How processing affects marker peptide quantification - A comprehensive estimation on bovine material relevant for food and feed control.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Elsevier Applied Science Publishers Country of Publication: England NLM ID: 7702639 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1873-7072 (Electronic) Linking ISSN: 03088146 NLM ISO Abbreviation: Food Chem Subsets: MEDLINE
    • Publication Information:
      Publication: Barking : Elsevier Applied Science Publishers
      Original Publication: Barking, Eng., Applied Science Publishers.
    • Subject Terms:
    • Abstract:
      Processing food and feed challenges official control e.g. by modifying proteins, which leads to significant underestimation in targeted, MS-based protein quantification. Whereas numerous studies identified processing-induced changes on proteins in various combinations of matrices and processing conditions, studying their impact semi-quantitatively on specific protein sequences might unveil approaches to improve protein quantification accuracy. Thus, 335 post-translational modifications (e.g. oxidation, deamidation, carboxymethylation, Amadori, acrolein adduction) were identified by bottom-up proteomic analysis of 37 bovine materials relevant in food and feed (meat, bone, blood, milk) with varying processing degrees (raw, spray-dried, pressure-sterilized). To mimic protein recovery in a targeted analysis, peak areas of marker and reference peptides were compared to those of their modified versions, which revealed peptide-specific recoveries and variances across all samples. Detailed analysis suggests that incorporating two modified versions additionally to the unmodified marker may significantly improve quantification accuracy in targeted MS-based food and feed control in processed matrices.
      Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
      (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
    • Contributed Indexing:
      Keywords: Error-tolerant search; Mass spectrometry; Post-translational modification (PTM); Proteomics; Recovery; Underestimation
    • Accession Number:
      0 (Peptides)
      0 (Biomarkers)
    • Publication Date:
      Date Created: 20240531 Date Completed: 20240619 Latest Revision: 20240619
    • Publication Date:
      20240619
    • Accession Number:
      10.1016/j.foodchem.2024.139768
    • Accession Number:
      38820638