Menu
×
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Simulation of plaque formation in a realistic geometry of a human aorta: effects of endothelial layer properties, heart rate, and hypertension.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Benvidi A;Benvidi A; Firoozabadi B; Firoozabadi B
- Source:
Biomechanics and modeling in mechanobiology [Biomech Model Mechanobiol] 2024 Oct; Vol. 23 (5), pp. 1723-1740. Date of Electronic Publication: 2024 Jun 07.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Springer Country of Publication: Germany NLM ID: 101135325 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1617-7940 (Electronic) Linking ISSN: 16177940 NLM ISO Abbreviation: Biomech Model Mechanobiol Subsets: MEDLINE
- Publication Information: Original Publication: Berlin ; New York : Springer, c2002-
- Subject Terms: Hypertension*/physiopathology ; Hypertension*/pathology ; Heart Rate* ; Computer Simulation* ; Aorta*/pathology ; Aorta*/physiopathology; Humans ; Plaque, Atherosclerotic/pathology ; Plaque, Atherosclerotic/physiopathology ; Models, Cardiovascular ; Stress, Mechanical ; Endothelium, Vascular/pathology ; Endothelium, Vascular/physiopathology ; Endothelial Cells/pathology
- Abstract: Nowadays, cardiovascular diseases are the most common cause of death worldwide. Besides, atherosclerosis is a cardiovascular disease that occurs with persistent narrowing of arteries, especially medium and large-sized arteries. Atherosclerosis begins with a local elevation in the permeability of the arterial wall as a result of endothelial inflammation. Subsequently, excess LDL permeates into the arterial wall. Then, through several chemical responses and reactions, foam cells are produced. These foam cells serve as a crucial indicator for assessing the development of atherosclerosis within the arteries. In this study, the effect of endothelial layer modeling, heart rate (HR) and hypertension on the foam cell accumulation is numerically investigated in a patient-specific geometry of the human thoracic aorta. Navier-Stokes, Darcy, and mass transfer equations are used to obtain the velocity and concentration field within the domain. Regarding the dependence of endothelial cell properties on time-averaged wall shear stress, it is observed that foam cells are mainly concentrated in the outer curvature of the aortic arch, downstream of the left subclavian artery. However, considering oscillatory-shear-rate as the determinant of endothelial cell properties leads to the accumulation of foam cells in the inner curvature of the descending aorta. Regarding the HR, with the increase of HR, the volume average concentration of the foam cell decreases. However, there is no substantial difference between the cases of different HRs. Moreover, foam cell concentration significantly increases in the hypertension case. This result implies that a slight increase in the blood pressure may induce irreparable problems in the circulatory system.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.) - References: Ai L, Vafai K (2006) A coupling model for macromolecule transport in a stenosed arterial wall. Int J Heat Mass Transf 49(9–10):1568–1591. https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.041. (PMID: 10.1016/j.ijheatmasstransfer.2005.10.041)
Alimohammadi M, Agu O, Balabani S, Díaz-Zuccarini V (2014) Development of a patient-specific simulation tool to analyse aortic dissections: assessment of mixed patient-specific flow and pressure boundary conditions. Med Eng Phys 36(3):275–284. https://doi.org/10.1016/j.medengphy.2013.11.003. (PMID: 10.1016/j.medengphy.2013.11.003)
Alimohammadi M, Pichardo-Almarza C, Agu O, Díaz-Zuccarini V (2017) A multiscale modelling approach to understand atherosclerosis formation: a patient-specific case study in the aortic bifurcation. Proc Inst Mech Eng H 231(5):378–390. https://doi.org/10.1177/0954411917697356. (PMID: 10.1177/0954411917697356)
Budu-Grajdeanu P, Schugart RC, Friedman A, Valentine C, Agarwal AK, Rovin BH (2008) A mathematical model of venous neointimal hyperplasia formation. Theor Biol Med Model 5(1):2. https://doi.org/10.1186/1742-4682-5-2. (PMID: 10.1186/1742-4682-5-2)
Bulelzai MAK, Dubbeldam JLA (2012) Long time evolution of atherosclerotic plaques. J Theor Biol 297:1–10. https://doi.org/10.1016/j.jtbi.2011.11.023. (PMID: 10.1016/j.jtbi.2011.11.023)
Calvez V, Ebde A, Meunier N, Raoult A (2009) Mathematical modelling of the atherosclerotic plaque formation. ESAIM: Proc 28:1–12. https://doi.org/10.1051/proc/2009036. (PMID: 10.1051/proc/2009036)
Calvez V, Houot JG, Meunier N, Raoult A, Rusnakova G (2010) Mathematical and numerical modeling of early atherosclerotic lesions. ESAIM: Proc 30:1–14. https://doi.org/10.1051/proc/2010002. (PMID: 10.1051/proc/2010002)
Caro CG (2012) The mechanics of the circulation. Cambridge University Press, Cambridge.
Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH (2007) Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling. J Am Coll Cardiol 49(25):2379–2393. https://doi.org/10.1016/j.jacc.2007.02.059. (PMID: 10.1016/j.jacc.2007.02.059)
Chien S (2003) Molecular and mechanical bases of focal lipid accumulation in arterial wall. Prog Biophys Mol Biol 83(2):131–151. https://doi.org/10.1016/S0079-6107(03)00053-1. (PMID: 10.1016/S0079-6107(03)00053-1)
Cilla M, Martínez MA, Peña E (2015) Effect of transmural transport properties on atheroma plaque formation and development. Ann Biomed Eng 43(7):1516–1530. https://doi.org/10.1007/s10439-015-1299-2. (PMID: 10.1007/s10439-015-1299-2)
Dabagh M, Jalali P, Tarbell JM (2009) The transport of LDL across the deformable arterial wall: the effect of endothelial cell turnover and intimal deformation under hypertension. Am J Physiol-Heart Circ Physiol 297(3):H983–H996. https://doi.org/10.1152/ajpheart.00324.2009. (PMID: 10.1152/ajpheart.00324.2009)
Dadras R et al (2023) In-silico investigations of haemodynamic parameters for a blunt thoracic aortic injury case. Sci Rep 13(1):8355. https://doi.org/10.1038/s41598-023-35585-8. (PMID: 10.1038/s41598-023-35585-8)
Davis PH, Dawson JD, Blecha MB, Mastbergen RK, Sonka M (2010) Measurement of aortic intimal-medial thickness in adolescents and young adults. Ultrasound Med Biol 36(4):560–565. https://doi.org/10.1016/j.ultrasmedbio.2010.01.002. (PMID: 10.1016/j.ultrasmedbio.2010.01.002)
Debakey ME, Lawrie GM, Glaeser DH (1985) Patterns of atherosclerosis and their surgical significance. Ann Surg 201(2):132. https://doi.org/10.1097/00000658-198502000-00001. (PMID: 10.1097/00000658-198502000-00001)
Filipovic N et al (2013) Computer simulation of three-dimensional plaque formation and progression in the coronary artery. Comput Fluids 88:826–833. https://doi.org/10.1016/j.compfluid.2013.07.006. (PMID: 10.1016/j.compfluid.2013.07.006)
Giannoglou GD, Chatzizisis YS, Zamboulis C, Parcharidis GE, Mikhailidis DP, Louridas GE (2008) Elevated heart rate and atherosclerosis: an overview of the pathogenetic mechanisms. Int J Cardiol 126(3):302–312. https://doi.org/10.1016/j.ijcard.2007.08.077. (PMID: 10.1016/j.ijcard.2007.08.077)
Gijsen FJH et al. (2008) Strain distribution over plaques in human coronary arteries relates to shear stress. 295:7.
Hernández-López P, Cilla M, Martínez M, Peña E (2021) Effects of the haemodynamic stimulus on the location of carotid plaques based on a patient-specific mechanobiological plaque atheroma formation model. Front Bioeng Biotechnol 9:690685. https://doi.org/10.3389/fbioe.2021.690685. (PMID: 10.3389/fbioe.2021.690685)
Huang Y, Rumschitzki D, Chien S, Weinbaum S (1994) A fiber matrix model for the growth of macromolecular leakage spots in the arterial intima. J Biomech Eng 116(4):430–445. https://doi.org/10.1115/1.2895794. (PMID: 10.1115/1.2895794)
Karimi S, Dabagh M, Vasava P, Dadvar M, Dabir B, Jalali P (2014) Effect of rheological models on the hemodynamics within human aorta: CFD study on CT image-based geometry. J Nonnewton Fluid Mech 207:42–52. https://doi.org/10.1016/j.jnnfm.2014.03.007. (PMID: 10.1016/j.jnnfm.2014.03.007)
Khan FH, Khan F (2009) The elements of immunology. Pearson Education India.
Kim HJ, Vignon-Clementel IE, Coogan JS, Figueroa CA, Jansen KE, Taylor CA (2010) Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 38(10):3195–3209. https://doi.org/10.1007/s10439-010-0083-6. (PMID: 10.1007/s10439-010-0083-6)
Levesque MJ, Liepsch D, Moravec S, Nerem RM (1986) Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta. Arterioscler off J Am Heart Assoc Inc 6(2):220–229. https://doi.org/10.1161/01.ATV.6.2.220. (PMID: 10.1161/01.ATV.6.2.220)
Lin SJ, Jan KM, Weinbaum S, Chien S (1989) Transendothelial transport of low density lipoprotein in association with cell mitosis in rat aorta. Arterioscler off J Am Heart Assoc Inc 9(2):230–236. https://doi.org/10.1161/01.ATV.9.2.230. (PMID: 10.1161/01.ATV.9.2.230)
Liu X, Fan Y, Deng X, Zhan F (2011) Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta. J Biomech 44(6):1123–1131. https://doi.org/10.1016/j.jbiomech.2011.01.024. (PMID: 10.1016/j.jbiomech.2011.01.024)
Liu X, Pu F, Fan Y, Deng X, Li D, Li S (2009) A numerical study on the flow of blood and the transport of LDL in the human aorta: the physiological significance of the helical flow in the aortic arch. Am J Physiol-Heart Circ Physiol 297(1):H163–H170. https://doi.org/10.1152/ajpheart.00266.2009. (PMID: 10.1152/ajpheart.00266.2009)
Maeda N, Givens RC, Reddick RL (2007) Chapter 16: Cardiovascular disease: mouse models of atherosclerosis. In: Fox JG, Davisson MT, Quimby FW, Barthold SW, Newcomer CE, Smith AL (eds) The mouse in biomedical research (second edition). Academic Press, Burlington, pp 535–XXV. https://doi.org/10.1016/B978-012369454-6/50070-4.
Malek AM (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282(21):2035. https://doi.org/10.1001/jama.282.21.2035. (PMID: 10.1001/jama.282.21.2035)
Mendis S et al (2014) Global status report on noncommunicable diseases 2014: attaining the nine global noncommunicable diseases targets: a shared responsibility. World Health Organization, Switzerland.
Meyer G, Merval R, Tedgui A (1996) Effects of pressure-induced stretch and convection on low-density lipoprotein and albumin uptake in the rabbit aortic wall. Circ Res 79(3):532–540. https://doi.org/10.1161/01.RES.79.3.532. (PMID: 10.1161/01.RES.79.3.532)
Milnor W (1989) Vascular impedance. Hemodynamics 2:167–203.
Olgac U, Kurtcuoglu V, Poulikakos D (2008) Computational modeling of coupled blood-wall mass transport of LDL: effects of local wall shear stress. Am J Physiol-Heart Circ Physiol 294(2):H909–H919. https://doi.org/10.1152/ajpheart.01082.2007. (PMID: 10.1152/ajpheart.01082.2007)
Olgac U, Poulikakos D, Saur SC, Alkadhi H, Kurtcuoglu V (2009) Patient-specific three-dimensional simulation of LDL accumulation in a human left coronary artery in its healthy and atherosclerotic states. Am J Physiol-Heart Circ Physiol 296(6):H1969–H1982. https://doi.org/10.1152/ajpheart.01182.2008. (PMID: 10.1152/ajpheart.01182.2008)
Perktold K, Peter RO, Resch M, Langs G (1991) Pulsatile non-newtonian blood flow in three-dimensional carotid bifurcation models: a numerical study of flow phenomena under different bifurcation angles. J Biomed Eng 13(6):507–515. https://doi.org/10.1016/0141-5425(91)90100-L. (PMID: 10.1016/0141-5425(91)90100-L)
Prosi M, Zunino P, Perktold K, Quarteroni A (2005) Mathematical and numerical models for transfer of low-density lipoproteins through the arterial walls: a new methodology for the model set up with applications to the study of disturbed lumenal flow. J Biomech 38(4):903–917. https://doi.org/10.1016/j.jbiomech.2004.04.024. (PMID: 10.1016/j.jbiomech.2004.04.024)
Reymond P, Bohraus Y, Perren F, Lazeyras F, Stergiopulos N (2011) Validation of a patient-specific one-dimensional model of the systemic arterial tree. Am J Physiol-Heart Circ Physiol 301(3):H1173–H1182. https://doi.org/10.1152/ajpheart.00821.2010. (PMID: 10.1152/ajpheart.00821.2010)
Reymond P, Crosetto P, Deparis S, Quarteroni A, Stergiopulos N (2013) Physiological simulation of blood flow in the aorta: comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models. Med Eng Phys 35(6):784–791. https://doi.org/10.1016/j.medengphy.2012.08.009. (PMID: 10.1016/j.medengphy.2012.08.009)
Rikhtegar Nezami F, Athanasiou LS, Amrute JM, Edelman ER (2018) Multilayer flow modulator enhances vital organ perfusion in patients with type B aortic dissection. Am J Physiol-Heart Circ Physiol 315(5):H1182–H1193. https://doi.org/10.1152/ajpheart.00199.2018. (PMID: 10.1152/ajpheart.00199.2018)
Sakamoto N, Ohashi T, Sato M (2004) Effect of shear stress on permeability of vascular endothelial monolayer cocultured with smooth muscle cells. JSME Int J Ser C 47(4):992–999. https://doi.org/10.1299/jsmec.47.992. (PMID: 10.1299/jsmec.47.992)
Shahcheraghi N, Dwyer HA, Cheer AY, Barakat AI, Rutaganira T (2002) Unsteady and three-dimensional simulation of blood flow in the human aortic arch. J Biomech Eng 124(4):378–387. https://doi.org/10.1115/1.1487357. (PMID: 10.1115/1.1487357)
Steinberg D, Khoo JC, Glass CK, Palinski W, Almazan F (1997) A new approach to determining the rates of recruitment of circulating leukocytes into tissues: application to the measurement of leukocyte recruitment into atherosclerotic lesions. Proc Natl Acad Sci USA 94(8):4040–4044. https://doi.org/10.1073/pnas.94.8.4040. (PMID: 10.1073/pnas.94.8.4040)
Sun N, Wood NB, Hughes AD, Thom SAM, Xu XY (2007) Influence of pulsatile flow on LDL transport in the arterial wall. Ann Biomed Eng 35(10):1782–1790. https://doi.org/10.1007/s10439-007-9347-1. (PMID: 10.1007/s10439-007-9347-1)
Sun N, Wood NB, Hughes AD, Thom SAM, Yun Xu X (2007) Effects of transmural pressure and wall shear stress on LDL accumulation in the arterial wall: a numerical study using a multilayered model. Am J Physiol-Heart Circ Physiol 292(6):H3148–H3157. https://doi.org/10.1152/ajpheart.01281.2006. (PMID: 10.1152/ajpheart.01281.2006)
Sáez P, Malvè M, Martínez MA (2015) A theoretical model of the endothelial cell morphology due to different waveforms. J Theor Biol 379:16–23. https://doi.org/10.1016/j.jtbi.2015.04.038. (PMID: 10.1016/j.jtbi.2015.04.038)
Tarbell JM (2003) Mass transport in arteries and the localization of atherosclerosis. Annu Rev Biomed Eng 5(1):79–118. https://doi.org/10.1146/annurev.bioeng.5.040202.121529. (PMID: 10.1146/annurev.bioeng.5.040202.121529)
Tse KM, Chang R, Lee HP, Lim SP, Venkatesh SK, Ho P (2013) A computational fluid dynamics study on geometrical influence of the aorta on haemodynamics. Eur J Cardiothorac Surg 43(4):829–838. https://doi.org/10.1093/ejcts/ezs388. (PMID: 10.1093/ejcts/ezs388)
Tse KM, Chiu P, Lee HP, Ho P (2011) Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. J Biomech 44(5):827–836. https://doi.org/10.1016/j.jbiomech.2010.12.014. (PMID: 10.1016/j.jbiomech.2010.12.014)
Vargas CB, Vargas FF, Pribyl JG, Blackshear PL (1979) Hydraulic conductivity of the endothelial and outer layers of the rabbit aorta. Am J Physiol-Heart Circ Physiol 236(1):H53–H60. https://doi.org/10.1152/ajpheart.1979.236.1.H53. (PMID: 10.1152/ajpheart.1979.236.1.H53)
Waite L, Fine JM (2007) Applied biofluid mechanics. McGraw-Hill, New York.
Weinbaum S, Tzeghai G, Ganatos P, Pfeffer R, Chien S (1985) Effect of cell turnover and leaky junctions on arterial macromolecular transport. Am J Physiol-Heart Circ Physiol 248(6):H945–H960. https://doi.org/10.1152/ajpheart.1985.248.6.H945. (PMID: 10.1152/ajpheart.1985.248.6.H945)
Yang N, Vafai K (2006) Modeling of low-density lipoprotein (LDL) transport in the artery—effects of hypertension. Int J Heat Mass Transf 49(5–6):850–867. https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.019. (PMID: 10.1016/j.ijheatmasstransfer.2005.09.019)
Younis HF et al (2004) Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation. Biomech Model Mechanobiol 3(1):17–32. https://doi.org/10.1007/s10237-004-0046-7. (PMID: 10.1007/s10237-004-0046-7)
Yuan F, Chien S, Weinbaum S (1991) A new view of convective-diffusive transport processes in the arterial intima. J Biomech Eng 113(3):314–329. https://doi.org/10.1115/1.2894890. (PMID: 10.1115/1.2894890)
Zhao B et al (2006) Constitutive receptor-independent low density lipoprotein uptake and cholesterol accumulation by macrophages differentiated from human monocytes with macrophage-colony-stimulating factor (M-CSF). J Biol Chem 281(23):15757–15762. https://doi.org/10.1074/jbc.M510714200. (PMID: 10.1074/jbc.M510714200) - Contributed Indexing: Keywords: Atherosclerosis; Foam cell; Heart rate; Human aorta; Hypertension; Low-density lipoprotein; Mechanical stimuli
- Publication Date: Date Created: 20240607 Date Completed: 20240927 Latest Revision: 20241122
- Publication Date: 20241122
- Accession Number: 10.1007/s10237-024-01864-0
- Accession Number: 38847969
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.