der Smissen P, Colau D, Luescher IF et al (2008) Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes. Immunity 28:414–424. (PMID: 1834201010.1016/j.immuni.2008.01.011)
      Demotte N, Wieërs G, Van Der Smissen P, Moser M, Schmidt C, Thielemans K et al (2010) A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumor-infiltrating lymphocytes and favors tumor rejection in mice. Cancer Res 70:7476–7488. (PMID: 2071988510.1158/0008-5472.CAN-10-0761)
      Reticker-Flynn NE, Bhatia SN (2015) Aberrant glycosylation promotes lung cancer metastasis through adhesion to galectins in the metastatic niche. Cancer Discov 5:168–181. (PMID: 2542143910.1158/2159-8290.CD-13-0760)
      Mabbitt J, Holyer ID, Roper JA, Nilsson UJ, Zetterberg FR, Vuong L, Mackinnon AC, Pedersen A, Slack RJ (2023) Resistance to anti-PD-1/anti-PD-L1: galectin-3 inhibition with GB1211 reverses galectin-3-induced blockade of pembrolizumab and atezolizumab binding to PD-1/PD-L1. Front Immunol 14:1250559. (PMID: 377014411049360910.3389/fimmu.2023.1250559)
      Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, Krowka M, Williams PG, Souza R (2019) Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J. https://doi.org/10.1183/13993003.01913-2018. (PMID: 10.1183/13993003.01913-2018316491456853610)
      Calvier L, Legchenko E, Grimm L, Sallmon H, Hatch A, Plouffe BD et al (2016) Galectin-3 and aldosterone as potential tandem biomarkers in pulmonary arterial hypertension. Heart 102:390–396. (PMID: 2686963510.1136/heartjnl-2015-308365)
      Luo H, Liu B, Zhao L, He J, Li T, Zha L et al (2017) Galectin-3 mediates pulmonary vascular remodeling in hypoxia-induced pulmonary arterial hypertension. J Am Soc Hypertens 11:673-683.e673. (PMID: 2882689010.1016/j.jash.2017.07.009)
      Scelsi L, Ghio S, Matrone B, Mannucci L, Klersy C, Valaperta S et al (2020) Galectin-3 plasma levels are associated with risk profiles in pulmonary arterial hypertension. Diagnostics 10:19. (PMID: 10.3390/diagnostics10110857)
      He J, Li X, Luo H, Li T, Zhao L, Qi Q, Liu Y, Yu Z (2017) Galectin-3 mediates the pulmonary arterial hypertension-induced right ventricular remodeling through interacting with NADPH oxidase 4. J Am Soc Hypertens 11:275-289.e272. (PMID: 2843193610.1016/j.jash.2017.03.008)
      Li T, Zha L, Luo H, Li S, Zhao L, He J et al (2019) Galectin-3 mediates endothelial-to-mesenchymal transition in pulmonary arterial hypertension. Aging Dis 10:731–745. (PMID: 31440380667552510.14336/AD.2018.1001)
      Barman SA, Li X, Haigh S, Kondrikov D, Mahboubi K, Bordan Z et al (2019) Galectin-3 is expressed in vascular smooth muscle cells and promotes pulmonary hypertension through changes in proliferation, apoptosis, and fibrosis. Am J Physiol Lung Cell Mol Physiol 316:L784-l797. (PMID: 30724100658958510.1152/ajplung.00186.2018)
      Cao N, Tang X, Gao R, Kong L, Zhang J, Qin W et al (2021) Galectin-3 participates in PASMC migration and proliferation by interacting with TGF-β1. Life Sci 274:119347. (PMID: 3371606510.1016/j.lfs.2021.119347)
      Zhang Q, Li W, Zhu Y, Wang Q, Zhai C, Shi W et al (2021) Activation of AMPK inhibits galectin-3-induced pulmonary artery smooth muscle cells proliferation by upregulating hippo signaling effector YAP. Mol Cell Biochem 476:3037–3049. (PMID: 3379770110.1007/s11010-021-04131-3)
      Tang H, Babicheva A, McDermott KM, Gu Y, Ayon RJ, Song S et al (2018) Endothelial HIF-2α contributes to severe pulmonary hypertension due to endothelial-to-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol 314:L256-l275. (PMID: 29074488)
      Luo H, Zhao L, Ou Z, Li T, Liu Y, Yu Z (2023) Novel lncRNA LNC_000113 drives the activation of pulmonary adventitial fibroblasts through modulating PTEN/Akt/FoxO1 pathway. J Cardiovasc Dev Dis 10:1.
      Barman SA, Bordan Z, Batori R, Haigh S, Fulton DJR (2021) Galectin-3 promotes ROS, inflammation, and vascular fibrosis in pulmonary arterial hypertension. Adv Exp Med Biol 1303:13–32. (PMID: 3378818510.1007/978-3-030-63046-1_2)
      Geng Y, Li L, Yan J, Liu K, Yang A, Zhang L et al (2022) PEAR1 regulates expansion of activated fibroblasts and deposition of extracellular matrix in pulmonary fibrosis. Nat Commun 13:7114. (PMID: 36402779967573610.1038/s41467-022-34870-w)
      Ho JE, Liu C, Lyass A, Courchesne P, Pencina MJ, Vasan RS, Larson MG, Levy D (2012) Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol 60:1249–1256. (PMID: 22939561351209510.1016/j.jacc.2012.04.053)
      Jiang JX, Chen X, Hsu DK, Baghy K, Serizawa N, Scott F et al (2012) Galectin-3 modulates phagocytosis-induced stellate cell activation and liver fibrosis in vivo. Am J Physiol Gastrointest Liver Physiol 302:G439-446. (PMID: 2215928110.1152/ajpgi.00257.2011)
      Okamura DM, Pasichnyk K, Lopez-Guisa JM, Collins S, Hsu DK, Liu FT, Eddy AA (2011) Galectin-3 preserves renal tubules and modulates extracellular matrix remodeling in progressive fibrosis. Am J Physiol Renal Physiol 300:F245-253. (PMID: 2096211110.1152/ajprenal.00326.2010)
      Cullinane AR, Yeager C, Dorward H, Carmona-Rivera C, Wu HP, Moss J et al (2014) Dysregulation of galectin-3: implications for Hermansky-Pudlak syndrome pulmonary fibrosis. Am J Respir Cell Mol Biol 50:605–613. (PMID: 24134621406892910.1165/rcmb.2013-0025OC)
      Wang T, Ou L, Li X, Zhang P, Miao Q, Niu R, Chen Y (2022) Inhibition of galectin-3 attenuates silica particles-induced silicosis via regulating the GSK-3β/β-catenin signal pathway-mediated epithelial-mesenchymal transition. Chem Biol Interact 368:110218. (PMID: 3622383110.1016/j.cbi.2022.110218)
      Garcia-Revilla J, Deierborg T, Venero JL, Boza-Serrano A (2020) Hyperinflammation and fibrosis in severe COVID-19 patients: galectin-3, a target molecule to consider. Front Immunol 11:2069. (PMID: 32973815746180610.3389/fimmu.2020.02069)
      Sgalla G, Iovene B, Calvello M, Ori M, Varone F, Richeldi L (2018) Idiopathic pulmonary fibrosis: pathogenesis and management. Respir Res 19:32. (PMID: 29471816582445610.1186/s12931-018-0730-2)
      Nishi Y, Sano H, Kawashima T, Okada T, Kuroda T, Kikkawa K et al (2007) Role of galectin-3 in human pulmonary fibrosis. Allergol Int 56:57–65. (PMID: 1725981110.2332/allergolint.O-06-449)
      Mackinnon AC, Gibbons MA, Farnworth SL, Leffler H, Nilsson UJ, Delaine T et al (2012) Regulation of transforming growth factor-β1-driven lung fibrosis by galectin-3. Am J Respir Crit Care Med 185:537–546. (PMID: 22095546341072810.1164/rccm.201106-0965OC)
      Ho JE, Gao W, Levy D, Santhanakrishnan R, Araki T, Rosas IO et al (2016) Galectin-3 is associated with restrictive lung disease and interstitial lung abnormalities. Am J Respir Crit Care Med 194:77–83. (PMID: 26771117496062810.1164/rccm.201509-1753OC)
      Jia W, Wang Z, Gao C, Wu J, Wu Q (2021) Trajectory modeling of endothelial-to-mesenchymal transition reveals galectin-3 as a mediator in pulmonary fibrosis. Cell Death Dis 12:327. (PMID: 33771973799801510.1038/s41419-021-03603-0)
      Shochet GE, Pomerantz A, Shitrit D, Bardenstein-Wald B, Ask K, Surber M et al (2020) Galectin-3 levels are elevated following nintedanib treatment. Ther Adv Chronic Dis 11:2040622320968412. (PMID: 33708368790771210.1177/2040622320968412)
      Rajput VK, MacKinnon A, Mandal S, Collins P, Blanchard H, Leffler H et al (2016) A selective galactose-coumarin-derived galectin-3 inhibitor demonstrates involvement of galectin-3-glycan interactions in a pulmonary fibrosis model. J Med Chem 59:8141–8147. (PMID: 2750031110.1021/acs.jmedchem.6b00957)
      Zhou Y, He CH, Yang DS, Nguyen T, Cao Y, Kamle S et al (2018) Galectin-3 interacts with the CHI3L1 axis and contributes to Hermansky-Pudlak syndrome lung disease. J Immunol 200:2140–2153. (PMID: 2942741210.4049/jimmunol.1701442)
      Pang Y, Maxwell E, Sindrewicz-Goral P, Shapanis A, Li S, Morgan M, Yu LG (2022) Galectin-3 is a natural binding ligand of MCAM (CD146, MUC18) in melanoma cells and their interaction promotes melanoma progression. Biomolecules 12:1451. (PMID: 36291660959906310.3390/biom12101451)
      Yehya N, Fazelinia H, Taylor DM, Lawrence GG, Spruce LA, Thompson JM, Margulies SS, Seeholzer SH, Worthen GS (2022) Differentiating children with sepsis with and without acute respiratory distress syndrome using proteomics. Am J Physiol Lung Cell Mol Physiol 322:L365-l372. (PMID: 34984927887303210.1152/ajplung.00164.2021)
      Sun Z, Ji N, Ma Q, Zhu R, Chen Z, Wang Z et al (2020) Epithelial-mesenchymal transition in asthma airway remodeling is regulated by the IL-33/CD146 axis. Front Immunol 11:1598. (PMID: 32793232738770510.3389/fimmu.2020.01598)
      Ilie M, Long E, Hofman V, Selva E, Bonnetaud C, Boyer J et al (2014) Clinical value of circulating endothelial cells and of soluble CD146 levels in patients undergoing surgery for non-small cell lung cancer. Br J Cancer 110:1236–1243. (PMID: 24473396395086310.1038/bjc.2014.11)
      Kathiriya JJ, Nakra N, Nixon J, Patel PS, Vaghasiya V, Alhassani A, Tian Z, Allen-Gipson D, Davé V (2017) Galectin-1 inhibition attenuates profibrotic signaling in hypoxia-induced pulmonary fibrosis. Cell Death Discov 3:17010. (PMID: 28417017538541310.1038/cddiscovery.2017.10)
      Kuo PL, Huang MS, Cheng DE, Hung JY, Yang CJ, Chou SH (2012) Lung cancer-derived galectin-1 enhances tumorigenic potentiation of tumor-associated dendritic cells by expressing heparin-binding EGF-like growth factor. J Biol Chem 287:9753–9764. (PMID: 22291012332296910.1074/jbc.M111.321190)
      Hsieh TJ, Lin HY, Tu Z, Lin TC, Wu SC, Tseng YY, Liu FT, Hsu ST, Lin CH (2016) Dual thio-digalactoside-binding modes of human galectins as the structural basis for the design of potent and selective inhibitors. Sci Rep 6:29457. (PMID: 27416897494586310.1038/srep29457)
      Wang L, Li YS, Yu LG, Zhang XK, Zhao L, Gong FL, Yang XX, Guo XL (2020) Galectin-3 expression and secretion by tumor-associated macrophages in hypoxia promotes breast cancer progression. Biochem Pharmacol 178:114113. (PMID: 3257995610.1016/j.bcp.2020.114113)
      Çakır Y, Kelten Talu C, Mermut Ö, Can Trabulus D, Arslan E (2021) The expression of galectin-3 in tumor and cancer-associated fibroblasts in invasive micropapillary breast carcinomas: relationship with clinicopathologic parameters. Eur J Breast Health 17:341–351. (PMID: 34651113849611310.4274/ejbh.galenos.2021.2021-2-8)
    • Grant Information:
      82002100 National Natural Science Foundation of China
    • Contributed Indexing:
      Keywords: Fibrosis; Galectin-3; Immune cell activation; Inflammatory response; Pulmonary diseases; Tumorigenesis
    • Accession Number:
      0 (Galectin 3)
      0 (LGALS3 protein, human)
      0 (Blood Proteins)
      0 (Galectins)
    • Publication Date:
      Date Created: 20240608 Date Completed: 20240725 Latest Revision: 20240830
    • Publication Date:
      20240830
    • Accession Number:
      10.1007/s00408-024-00709-y
    • Accession Number:
      38850292