Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Complementary environmental analysis and functional characterization of lower glycolysis-gluconeogenesis in the diatom plastid.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: Oxford University Press Country of Publication: England NLM ID: 9208688 Publication Model: Print Cited Medium: Internet ISSN: 1532-298X (Electronic) Linking ISSN: 10404651 NLM ISO Abbreviation: Plant Cell Subsets: MEDLINE
- Publication Information:
Publication: 2021- : [Oxford] : Oxford University Press
Original Publication: Rockville, MD : American Society of Plant Physiologists, c1989-
- Subject Terms:
- Abstract:
Organic carbon fixed in chloroplasts through the Calvin-Benson-Bassham Cycle can be diverted toward different metabolic fates, including cytoplasmic and mitochondrial respiration, gluconeogenesis, and synthesis of diverse plastid metabolites via the pyruvate hub. In plants, pyruvate is principally produced via cytoplasmic glycolysis, although a plastid-targeted lower glycolytic pathway is known to exist in non-photosynthetic tissue. Here, we characterized a lower plastid glycolysis-gluconeogenesis pathway enabling the direct interconversion of glyceraldehyde-3-phosphate and phospho-enol-pyruvate in diatoms, ecologically important marine algae distantly related to plants. We show that two reversible enzymes required to complete diatom plastid glycolysis-gluconeogenesis, Enolase and bis-phosphoglycerate mutase (PGAM), originated through duplications of mitochondria-targeted respiratory isoforms. Through CRISPR-Cas9 mutagenesis, integrative 'omic analyses, and measured kinetics of expressed enzymes in the diatom Phaeodactylum tricornutum, we present evidence that this pathway diverts plastid glyceraldehyde-3-phosphate into the pyruvate hub, and may also function in the gluconeogenic direction. Considering experimental data, we show that this pathway has different roles dependent in particular on day length and environmental temperature, and show that the cpEnolase and cpPGAM genes are expressed at elevated levels in high-latitude oceans where diatoms are abundant. Our data provide evolutionary, meta-genomic, and functional insights into a poorly understood yet evolutionarily recurrent plastid metabolic pathway.
Competing Interests: Conflict of interest statement. None declared.
(© The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists.)
- References:
Nature. 2015 Aug 20;524(7565):366-9. (PMID: 26168400)
Sci Rep. 2018 Mar 19;8(1):4834. (PMID: 29556065)
Mol Biol Evol. 2012 Dec;29(12):3625-39. (PMID: 22826458)
Plant Cell. 2017 Aug;29(8):2047-2070. (PMID: 28765511)
Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):E1516-25. (PMID: 26929361)
Plant Direct. 2022 Jan 20;6(1):e376. (PMID: 35079683)
Science. 2023 Oct 6;382(6666):92-98. (PMID: 37797009)
Plant Physiol. 2006 Sep;142(1):28-39. (PMID: 16844834)
Genes (Basel). 2020 Dec 10;11(12):. (PMID: 33322033)
Cell Genom. 2022 Apr 28;2(5):100123. (PMID: 36778897)
Front Plant Sci. 2022 Sep 22;13:950467. (PMID: 36212359)
Nature. 2019 Oct;574(7780):679-685. (PMID: 31645766)
PLoS One. 2012;7(7):e41985. (PMID: 22848682)
N Biotechnol. 2016 Jan 25;33(1):237-44. (PMID: 26162893)
BMC Bioinformatics. 2008 Sep 23;9:393. (PMID: 18811941)
Clin Chem. 2009 Apr;55(4):611-22. (PMID: 19246619)
Biotechnol Biofuels. 2015 May 03;8:73. (PMID: 25960767)
Mar Drugs. 2015 Mar 16;13(3):1317-39. (PMID: 25786062)
J Pharmacol Toxicol Methods. 1997 Oct;38(2):87-92. (PMID: 9403779)
Microb Cell Fact. 2013 Nov 14;12:109. (PMID: 24228629)
Prog Lipid Res. 2018 Apr;70:1-16. (PMID: 29524459)
PLoS One. 2017 Aug 3;12(8):e0182423. (PMID: 28771624)
Nat Microbiol. 2021 Dec;6(12):1561-1574. (PMID: 34782724)
PeerJ. 2018 Nov 14;6:e5884. (PMID: 30488015)
Plant Signal Behav. 2016;11(3):e1128614. (PMID: 26953506)
Photosynth Res. 2011 May;108(1):61-76. (PMID: 21516348)
Plant J. 2015 Feb;81(3):519-28. (PMID: 25438865)
Annu Rev Plant Biol. 2007;58:321-46. (PMID: 17227226)
New Phytol. 2016 Apr;210(2):497-510. (PMID: 26680538)
Plant Physiol. 2015 Jan;167(1):118-36. (PMID: 25489020)
Photosynth Res. 2015 Sep;125(3):407-22. (PMID: 25846135)
New Phytol. 2019 Feb;221(3):1303-1316. (PMID: 30216452)
Plant Cell. 2022 Apr 26;34(5):1745-1767. (PMID: 34791448)
Nat Protoc. 2007;2(4):953-71. (PMID: 17446895)
J Vis Exp. 2021 Sep 18;(175):. (PMID: 34605806)
Mar Genomics. 2016 Apr;26:21-8. (PMID: 26560047)
Front Plant Sci. 2020 Oct 16;11:590949. (PMID: 33178253)
Bioinformatics. 2014 May 1;30(9):1236-40. (PMID: 24451626)
Sci Rep. 2020 Jan 24;10(1):1167. (PMID: 31980711)
Bioinformatics. 2014 May 1;30(9):1312-3. (PMID: 24451623)
Sci Rep. 2019 Jul 9;9(1):9941. (PMID: 31289300)
FEBS Lett. 2003 Jun 5;544(1-3):63-8. (PMID: 12782291)
Mol Cell Proteomics. 2015 Apr;14(4):1113-26. (PMID: 25670805)
Biochim Biophys Acta. 1974 Sep 13;365(1):285-300. (PMID: 4413246)
J Biol Chem. 1957 May;226(1):497-509. (PMID: 13428781)
FASEB J. 2014 Aug;28(8):3373-83. (PMID: 24736411)
Mol Biol Evol. 2007 Jul;24(7):1528-36. (PMID: 17440175)
PLoS One. 2008 Jan 09;3(1):e1426. (PMID: 18183306)
ISME J. 2020 Feb;14(2):347-363. (PMID: 31624346)
Elife. 2017 May 12;6:. (PMID: 28498102)
Nat Commun. 2018 Jan 25;9(1):373. (PMID: 29371626)
Sci Rep. 2016 Apr 25;6:24951. (PMID: 27108533)
Biochimie. 2020 Feb;169:3-11. (PMID: 31291593)
Adv Enzyme Regul. 1963;1:385-400. (PMID: 14190368)
Proc Natl Acad Sci U S A. 2022 Sep 20;119(38):e2203708119. (PMID: 36095219)
PLoS Biol. 2014 Jun 24;12(6):e1001889. (PMID: 24959919)
New Phytol. 2024 Mar;241(5):2193-2208. (PMID: 38095198)
Metabolites. 2013 Apr 18;3(2):294-311. (PMID: 24957993)
Annu Rev Biochem. 2007;76:51-74. (PMID: 17352659)
Bioinformatics. 2012 Jun 15;28(12):1647-9. (PMID: 22543367)
Nat Commun. 2019 Sep 13;10(1):4167. (PMID: 31519883)
Nat Biotechnol. 2019 Apr;37(4):420-423. (PMID: 30778233)
New Phytol. 2010 Feb;185(3):649-62. (PMID: 20002588)
New Phytol. 2022 Aug;235(4):1379-1393. (PMID: 35596716)
Nat Commun. 2021 Mar 25;12(1):1879. (PMID: 33767194)
Genome Biol Evol. 2015 Oct 09;7(11):2955-69. (PMID: 26454011)
Bioinformatics. 2005 Apr 15;21(8):1635-8. (PMID: 15613389)
Ecol Evol. 2020 Jun 03;10(14):7276-7290. (PMID: 32760528)
BMC Bioinformatics. 2012 Jun 18;13:134. (PMID: 22708584)
BMC Bioinformatics. 2016 Jul 01;17(1):261. (PMID: 27363443)
Nature. 2011 May 12;473(7346):203-7. (PMID: 21562560)
Sci Adv. 2018 May 16;4(5):eaar4536. (PMID: 29774236)
Nat Commun. 2019 Oct 7;10(1):4552. (PMID: 31591397)
Plant J. 2024 Jan;117(2):385-403. (PMID: 37733835)
J Biol Chem. 1949 Nov;181(1):153-9. (PMID: 15390402)
Mar Biotechnol (NY). 1999 May;1(3):239-251. (PMID: 10383998)
Nucleic Acids Res. 2021 Jan 8;49(D1):D412-D419. (PMID: 33125078)
Science. 2009 Apr 10;324(5924):268-72. (PMID: 19359590)
Elife. 2013 Jun 25;2:e00669. (PMID: 23805380)
Front Microbiol. 2022 Mar 25;13:786764. (PMID: 35401494)
Bioinformatics. 2009 Aug 1;25(15):1972-3. (PMID: 19505945)
ACS Synth Biol. 2023 Apr 21;12(4):1287-1296. (PMID: 37031406)
Nat Protoc. 2006;1(1):387-96. (PMID: 17406261)
FEBS Lett. 2009 Mar 18;583(6):983-91. (PMID: 19223001)
PLoS Genet. 2016 Dec 14;12(12):e1006490. (PMID: 27973599)
Nat Commun. 2020 Sep 9;11(1):4509. (PMID: 32908151)
Nucleic Acids Res. 2021 Jan 8;49(D1):D1004-D1011. (PMID: 33104790)
Brief Bioinform. 2019 Jul 19;20(4):1160-1166. (PMID: 28968734)
J Exp Bot. 2011 Oct;62(14):5179-89. (PMID: 21813794)
Eur J Biochem. 2003 Aug;270(15):3205-13. (PMID: 12869196)
J Exp Bot. 2023 Jan 1;74(1):296-307. (PMID: 36124754)
Sci Data. 2015 May 26;2:150023. (PMID: 26029378)
PLoS One. 2016 May 06;11(5):e0155038. (PMID: 27152931)
Methods Mol Biol. 2012;860:255-86. (PMID: 22351182)
Evol Bioinform Online. 2015 Mar 16;11:43-8. (PMID: 25861210)
Genome Res. 2000 Nov;10(11):1788-95. (PMID: 11076863)
Genome Biol Evol. 2018 Sep 1;10(9):2310-2325. (PMID: 30060189)
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7. (PMID: 17517783)
New Phytol. 2019 May;222(3):1364-1379. (PMID: 30636322)
Biomolecules. 2019 Jul 30;9(8):. (PMID: 31366180)
Plant Sci. 2018 Jul;272:117-130. (PMID: 29807582)
J Exp Bot. 2021 May 4;72(10):3739-3755. (PMID: 33684221)
Nat Methods. 2014 Feb;11(2):121-2. (PMID: 24481215)
Nat Commun. 2021 Feb 16;12(1):1049. (PMID: 33594064)
Photosynth Res. 2003;75(1):1-10. (PMID: 16245089)
New Phytol. 2013 Dec;200(4):1022-33. (PMID: 23915300)
PLoS One. 2016 Oct 13;11(10):e0164673. (PMID: 27736949)
Biosci Biotechnol Biochem. 2015;79(3):402-9. (PMID: 25402448)
- Grant Information:
ANR-21-CE02-0014-01 ANR; ANR-11-BTBR-0008 French Facility for Global Environment; ANR-10-INBS-09-08 FRANCE GENOMIQUE; ANR-10-LABX-54 MEMO LIFE; ANR-11-IDEX-0001-02 PSL Research University; International ERC_ European Research Council; 835067 European Union's Horizon 2020; ANR-19-CE20-0020 ANR; 22-PEBB-0002 PEPR AlgAdvance; 10-LABX-0049 European Regional Development Fund; University Grenoble Alpes; ANR-17-EURE-0003 Ecoles Universitaires de Recherche; 739582 European Union's Horizon 2020; 715579 European Union's Horizon 2020
- Publication Date:
Date Created: 20240606 Date Completed: 20240903 Latest Revision: 20240905
- Publication Date:
20240905
- Accession Number:
PMC11371179
- Accession Number:
10.1093/plcell/koae168
- Accession Number:
38842420
No Comments.