Immunoglobulin A vasculitis: The clinical features and pathophysiology.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Department of Public Health, Kaohsiung Medical University Country of Publication: China (Republic : 1949- ) NLM ID: 100960562 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2410-8650 (Electronic) Linking ISSN: 1607551X NLM ISO Abbreviation: Kaohsiung J Med Sci Subsets: MEDLINE
    • Publication Information:
      Publication: 2019- : [Kaohsiung City, Taiwan] : Department of Public Health, Kaohsiung Medical University
      Original Publication: [Kaohsiung City, Taiwan, Republic of China : Kaohsiung Medical College, 1996-
    • Subject Terms:
    • Abstract:
      Palpable purpura, gastrointestinal symptoms, joint involvement, and renal disease characterize immunoglobulin A vasculitis (IgAV). Renal involvement ranging from mild proteinuria to severe nephritic or nephrotic syndrome highlights the importance of monitoring kidney function in patients with IgAV. Recognizing these key features is crucial for early diagnosis and appropriate management to prevent long-term complications related to kidney disease. However, the pathogenesis of IgAV remains unclear. Disease mechanisms involve various factors, including the interplay of aberrantly glycosylated IgA, anti-endothelial cell antibodies, and neutrophils following infection triggers, which are the main pathogenic mechanisms of IgAV. Insights from cases of IgAV related to Coronavirus disease 2019 have offered additional understanding of the connection between infection and IgAV pathogenesis. This review provides a valuable resource for healthcare professionals and rheumatology researchers seeking a better understanding of the clinical features and pathophysiology of IgAV.
      (© 2024 The Authors. The Kaohsiung Journal of Medical Sciences published by John Wiley & Sons Australia, Ltd on behalf of Kaohsiung Medical University.)
    • References:
      Saulsbury FT. Henoch‐Schönlein purpura in children. Report of 100 patients and review of the literature. Medicine (Baltimore). 1999;78(6):395–409.
      Davin JC, Coppo R. Henoch–Schönlein purpura nephritis in children. Nat Rev Nephrol. 2014;10(10):563–573.
      Liao CH, Tsai M, Yang YH, Chiang BL, Wang LC. Onset age is a risk factor for refractory pediatric IgA vasculitis: a retrospective cohort study. Pediatr Rheumatol. 2020;18(1):86.
      Peru H, Soylemezoglu O, Bakkaloglu SA, Elmas S, Bozkaya D, Elmaci AM, et al. Henoch Schonlein purpura in childhood: clinical analysis of 254 cases over a 3‐year period. Clin Rheumatol. 2008;27(9):1087–1092.
      Nihei Y, Suzuki H, Suzuki Y. Current understanding of IgA antibodies in the pathogenesis of IgA nephropathy. Front Immunol. 2023;14:1165394.
      Hiki Y, Odani H, Takahashi M, Yasuda Y, Nishimoto A, Iwase H, et al. Mass spectrometry proves under‐O‐glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int. 2001;59(3):1077–1085.
      Batu ED, Sener S, Ozen S. COVID‐19 associated pediatric vasculitis: a systematic review and detailed analysis of the pathogenesis. Semin Arthritis Rheum. 2022;55:152047.
      Gardner‐Medwin JM, Dolezalova P, Cummins C, Southwood TR. Incidence of Henoch‐Schönlein purpura, Kawasaki disease, and rare vasculitides in children of different ethnic origins. Lancet. 2002;360(9341):1197–1202.
      Yang YH, Hung CF, Hsu CR, Wang LC, Chuang YH, Lin YT, et al. A nationwide survey on epidemiological characteristics of childhood Henoch‐Schonlein purpura in Taiwan. Rheumatology (Oxford, England). 2005;44(5):618–622.
      Piram M, Maldini C, Biscardi S, De Suremain N, Orzechowski C, Georget E, et al. Incidence of IgA vasculitis in children estimated by four‐source capture‐recapture analysis: a population‐based study. Rheumatology (Oxford, England). 2017;56(8):1358–1366.
      Shim JO, Han K, Park S, Kim GH, Ko JS, Chung JY. Ten‐year Nationwide population‐based survey on the characteristics of children with Henoch‐Schönlein purpura in Korea. J Korean Med Sci. 2018;33(25):e174.
      Sapina M, Frkovic M, Sestan M, Srsen S, Ovuka A, Batnozic Varga M, et al. Geospatial clustering of childhood IgA vasculitis and IgA vasculitis‐associated nephritis. Ann Rheum Dis. 2021;80(5):610–616.
      Watts RA, Hatemi G, Burns JC, Mohammad AJ. Global epidemiology of vasculitis. Nat Rev Rheumatol. 2022;18(1):22–34.
      Braungart S, Campbell A, Besarovic S. Atypical Henoch‐Schonlein purpura? Consider polyarteritis nodosa! BMJ Case Rep. 2014;2014:bcr2013201764.
      Parums DV. A review of IgA vasculitis (Henoch‐Schönlein purpura) past, present, and future. Med Sci Monit. 2024;30:e943912.
      Jelusic M, Sestan M, Giani T, Cimaz R. New insights and challenges associated with IgA Vasculitis and IgA Vasculitis with nephritis‐is it time to change the paradigm of the Most common systemic Vasculitis in childhood? Front Pediatr. 2022;10:853724.
      Hocevar A, Ostrovrsnik J, Jurcic V, Tomsic M, Rotar Z. Short‐term outcome of patients with adult IgA vasculitis: a single‐center experience. Front Med (Lausanne). 2023;10:1210307.
      Pillebout E, Thervet E, Hill G, Alberti C, Vanhille P, Nochy D. Henoch‐Schonlein purpura in adults: outcome and prognostic factors. J Am Soc Nephrol. 2002;13(5):1271–1278.
      Lai L, Liu S, Azrad M, Hall S, Hao C, Novak J, et al. IgA Vasculitis with nephritis in adults: histological and clinical assessment. J Clin Med. 2021;10(21):4851.
      Peruzzi L, Coppo R. IgA vasculitis nephritis in children and adults: one or different entities? Pediatr Nephrol. 2021;36(9):2615–2625.
      Mills JA, Michel BA, Bloch DA, Calabrese LH, Hunder GG, Arend WP, et al. The American College of Rheumatology 1990 criteria for the classification of Henoch‐Schönlein purpura. Arthritis Rheum. 1990;33(8):1114–1121.
      Hočevar A, Rotar Z, Jurčić V, Pižem J, Čučnik S, Vizjak A, et al. IgA vasculitis in adults: the performance of the EULAR/PRINTO/PRES classification criteria in adults. Arthritis Res Ther. 2016;18:58.
      Ozen S, Pistorio A, Iusan SM, Bakkaloglu A, Herlin T, Brik R, et al. EULAR/PRINTO/PRES criteria for Henoch‐Schönlein purpura, childhood polyarteritis nodosa, childhood Wegener granulomatosis and childhood Takayasu arteritis: Ankara 2008. Part II: final classification criteria. Ann Rheum Dis. 2010;69(5):798–806.
      Ozen S, Marks SD, Brogan P, Groot N, de Graeff N, Avcin T, et al. European consensus‐based recommendations for diagnosis and treatment of immunoglobulin A vasculitis‐the SHARE initiative. Rheumatology (Oxford, England). 2019;58(9):1607–1616.
      Terano C, Hamada R, Tatsuno I, Hamasaki Y, Araki Y, Gotoh Y, et al. Epidemiology of biopsy‐proven Henoch‐Schonlein purpura nephritis in children: a nationwide survey in Japan. PLoS One. 2022;17(7):e0270796.
      Zhou J, Li L, Luo J, Yang Y, Shen X. Association between common laboratory indices and IgAV recurrence in children. BMC Pediatr. 2022;22(1):606.
      Jauhola O, Ronkainen J, Koskimies O, Ala‐Houhala M, Arikoski P, Hölttä T, et al. Renal manifestations of Henoch–Schönlein purpura in a 6‐month prospective study of 223 children. Arch Dis Childh. 2010;95(11):877–882.
      Calvo‐Río V, Hernández JL, Ortiz‐Sanjuán F, Loricera J, Palmou‐Fontana N, González‐Vela MC, et al. Relapses in patients with Henoch‐Schönlein purpura: analysis of 417 patients from a single center. Medicine (Baltimore). 2016;95(28):e4217.
      Prais D, Amir J, Nussinovitch M. Recurrent Henoch‐Schonlein purpura in children. J Clin Rheumatol. 2007;13(1):25–28.
      Audemard‐Verger A, Pillebout E, Baldolli A, Gouellec NL, Augusto JF, Jourde‐Chiche N, et al. Impact of aging on phenotype and prognosis in IgA vasculitis. Rheumatology (Oxford, England). 2021;60(9):4245–4251.
      Van de Perre E, Jones RB, Jayne DRW. IgA vasculitis (Henoch‐Schonlein purpura): refractory and relapsing disease course in the adult population. Clin Kidney J. 2021;14(8):1953–1960.
      Byun JW, Song HJ, Kim L, Shin JH, Choi GS. Predictive factors of relapse in adult with Henoch‐Schönlein purpura. Am J Dermatopathol. 2012;34(2):139–144.
      Kawasaki Y, Ono A, Ohara S, Suzuki Y, Suyama K, Suzuki J, et al. Henoch‐Schonlein purpura nephritis in childhood: pathogenesis, prognostic factors and treatment. Fukushima J Med Sci. 2013;59(1):15–26.
      Marro J, Williams C, Pain CE, Oni L. A case series on recurrent and persisting IgA vasculitis (Henoch Schonlein purpura) in children. Pediatr Rheumatol. 2023;21(1):85.
      García‐Porrúa C, Calviño MC, Llorca J, Couselo JM, González‐Gay MA. Henoch‐Schönlein purpura in children and adults: clinical differences in a defined population. Semin Arthritis Rheum. 2002;32(3):149–156.
      Chang WL, Yang YH, Wang LC, Lin YT, Chiang BL. Renal manifestations in Henoch‐Schonlein purpura: a 10‐year clinical study. Pediatr Nephrol. 2005;20(9):1269–1272.
      Felix A, Assad Z, Bidet P, Caseris M, Dumaine C, Faye A, et al. Common seasonal pathogens and epidemiology of Henoch‐Schönlein purpura among children. JAMA Netw Open. 2024;7(4):e245362.
      Hwang HH, Lim IS, Choi BS, Yi DY. Analysis of seasonal tendencies in pediatric Henoch–Schönlein purpura and comparison with outbreak of infectious diseases. Medicine. 2018;97(36):e12217.
      Yang YH, Chuang YH, Wang LC, Huang HY, Gershwin ME, Chiang BL. The immunobiology of Henoch‐Schonlein purpura. Autoimmun Rev. 2008;7(3):179–184.
      Talotta R, Atzeni F, Ditto MC, Gerardi MC, Sarzi‐Puttini P. The microbiome in connective tissue diseases and vasculitides: an updated narrative review. J Immunol Res. 2017;2017:6836498.
      Wang X, Zhang L, Wang Y, Liu X, Zhang H, Liu Y, et al. Gut microbiota dysbiosis is associated with Henoch‐Schönlein purpura in children. Int Immunopharmacol. 2018;58:1–8.
      Chen B, Wang J, Wang Y, Zhang J, Zhao C, Shen N, et al. Oral microbiota dysbiosis and its association with Henoch‐Schönlein purpura in children. Int Immunopharmacol. 2018;65:295–302.
      Yamakami K, Yoshizawa N, Wakabayashi K, Takeuchi A, Tadakuma T, Boyle MD. The potential role for nephritis‐associated plasmin receptor in acute poststreptococcal glomerulonephritis. Methods. 2000;21(2):185–197.
      Schmitt R, Carlsson F, Morgelin M, Tati R, Lindahl G, Karpman D. Tissue deposits of IgA‐binding streptococcal M proteins in IgA nephropathy and Henoch‐Schonlein purpura. Am J Pathol. 2010;176(2):608–618.
      Hirayama K, Kobayashi M, Muro K, Yoh K, Yamagata K, Koyama A. Specific T‐cell receptor usage with cytokinemia in Henoch‐Schonlein purpura nephritis associated with Staphylococcus aureus infection. J Intern Med. 2001;249(4):289–295.
      Li Q, Lin X, Wu Z, He L, Wang W, Cao Q, et al. Immuno‐histochemistry analysis of helicobacter pylori antigen in renal biopsy specimens from patients with glomerulonephritis. Saudi J Kidney Dis Transpl. 2013;24(4):751–758.
      Kusano K, Inokuchi A, Fujimoto K, Miyamoto H, Tokunaga O, Kuratomi Y, et al. Coccoid helicobacter pylori exists in the palatine tonsils of patients with IgA nephropathy. J Gastroenterol. 2010;45(4):406–412.
      Suzuki S, Nakatomi Y, Odani S, Sato H, Gejyo F, Arakawa M. Circulating IgA, IgG, and IgM class antibody against Haemophilus parainfluenzae antigens in patients with IgA nephropathy. Clin Exp Immunol. 1996;104(2):306–311.
      Ogura Y, Suzuki S, Shirakawa T, Masuda M, Nakamura H, Iijima K, et al. Haemophilus parainfluenzae antigen and antibody in children with IgA nephropathy and Henoch‐Schonlein nephritis. Am J Kidney Dis. 2000;36(1):47–52.
      Kuzma‐Mroczkowska E, Panczyk‐Tomaszewska M, Szmigielska A, Szymanik‐Grzelak H, Roszkowska‐Blaim M. Mycoplasma pneumoniae as a trigger for Henoch‐Schonlein purpura in children. Cent Eur J Immunol. 2015;40(4):489–492.
      Chen L, Li S, Dong L, Feng S, Wang Z. Parainfluenza infection is associated with Henoch‐Schönlein purpura in children. Pediatr Infect Dis. 2016;8(4):110–114.
      Matsumura M, Komeda Y, Watanabe T, Kudo M. Purpura‐free small intestinal IgA vasculitis complicated by cytomegalovirus reactivation. BMJ Case Rep. 2020;13(7):e235042.
      Mizerska‐Wasiak M, Winiarska M, Nogal K, Cichoń‐Kawa K, Pańczyk‐Tomaszewska M, Małdyk J. IgA Vasculitis complicated by both CMV reactivation and tuberculosis. Pediatr Rep. 2021;13(3):416–420.
      Hu HB, Wu JG, Cheng Y, Li JJ. Epidemiology and clinical characteristics of Henoch‐Schönlein purpura associated with Epstein–Barr virus infection. Mediterr J Hematol Infect Dis. 2021;13(1):e2021064.
      Helbling R, Lava SA, Simonetti GD, Camozzi P, Bianchetti MG, Milani GP. Gallbladder and pancreas in Henoch‐Schönlein purpura: review of the literature. J Pediatr Gastroenterol Nutr. 2016;62(3):457–461.
      AlGhoozi DA, AlKhayyat HM. A child with Henoch‐Schonlein purpura secondary to a COVID‐19 infection. BMJ Case Rep. 2021;14(1):e239910.
      Allez M, Denis B, Bouaziz JD, Battistella M, Zagdanski AM, Bayart J, et al. COVID‐19‐related IgA Vasculitis. Arthritis Rheumatol. 2020;72(11):1952–1953.
      Kaya Akca U, Atalay E, Cuceoglu MK, Balik Z, Sener S, Ozsurekci Y, et al. Impact of the COVID‐19 pandemic on the frequency of the pediatric rheumatic diseases. Rheumatol Int. 2022;42(1):51–57.
      Li NL, Papini AB, Shao T, Girard L. Immunoglobulin‐a Vasculitis with renal involvement in a patient with COVID‐19: a case report and review of acute kidney injury related to SARS‐CoV‐2. Can J Kidney Health Dis. 2021;8:2054358121991684.
      Ramdani Y, Galempoix JM, Augusto JF, Dekmeer E, Perard L, Ferreira N, et al. Immunoglobulin A vasculitis following COVID‐19: a French multicenter case series. J Rheumatol. 2022;49(12):1390–1394.
      Castellino J, Orentas M, Hassan D, Khandelwal S. IgA Vasculitis in an adult linked to cryptosporidium and giardia Co‐infection: a comprehensive case study. Am J Case Rep. 2023;24:e942394.
      Jariwala S, Vernon N, Shliozberg J. Henoch‐Schönlein purpura after hepatitis a vaccination. Ann Allergy Asthma Immunol. 2011;107(2):180–181.
      Damjanov J, Amato JA. Progression of renal disease in Henoch‐Schönlein purpura after influenza vaccination. JAMA. 1979;242(23):2555–2556.
      Watanabe T. Henoch‐Schönlein purpura following influenza vaccinations during the pandemic of influenza a (H1N1). Pediatr Nephrol. 2011;26(5):795–798.
      Bronz G, Faré PB, Lava SAG, Bianchetti MG, Simonetti GD, Scoglio M, et al. Coronavirus disease 2019, vaccination against coronavirus and immunoglobulin A‐mediated diseases: systematic literature review. J Autoimmun. 2022;132:102899.
      Ito C, Odajima K, Niimura Y, Fujii M, Sone M, Asakawa S, et al. IgA vasculitis with transient glomerular hematuria, diarrhea, and pericarditis following COVID‐19 mRNA vaccination in a young patient with possible pre‐existing ulcerative colitis. CEN Case Rep. 2023;12(1):84–90.
      Mv P, Auanassova A, Yessirkepov M, Zimba O, Gasparyan AY, Kitas GD, et al. New‐onset systemic vasculitis following SARS‐CoV‐2 infection and vaccination: the trigger, phenotype, and outcome. Clin Rheumatol. 2023;42(10):2761–2775.
      Shin JI, Kim JH, Lee JS. The diagnostic value of IgA deposition in Henoch‐Schonlein purpura. Pediatr Dermatol. 2008;25(1):140–141.
      Vogler C, Eliason SC, Wood EG. Glomerular membranopathy in children with IgA nephropathy and Henoch Schonlein purpura. Pediatr Dev Pathol. 1999;2(3):227–235.
      Moldoveanu Z, Wyatt RJ, Lee JY, Tomana M, Julian BA, Mestecky J, et al. Patients with IgA nephropathy have increased serum galactose‐deficient IgA1 levels. Kidney Int. 2007;71(11):1148–1154.
      Mizerska‐Wasiak M, Gajewski L, Cichon‐Kawa K, Maldyk J, Dziedzic‐Jankowska K, Leszczynska B, et al. Serum GDIgA1 levels in children with IgA nephropathy and Henoch‐Schonlein nephritis. Cent Eur J Immunol. 2018;43(2):162–167.
      Kiryluk K, Moldoveanu Z, Sanders JT, Eison TM, Suzuki H, Julian BA, et al. Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch‐Schonlein purpura nephritis. Kidney Int. 2011;80(1):79–87.
      Tang M, Zhang X, Li X, Lei L, Zhang H, Ling C, et al. Serum levels of galactose‐deficient IgA1 in Chinese children with IgA nephropathy, IgA vasculitis with nephritis, and IgA vasculitis. Clin Exp Nephrol. 2021;25(1):37–43.
      Suzuki H, Moldoveanu Z, Hall S, Brown R, Vu HL, Novak L, et al. IgA1‐secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest. 2008;118(2):629–639.
      Novak J, Moldoveanu Z, Julian BA, Raska M, Wyatt RJ, Suzuki Y, et al. Aberrant glycosylation of IgA1 and anti‐glycan antibodies in IgA nephropathy: role of mucosal immune system. Adv Otorhinolaryngol. 2011;72:60–63.
      Knoppova B, Reily C, King RG, Julian BA, Novak J, Green TJ. Pathogenesis of IgA nephropathy: current understanding and implications for development of disease‐specific treatment. J Clin Med. 2021;10(19):4501.
      Hastings MC, Rizk DV, Kiryluk K, Nelson R, Zahr RS, Novak J, et al. IgA vasculitis with nephritis: update of pathogenesis with clinical implications. Pediatr Nephrol. 2022;37(4):719–733.
      Yang YH, Huang YH, Lin YL, Wang LC, Chuang YH, Yu HH, et al. Circulating IgA from acute stage of childhood Henoch‐Schonlein purpura can enhance endothelial interleukin (IL)‐8 production through MEK/ERK signalling pathway. Clin Exp Immunol. 2006;144(2):247–253.
      Yang YH, Huang MT, Lin SC, Lin YT, Tsai MJ, Chiang BL. Increased transforming growth factor‐beta (TGF‐beta)‐secreting T cells and IgA anti‐cardiolipin antibody levels during acute stage of childhood Henoch‐Schonlein purpura. Clin Exp Immunol. 2000;122(2):285–290.
      Yang YH, Chang CJ, Chuang YH, Hsu HY, Yu HH, Lee JH, et al. Identification and characterization of IgA antibodies against beta2‐glycoprotein I in childhood Henoch‐Schonlein purpura. Br J Dermatol. 2012;167(4):874–881.
      Yang YH, Wang SJ, Chuang YH, Lin YT, Chiang BL. The level of IgA antibodies to human umbilical vein endothelial cells can be enhanced by TNF‐alpha treatment in children with Henoch‐Schönlein purpura. Clin Exp Immunol. 2002;130(2):352–357.
      Yuan Y, Liu J, Zhou Y, Du X, Chen Q, Zhou J, et al. The relationship between monocyte‐to‐lymphocyte ratio and the risk of gastrointestinal system involvement in children with IgA vasculitis: a preliminary report. Adv Clin Exp Med. 2021;30(10):999–1005.
      Kim WK, Kim CJ, Yang EM. Risk factors for renal involvement in Henoch–Schönlein purpura. J Pediatr. 2021;97(6):646–650.
      Hočevar A, Tomšič M, Jurčić V, Perdan Pirkmajer K, Rotar Ž. Predicting gastrointestinal and renal involvement in adult IgA vasculitis. Arthritis Res Ther. 2019;21(1):302.
      Nagy GR, Kemény L, Bata‐Csörgő Z. Neutrophil‐to‐lymphocyte ratio: a biomarker for predicting systemic involvement in adult IgA vasculitis patients. J Eur Acad Dermatol Venereol. 2017;31(6):1033–1037.
      Park CH, Han DS, Jeong JY, Eun CS, Yoo KS, Jeon YC, et al. The optimal cut‐off value of neutrophil‐to‐lymphocyte ratio for predicting prognosis in adult patients with Henoch‐Schonlein purpura. PLoS One. 2016;11(4):e0153238.
      Chen XQ, Tu L, Zou JS, Zhu SQ, Zhao YJ, Qin YH. The involvement of neutrophil extracellular traps in disease activity associated with IgA Vasculitis. Front Immunol. 2021;12:668974.
      Mayer‐Hain S, Gebhardt K, Neufeld M, Ehrchen JM, Molyneux K, Barratt J, et al. Systemic activation of neutrophils by immune complexes is critical to IgA Vasculitis. J Immunol. 2022;209(6):1048–1058.
      Wu YC, Chen CS, Chan YJ. The outbreak of COVID‐19: an overview. J Chinese Med Assoc. 2020;83(3):217–220.
      Batu ED, Sener S, Ozomay Baykal G, Arslanoglu Aydin E, Özdel S, Gagro A, et al. The characteristics of patients with COVID‐19‐associated pediatric Vasculitis: an international, multicenter study. Arthritis Rheumatol. 2023;75(4):499–506.
      Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID‐19. Lancet. 2020;395(10234):1417–1418.
      Imai Y, Kuba K, Penninger JM. The discovery of angiotensin‐converting enzyme 2 and its role in acute lung injury in mice. Exp Physiol. 2008;93(5):543–548.
      Quinaglia T, Shabani M, Breder I, Silber HA, Lima JAC, Sposito AC. Coronavirus disease‐19: the multi‐level, multi‐faceted vasculopathy. Atherosclerosis. 2021;322:39–50.
      Cheung CY, Poon LL, Ng IH, Luk W, Sia SF, Wu MH, et al. Cytokine responses in severe acute respiratory syndrome coronavirus‐infected macrophages in vitro: possible relevance to pathogenesis. J Virol. 2005;79(12):7819–7826.
      Yang Y, Xiao Z, Ye K, He X, Sun B, Qin Z, et al. SARS‐CoV‐2: characteristics and current advances in research. Virol J. 2020;17(1):117.
      Mohammed RN, Tamjidifar R, Rahman HS, Adili A, Ghoreishizadeh S, Saeedi H, et al. A comprehensive review about immune responses and exhaustion during coronavirus disease (COVID‐19). Cell Commun Signal. 2022;20(1):79.
      Sterlin D, Mathian A, Miyara M, Mohr A, Anna F, Claër L, et al. IgA dominates the early neutralizing antibody response to SARS‐CoV‐2. Sci Transl Med. 2021;13(577):eabd2223.
      Hasan Ali O, Bomze D, Risch L, Brugger SD, Paprotny M, Weber M, et al. Severe coronavirus disease 2019 (COVID‐19) is associated with elevated serum immunoglobulin (Ig) a and antiphospholipid IgA antibodies. Clin Infect Dis. 2020;73(9):e2869–e2874.
      Nakagawa R, Okada M, Hashimoto S, Yokoyama H, Shimoyama T, Udagawa T, et al. COVID‐19 pandemic‐altered epidemiology of pediatric infectious diseases and vasculitis: a single‐center observational study. Int J Rheum Dis. 2023;26(12):2592–2595.
      Hong SJ, Kang B, Hwang JH, Kim YB, Lee YM, Jang HJ, et al. The occurrence of infection‐related systemic diseases in Korean children and adolescents has decreased after the spread of the COVID‐19 pandemic: a multicenter retrospective study. Transl Pediatr. 2021;10(11):2888–2896.
    • Contributed Indexing:
      Keywords: COVID‐19; aberrant‐glycosylated IgA; anti‐endothelial cell antibody; immunoglobulin A vasculitis; pathophysiology
    • Accession Number:
      0 (Immunoglobulin A)
      0 (anti-endothelial cell antibody)
      0 (Autoantibodies)
    • Publication Date:
      Date Created: 20240603 Date Completed: 20240701 Latest Revision: 20240701
    • Publication Date:
      20240701
    • Accession Number:
      10.1002/kjm2.12852
    • Accession Number:
      38828518