LL37/FPR2 regulates neutrophil mPTP promoting the development of neutrophil extracellular traps in diabetic retinopathy.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Federation of American Societies for Experimental Biology Country of Publication: United States NLM ID: 8804484 Publication Model: Print Cited Medium: Internet ISSN: 1530-6860 (Electronic) Linking ISSN: 08926638 NLM ISO Abbreviation: FASEB J Subsets: MEDLINE
    • Publication Information:
      Publication: 2020- : [Bethesda, Md.] : Hoboken, NJ : Federation of American Societies for Experimental Biology ; Wiley
      Original Publication: [Bethesda, Md.] : The Federation, [c1987-
    • Subject Terms:
    • Abstract:
      Diabetic retinopathy (DR) is characterized by chronic, low-grade inflammation. This state may be related to the heightened production of neutrophil extracellular traps (NETs) induced by high glucose (HG). Human cathelicidin antimicrobial peptide (LL37) is an endogenous ligand of G protein-coupled chemoattractant receptor formyl peptide receptor 2 (FPR2), expressed on neutrophils and facilitating the formation and stabilization of the structure of NETs. In this study, we detected neutrophils cultured under different conditions, the retinal tissue of diabetic mice, and fibrovascular epiretinal membranes (FVM) samples of patients with proliferative diabetic retinopathy (PDR) to explore the regulating effect of LL37/FPR2 on neutrophil in the development of NETs during the process of DR. Specifically, HG or NG with LL37 upregulates the expression of FPR2 in neutrophils, induces the opening of mitochondrial permeability transition pore (mPTP), promotes the increase of reactive oxygen species and mitochondrial ROS, and then leads to the rise of NET production, which is mainly manifested by the release of DNA reticular structure and the increased expression of NETs-related markers. The PI3K/AKT signaling pathway was activated in neutrophils, and the phosphorylation level was enhanced by FPR2 agonists in vitro. In vivo, increased expression of NETs markers was detected in the retina of diabetic mice and in FVM, vitreous fluid, and serum of PDR patients. Transgenic FPR2 deletion led to decreased NETs in the retina of diabetic mice. Furthermore, in vitro, inhibition of the LL37/FPR2/mPTP axis and PI3K/AKT signaling pathway decreased NET production induced by high glucose. These results suggested that FPR2 plays an essential role in regulating the production of NETs induced by HG, thus may be considered as one of the potential therapeutic targets.
      (© 2024 Federation of American Societies for Experimental Biology.)
    • References:
      Amoaku WM, Ghanchi F, Bailey C, et al. Diabetic retinopathy and diabetic macular oedema pathways and management: UK Consensus Working Group. Eye (Lond). 2020;34:1‐51.
      Kollias AN, Ulbig MW. Diabetic retinopathy: early diagnosis and effective treatment. Dtsch Arztebl Int. 2010;107:75‐84.
      Sharif S, Van der Graaf Y, Cramer MJ, et al. Low‐grade inflammation as a risk factor for cardiovascular events and all‐cause mortality in patients with type 2 diabetes. Cardiovasc Diabetol. 2021;20:220.
      Sharma BR, Kanneganti T‐D. NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol. 2021;22:550‐559.
      Zhang Y, Sun X, Icli B, Feinberg MW. Emerging roles for MicroRNAs in diabetic microvascular disease: novel targets for therapy. Endocr Rev. 2017;38:145‐168.
      Bonaventura A, Vecchié A, Abbate A, Montecucco F. Neutrophil extracellular traps and cardiovascular diseases: an update. Cells. 2020;9:231.
      Wong SL, Demers M, Martinod K, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med. 2015;21:815‐819.
      Shafqat A, Khan JA, Alkachem AY, et al. How neutrophils shape the immune response: reassessing their multifaceted role in health and disease. Int J Mol Sci. 2023;24:17583.
      Hidalgo A, Chilvers ER, Summers C, Koenderman L. The neutrophil life cycle. Trends Immunol. 2019;40:584‐597.
      Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front Physiol. 2018;9:113.
      Fousert E, Toes R, Desai J. Neutrophil extracellular traps (NETs) take the central stage in driving autoimmune responses. Cells. 2020;9:915.
      Lee KH, Kronbichler A, Park DD‐Y, et al. Neutrophil extracellular traps (NETs) in autoimmune diseases: a comprehensive review. Autoimmun Rev. 2017;16:1160‐1173.
      Thiam HR, Wong SL, Wagner DD, Waterman CM. Cellular mechanisms of NETosis. Annu Rev Cell Dev Biol. 2020;36:191‐218.
      Yipp BG, Kubes P. NETosis: how vital is it? Blood. 2013;122:2784‐2794.
      Zeng J, Wu M, Zhou Y, Zhu M, Liu X. Neutrophil extracellular traps (NETs) in ocular diseases: an update. Biomolecules. 2022;12:1440.
      Hidalgo A, Libby P, Soehnlein O, Aramburu IV, Papayannopoulos V, Silvestre‐Roig C. Neutrophil extracellular traps: from physiology to pathology. Cardiovasc Res. 2022;118:2737‐2753.
      Castanheira FVS, Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood. 2019;133:2178‐2185.
      Thiam HR, Wong SL, Qiu R, et al. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4‐mediated chromatin decondensation and nuclear envelope rupture. Proc Natl Acad Sci USA. 2020;117:7326‐7337.
      Ronchetti L, Terrenato I, Ferretti M, et al. Circulating cell free DNA and citrullinated histone H3 as useful biomarkers of NETosis in endometrial cancer. J Exp Clin Cancer Res. 2022;41:151.
      Shafqat A, Abdul Rab S, Ammar O, et al. Emerging role of neutrophil extracellular traps in the complications of diabetes mellitus. Front Med (Lausanne). 2022;9:995993.
      Magaña‐Guerrero FS, Aguayo‐Flores JE, Buentello‐Volante B, et al. Spontaneous neutrophil extracellular traps release are inflammatory markers associated with hyperglycemia and renal failure on diabetic retinopathy. Biomedicine. 2023;11:1791.
      Song DY, Gu J‐Y, Yoo HJ, et al. Activation of factor XII and Kallikrein‐Kinin system combined with neutrophil extracellular trap formation in diabetic retinopathy. Exp Clin Endocrinol Diabetes. 2021;129:560‐565.
      Wang L, Zhou X, Yin Y, Mai Y, Wang D, Zhang X. Hyperglycemia induces neutrophil extracellular traps formation through an NADPH oxidase‐dependent pathway in diabetic retinopathy. Front Immunol. 2018;9:3076.
      Liu H, Lessieur EM, Saadane A, Lindstrom SI, Taylor PR, Kern TS. Neutrophil elastase contributes to the pathological vascular permeability characteristic of diabetic retinopathy. Diabetologia. 2019;62:2365‐2374.
      Joshi MB, Lad A, Bharath Prasad AS, Balakrishnan A, Ramachandra L, Satyamoorthy K. High glucose modulates IL‐6 mediated immune homeostasis through impeding neutrophil extracellular trap formation. FEBS Lett. 2013;587:2241‐2246.
      Zhuang Y, Wang L, Guo J, et al. Molecular recognition of formylpeptides and diverse agonists by the formylpeptide receptors FPR1 and FPR2. Nat Commun. 2022;13:1054.
      Chen K, Gong W, Huang J, Yoshimura T, Ming Wang J. Developmental and homeostatic signaling transmitted by the G‐protein coupled receptor FPR2. Int Immunopharmacol. 2023;118:110052.
      Yu Y, Xue S, Chen K, et al. The G‐protein‐coupled chemoattractant receptor Fpr2 exacerbates neuroglial dysfunction and angiogenesis in diabetic retinopathy. FASEB Bioadv. 2020;2:613‐623.
      Lou X, Liu S, Shi J, et al. The G protein coupled formyl‐peptide receptor 2 (FPR2) promotes endothelial‐mesenchymal transition in diabetic retinopathy. Ophthalmic Res. 2023;66:681‐691.
      Neumann A, Berends ETM, Nerlich A, et al. The antimicrobial peptide LL‐37 facilitates the formation of neutrophil extracellular traps. Biochem J. 2014;464:3‐11.
      Ammendola R, Parisi M, Esposito G, Cattaneo F. Pro‐resolving FPR2 agonists regulate NADPH oxidase‐dependent phosphorylation of HSP27, OSR1, and MARCKS and activation of the respective upstream kinases. Antioxidants (Basel). 2021;10:134.
      Danesh‐Meyer HV, Zhang J, Acosta ML, Rupenthal ID, Green CR. Connexin43 in retinal injury and disease. Prog Retin Eye Res. 2016;51:41‐68.
      Dan Dunn J, Alvarez LA, Zhang X, Soldati T. Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol. 2015;6:472‐485.
      Bonora M, Giorgi C, Pinton P. Molecular mechanisms and consequences of mitochondrial permeability transition. Nat Rev Mol Cell Biol. 2022;23:266‐285.
      Vorobjeva N, Galkin I, Pletjushkina O, et al. Mitochondrial permeability transition pore is involved in oxidative burst and NETosis of human neutrophils. Biochim Biophys Acta Mol basis Dis. 2020;1866:165664.
      Wu D, Yan L, Zheng C, et al. Akt‐GSK3β‐mPTP pathway regulates the mitochondrial dysfunction contributing to odontoblasts apoptosis induced by glucose oxidative stress. Cell Death Discov. 2022;8:168.
      Yu Y, Bao Z, Wang X, et al. The G‐protein‐coupled chemoattractant receptor Fpr2 exacerbates high glucose‐mediated Proinflammatory responses of Müller glial cells. Front Immunol. 2017;8:1852.
      Herster F, Bittner Z, Archer NK, et al. Neutrophil extracellular trap‐associated RNA and LL37 enable self‐amplifying inflammation in psoriasis. Nat Commun. 2020;11:105.
      Ren SX, Cheng ASL, To, K. F, et al. Host immune defense peptide LL‐37 activates caspase‐independent apoptosis and suppresses colon cancer. Cancer Res. 2012;72:6512‐6523.
      Zhou Q, Pan L‐L, Xue R, et al. The anti‐microbial peptide LL‐37/CRAMP levels are associated with acute heart failure and can attenuate cardiac dysfunction in multiple preclinical models of heart failure. Theranostics. 2020;10:6167‐6181.
      Krepel SA, Wang JM. Chemotactic ligands that activate G‐protein‐coupled formylpeptide receptors. Int J Mol Sci. 2019;20:3426.
      Nadesalingam A, Chen JHK, Farahvash A, Khan MA. Hypertonic saline suppresses NADPH oxidase‐dependent neutrophil extracellular trap formation and promotes apoptosis. Front Immunol. 2018;9:359.
      Bei Y, Pan L‐L, Zhou Q, et al. Cathelicidin‐related antimicrobial peptide protects against myocardial ischemia/reperfusion injury. BMC Med. 2019;17:42.
      Zhang H, Zhen J, Zhang R, et al. Cathelicidin hCAP18/LL‐37 promotes cell proliferation and suppresses antitumor activity of 1,25(OH)2D3 in hepatocellular carcinoma. Cell Death Discov. 2022;8:27.
      Zha C, Meng X, Li L, et al. Neutrophil extracellular traps mediate the crosstalk between glioma progression and the tumor microenvironment via the HMGB1/RAGE/IL‐8 axis. Cancer Biol Med. 2020;17:154‐168.
      Muraro SP, De Souza GF, Gallo SW, et al. Respiratory syncytial virus induces the classical ROS‐dependent NETosis through PAD‐4 and necroptosis pathways activation. Sci Rep. 2018;8:14166.
      Zhao Y, Hu X, Liu Y, et al. ROS signaling under metabolic stress: cross‐talk between AMPK and AKT pathway. Mol Cancer. 2017;16:79.
      Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS‐induced ROS release. Physiol Rev. 2014;94:909‐950.
      Miao N, Wang Z, Wang Q, et al. Oxidized mitochondrial DNA induces gasdermin D oligomerization in systemic lupus erythematosus. Nat Commun. 2023;14:872.
      Pazmandi K, Agod Z, Kumar BV, et al. Oxidative modification enhances the immunostimulatory effects of extracellular mitochondrial DNA on plasmacytoid dendritic cells. Free Radic Biol Med. 2014;77:281‐290.
      Caielli S, Athale S, Domic B, et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J Exp Med. 2016;213:697‐713.
      Ansari J, Senchenkova EY, Vital SA, et al. Targeting the AnxA1/Fpr2/ALX pathway regulates neutrophil function, promoting thromboinflammation resolution in sickle cell disease. Blood. 2021;137:1538‐1549.
      Ni C, Gao S, Li X, et al. Fpr2 exacerbates Streptococcus suis‐induced streptococcal toxic shock‐like syndrome via attenuation of neutrophil recruitment. Front Immunol. 2023;14:1094331.
      Lee C, Han J, Jung Y. Formyl peptide receptor 2 is an emerging modulator of inflammation in the liver. Exp Mol Med. 2023;55:325‐332.
    • Grant Information:
      81700853 MOST | National Natural Science Foundation of China (NSFC); MSZ2022024 | Science and Technology Project of Nantong City ()
    • Contributed Indexing:
      Keywords: DR; FPR2; NETs; mPTP; mtROS
    • Accession Number:
      0 (Cathelicidins)
      0 (Receptors, Formyl Peptide)
      0 (Antimicrobial Cationic Peptides)
      0 (FPR2 protein, human)
      0 (Receptors, Lipoxin)
      0 (formyl peptide receptor 2, mouse)
      0 (Reactive Oxygen Species)
    • Publication Date:
      Date Created: 20240606 Date Completed: 20240606 Latest Revision: 20240617
    • Publication Date:
      20240617
    • Accession Number:
      10.1096/fj.202400656R
    • Accession Number:
      38842874