Is there a role for essential fatty acids in osteoporosis?

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Das UN;Das UN
  • Source:
    European journal of clinical nutrition [Eur J Clin Nutr] 2024 Aug; Vol. 78 (8), pp. 659-662. Date of Electronic Publication: 2024 Jun 05.
  • Publication Type:
    Journal Article; Review
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 8804070 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5640 (Electronic) Linking ISSN: 09543007 NLM ISO Abbreviation: Eur J Clin Nutr Subsets: MEDLINE
    • Publication Information:
      Publication: <2003->: London : Nature Publishing Group
      Original Publication: London : J. Libbey, c1988-
    • Subject Terms:
    • Abstract:
      Inflammatory markers are inversely associated with bone density, geometry, and strength in postmenopausal women, and elderly subjects suggesting that osteoporosis is a low-grade systemic inflammatory condition. But glucocorticoids that are potent anti-inflammatory compounds instead of arresting/preventing osteoporosis induce osteoporosis. These results indicate that IL-6 and TNF-α, post-menopausal state, and steroids produce osteoporosis by an unidentified mechanism. Pro-inflammatory cytokines, estrogen, and steroids bring about their actions by influencing the metabolism of essential fatty acids (EFAs). I propose that EFAs and their metabolites act as second messengers of actions of corticosteroids, cytokines, and estrogen. This implies that EFAs are of benefit in the prevention and management of osteoporosis. This argument is supported by the observation that plasma phospholipid content of unsaturated fatty acids is decreased in those with osteoporosis. The reports that long-chain metabolites of EFAs including arachidonic acid, docosahexaenoic acid and eicosapentaenoic acid, and lipoxin A4 are of benefit in the prevention and management of osteoporosis lends further support to this proposal.
      (© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
    • References:
      Arnaud CD. An integrated view of the role of the endocrine system in the genesis of the osteoporosis associated with aging. Osteoporos Int. 1993;3 Suppl.1:37–9. (PMID: 846157310.1007/BF01621859)
      Zheng SX, Vrindts Y, Lopez M, De Groote D, Zangerle PF, Collette J, et al. Increase in cytokine production (IL-1 beta, IL-6, TNF-alpha but not IFN-gamma, GM-CSF or LIF) by stimulated whole blood cells in postmenopausal osteoporosis. Maturitas. 1997;26:63–71. (PMID: 903274910.1016/S0378-5122(96)01080-8)
      Kimble RB, Matayoshi AB, Vannice JL, Kung VT, Williams C, Pacifici R. Simultaneous block of interleukin-1 and tumor necrosis factor is required to completely prevent bone loss in the early postovariectomy period. Endocrinology. 1995;136:3054–61. (PMID: 778933210.1210/endo.136.7.7789332)
      Qiu J, Lu C, Zhang L, Zhou X, Zou H. Osteoporosis in patients with rheumatoid arthritis is associated with serum immune regulatory cellular factors. Clin Rheumatol. 2022;41:2685–93. (PMID: 3567088110.1007/s10067-022-06212-0)
      Buchanan WW, Samuels BM, Jasani MK, Anderson JA, O’Brien WM, Boyle JA, et al. Do oral corticosteroids cause osteoporosis in rheumatoid arthritis? Ann Rheum Dis. 1970;29:560–1. (PMID: 5476686101057610.1136/ard.29.5.560-b)
      Madretsma GS, Dijk AP, Tak CJ, Wilson JH, Zijlstra FJ. Inhibition of the production of mediators of inflammation by corticosteroids is a glucocorticoid receptor-mediated process. Mediat Inflamm. 1996;5:100–3. (PMID: 10.1155/S0962935196000166)
      Huang YS, Das UN, Horrobin DF. Effect of dexamethasone on the distribution of essential fatty acids in plasma and liver phospholipids. IRCS Med Sci. 1986;14:10–181.
      Manjari V, Das UN. Effect of polyunsaturated fatty acids on dexamethasone-induced gastric mucosal damage. Prostaglandins Leukot Essent Fat Acids. 2000;62:85–96. (PMID: 10.1054/plef.1999.0125)
      Marra CA, de Alaniz MJ, Brenner RR. Modulation of delta 6 and delta 5 rat liver microsomal desaturase activities by dexamethasone-induced factor. Biochim Biophys Acta. 1986;879:388–93. (PMID: 377892810.1016/0005-2760(86)90230-4)
      Marra CA, de Alaniz MJ, Brenner RR. Effect of various steroids on the biosynthesis of arachidonic acid in isolated hepatocytes and HTC cells. Lipids. 1988;23:1053–8. (PMID: 314879610.1007/BF02535651)
      Das UN. Pro- and anti-inflammatory bioactive lipids imbalance contributes to the pathobiology of autoimmune diseases. Eur J Clin Nutr. 2022. https://doi.org/10.1038/s41430-022-01173-8 .
      Das UN. Essential fatty acids and their metabolites in the pathobiology of inflammation and its resolution. Biomolecules. 2021;11:1873. (PMID: 34944517869910710.3390/biom11121873)
      Mayer K, Schmidt R, Muhly-Reinholz M, Bögeholz T, Gokorsch S, Grimminger F, et al. In vitro mimicry of essential fatty acid deficiency in human endothelial cells by TNFalpha impact of omega-3 versus omega-6 fatty acids. J Lipid Res. 2002;43:944–51. (PMID: 1203217010.1016/S0022-2275(20)30469-7)
      Gundala NKV, Naidu VGM, Das UN. Arachidonic acid and lipoxinA4 attenuate streptozotocin-induced cytotoxicity to RIN5 F cells in vitro and type 1 and type 2 diabetes mellitus in vivo. Nutrition. 2017;35:61–80. (PMID: 2824199310.1016/j.nut.2016.10.004)
      Bathina S, Gundala NKV, Rhenghachar P, Polavarapu S, Hari AD, Sadananda M, et al. Resolvin D1 ameliorates nicotinamide-streptozotocin-induced type 2 diabetes mellitus by its anti-inflammatory action and modulating PI3K/Akt/mTOR pathway in the brain. Arch Med Res. 2020;51:492–503. (PMID: 3245111610.1016/j.arcmed.2020.05.002)
      Rengachar P, Polavarapu S, Das UN. Insights in diabetes: molecular mechanisms-Protectin DX, an anti-inflammatory and a stimulator of inflammation resolution metabolite of docosahexaenoic acid, protects against the development of streptozotocin-induced type 1 and type 2 diabetes mellitus in male Swiss albino mice. Front Endocrinol. 2023;13:1053879. (PMID: 10.3389/fendo.2022.1053879)
      Russell R, Gori I, Pellegrini C, Kumar R, Achtari C, Canny GO. Lipoxin A4 is a novel estrogen receptor modulator. FASEB J. 2011;25:4326–37. (PMID: 2188565410.1096/fj.11-187658)
      Kumar R, Clerc AC, Gori I, Russell R, Pellegrini C, Govender L, et al. Lipoxin A 4 prevents the progression of de novo and established endometriosis in a mouse model by attenuating prostaglandin E 2 production and estrogen signaling. PLoS ONE. 2014;9:e89742. (PMID: 24587003393367410.1371/journal.pone.0089742)
      Das UN. Estrogen, statins, and polyunsaturated fatty acids: similarities in their actions and benefits-is there a common link? Nutrition. 2002;18:178–88. (PMID: 1184465010.1016/S0899-9007(01)00719-5)
      Liu XH, Kirschenbaum A, Yao S, Levine AC. Cross-talk between the interleukin-6 and prostaglandin E(2) signaling systems results in enhancement of osteoclastogenesis through effects on the osteoprotegerin/receptor activator of nuclear factor-{kappa}B (RANK) ligand/RANK system. Endocrinology. 2005;146:1991–8. (PMID: 1561835910.1210/en.2004-1167)
      Das UN. Bioactive lipids as modulators of immune check point inhibitors. Med Hypotheses. 2020;135:109473. (PMID: 3173353410.1016/j.mehy.2019.109473)
      Das UN. Can bioactive lipid(s) augment anti-cancer action of immunotherapy and prevent cytokine storm? Arch Med Res. 2019;50:342–9. (PMID: 3167753910.1016/j.arcmed.2019.10.004)
      Liu C, Guan H, Cai C, Li F, Xiao J. Lipoxin A4 suppresses osteoclastogenesis in RAW264.7 cells and prevents ovariectomy-induced bone loss. Exp Cell Res. 2017;352:293–303. (PMID: 2820948710.1016/j.yexcr.2017.02.018)
      Yang Y, Wang Y, Kong Y, Zhang X, Bai L. The effects of different frequency treadmill exercise on lipoxin A4 and articular cartilage degeneration in an experimental model of monosodium iodoacetate-induced osteoarthritis in rats. PLoS ONE. 2017;12:e0179162. (PMID: 28594958546463210.1371/journal.pone.0179162)
      Wimalawansa SJ, Chapa MT, Yallampalli C, Zhang R, Simmons DJ. Prevention of corticosteroid-induced bone loss with nitric oxide donor nitroglycerin in male rats. Bone. 1997;21:275–80. (PMID: 927609310.1016/S8756-3282(97)00125-7)
      Wimalawansa SJ, De Marco G, Gangula P, Yallampalli C. Nitric oxide donor alleviates ovariectomy-induced bone loss. Bone. 1996;18:301–4. (PMID: 872638510.1016/8756-3282(96)00005-1)
      Pennisi P, D’Alcamo MA, Leonetti C, Clementi A, Cutuli VM, Riccobene S, et al. Supplementation of L-arginine prevents glucocorticoid-induced reduction of bone growth and bone turnover abnormalities in a growing rat model. J Bone Miner Metab. 2005;23:134–9. (PMID: 1575069110.1007/s00774-004-0551-x)
      Roncero-Martín R, Aliaga I, Moran JM, Puerto-Parejo LM, Rey-Sánchez P, de la Luz Canal-Macías M, et al. Plasma fatty acids and quantitative ultrasound, DXA and pQCT derived parameters in postmenopausal Spanish women. Nutrients. 2021;13:1454. (PMID: 33922947814654010.3390/nu13051454)
      Casado-Díaz A, Santiago-Mora R, Dorado G, Quesada-Gómez JM. The omega-6 arachidonic fatty acid, but not the omega-3 fatty acids, inhibits osteoblastogenesis and induces adipogenesis of human mesenchymal stem cells: potential implication in osteoporosis. Osteoporos Int 2013;24:1647–61. (PMID: 2310419910.1007/s00198-012-2138-z)
      Coetzee M, Haag M, Joubert AM, Kruger MC. Effects of arachidonic acid, docosahexaenoic acid and prostaglandin E2 on cell proliferation and morphology of MG-63 and MC3T3-E1 osteoblast-like cells. Prostaglandins Leukot Essent Fat Acids. 2007;76:35–45. (PMID: 10.1016/j.plefa.2006.10.001)
      Hogstrom M, Nordström P, Nordström A. N-3 fatty acids are positively associated with peak bone mineral density and bone accrual in healthy men: the NO 2 study. Am J Clin Nutr 2007;85:803–7. (PMID: 1734450310.1093/ajcn/85.3.803)
      Virtanen JK, Mozaffarian D, Willett WC, Feskanich D. Dietary intake of polyunsaturated fatty acids and risk of hip fracture in men and women. Osteoporos Int 2012;23:2615–24. (PMID: 22270860421339010.1007/s00198-012-1903-3)
      Bao M, Zhang K, Wei Y, Hua W, Gao Y, Li X, et al. Therapeutic potentials and modulatory mechanisms of fatty acids in bone. Cell Prolif. 2020;53:e12735. (PMID: 3179747910.1111/cpr.12735)
      Orchard TS, Cauley JA, Frank GC, Neuhouser ML, Robinson JG, Snetselaar L, et al. Fatty acid consumption and risk of fracture in the women’s health initiative. Am J Clin Nutr 2010;92:1452–60. (PMID: 20980487298096910.3945/ajcn.2010.29955)
      Feehan O, Magee PJ, Pourshahidi LK, Armstrong DJ, Slevin MM, Allsopp PJ, et al. Association of long-chain polyunsaturated fatty acids with bone mineral density and bone turnover in postmenopausal women. Eur J Nutr. 2023;62:95–104. (PMID: 3590811810.1007/s00394-022-02933-9)
      Das UN. “Cell Membrane Theory of Senescence” and the role of bioactive lipids in aging, and aging associated diseases and their therapeutic implications. Biomolecules. 2021;11:241. (PMID: 33567774791462510.3390/biom11020241)
      Ali M, Kucko N, Jansen JA, Yang F, Walboomers XF. The effect of lipoxin A4 on E. coli LPS-induced osteoclastogenesis. Clin Oral Investig. 2021;25:957–69. (PMID: 3250632310.1007/s00784-020-03385-3)
      Das UN. Ageing: is there a role for arachidonic acid and other bioactive lipids? A review. J Adv Res. 2018;11:67–79. (PMID: 30034877605266110.1016/j.jare.2018.02.004)
      Gyurko R, Van Dyke TE. The role of polyunsaturated ω-3 fatty acid eicosapentaenoic acid-derived resolvin E1 (RvE1) in bone preservation. Crit Rev Immunol. 2014;34:347–57. (PMID: 24941160438291710.1615/CritRevImmunol.2014009982)
      Norling LV, Headland SE, Dalli J, Arnardottir HH, Haworth O, Jones HR, et al. Proresolving and cartilage-protective actions of resolvin D1 in inflammatory arthritis. JCI Insight. 2016;1:e85922. (PMID: 27158677485530310.1172/jci.insight.85922)
      Das UN. Current and emerging strategies for the treatment and management of systemic lupus erythematosus based on molecular signatures of acute and chronic inflammation. J Inflamm Res. 2010;3:143–70. (PMID: 22096364321872910.2147/JIR.S9425)
      Boeyens JC, Deepak V, Chua WH, Kruger MC, Joubert AM, Coetzee M. Effects of ω3- and ω6-polyunsaturated fatty acids on RANKL-induced osteoclast differentiation of RAW264.7 cells: a comparative in vitro study. Nutrients. 2014;6:2584–601. (PMID: 25010555411375810.3390/nu6072584)
      Zhu M, Van Dyke TE, Gyurko R. Resolvin E1 regulates osteoclast fusion via DC-STAMP and NFATc1. FASEB J. 2013;27:3344–53. (PMID: 23629863371458010.1096/fj.12-220228)
      Kasonga AE, Deepak V, Kruger MC, Coetzee M. Arachidonic acid and docosahexaenoic acid suppress osteoclast formation and activity in human CD14+ monocytes, in vitro. PLoS ONE. 2015;10:e0125145. (PMID: 25867515439502610.1371/journal.pone.0125145)
      Dravid AA, M Dhanabalan K, Agarwal S, Agarwal R. Resolvin D1-loaded nanoliposomes promote M2 macrophage polarization and are effective in the treatment of osteoarthritis. Bioeng Transl Med. 2022;7:e10281. (PMID: 35600665911570810.1002/btm2.10281)
      El Kholy K, Freire M, Chen T, Van Dyke TE. Resolvin E1 promotes bone preservation under inflammatory conditions. Front Immunol. 2018;9:1300. (PMID: 29946319600584910.3389/fimmu.2018.01300)
      Ginaldi L, Di Benedetto MC, De Martinis M. Osteoporosis, inflammation and ageing. Immun Ageing. 2005;2:14. (PMID: 16271143130884610.1186/1742-4933-2-14)
      Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest. 2003;111:1221–30. (PMID: 1269774115293910.1172/JCI200317215)
      Theill LE, Boyle WJ, Penninger JM. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol. 2002;20:795–823. (PMID: 1186161810.1146/annurev.immunol.20.100301.064753)
      Poulsen RC, Wolber FM, Moughan PJ, Kruger MC. Long chain polyunsaturated fatty acids alter membrane-bound RANK-L expression and osteoprotegerin secretion by MC3T3-E1 osteoblast-like cells. Prostaglandins Other Lipid Mediat. 2008;85:42–8. (PMID: 1807720010.1016/j.prostaglandins.2007.10.004)
    • Accession Number:
      0 (Fatty Acids, Essential)
      0 (Estrogens)
      0 (Cytokines)
    • Publication Date:
      Date Created: 20240605 Date Completed: 20240805 Latest Revision: 20240805
    • Publication Date:
      20240806
    • Accession Number:
      10.1038/s41430-024-01456-2
    • Accession Number:
      38840032