Forecasting the future of Fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in India using ecological niche model.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: United States NLM ID: 0374716 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1254 (Electronic) Linking ISSN: 00207128 NLM ISO Abbreviation: Int J Biometeorol Subsets: MEDLINE
    • Publication Information:
      Publication: New York, NY : Springer Verlag
      Original Publication: Leiden.
    • Subject Terms:
    • Abstract:
      The Fall armyworm, Spodoptera frugiperda is the most notorious invasive pest species on maize, recently reported in India. The continuous spread of Fall armyworms to new ecological niches raises global concern. The current study is the first in India to forecast the suitability of a habitat for S. frugiperda using a maximum entropy algorithm. Predictions were made based on an analysis of the relationship between 109 occurrence records of S. frugiperda and pertinent historical, current, and predicted climatic data for the study area. The model indicated that S. frugiperda could thrive in different habitats under the current environmental circumstances, particularly in the west and south Indian states like Maharashtra, Tamil Nadu, and Karnataka. The model predicted that areas with higher latitudes, particularly in Uttar Pradesh, Odisha, West Bengal, and some portions of Telangana, Rajasthan, Chhattisgarh, and Madhya Pradesh, as well as some tracts of northeastern states like Assam and Arunachal Pradesh, would have highly climate-suitable conditions for S. frugiperda to occur in the future. The average AUC value was 0.852, which indicates excellent accuracy of the prediction. A Jackknife test of variables indicated that isothermality with the highest gain value was determining the potential geographic distribution of S. frugiperda. Our results will be useful for serving as an early warning tool to guide decision-making and prevent further spread toward new areas in India.
      (© 2024. The Author(s) under exclusive licence to International Society of Biometeorology.)
    • References:
      Ashok K, Balasubramani V, Kennedy JS, Geethalakshmi V, Jeyakumar P, Sathiah N (2021) Effect of elevated temperature on the population dynamics of fall armyworm, Spodoptera frugiperda. J Environ Biol 42:1098–1105.
      Ashok K, Balasubramani V, Kennedy JS, Geethalakshmi V, Sathiah N (2022) Impact of elevated carbon dioxide on the bionomics of maize fall armyworm Spodoptera frugiperda: an age-stage, two-sex life table approach. Int J Pest Manag. https://doi.org/10.1080/09670874.2022.2027550. (PMID: 10.1080/09670874.2022.2027550)
      Ashok K, Balasubramani V, Muthukumar M, Kennedy JS, Geethalakshmi V, Sathiah N (2023) Strain identification and herbivore–host Interaction of Maize hosting invasive alien Pest Spodoptera frugiperda under elevated temperature and CO 2 levels. Agric Res 12:83–93.
      Azrag AG, Mohamed SA, Ndlela S, Ekesi S (2023) Invasion risk by fruit trees mealybug Rastrococcus invadens (Williams) (Homoptera: Pseudococcidae) under climate warming. Front Ecol Evol 11:1182370.
      Bajracharya ASR, Bhat B, Sharma P, Shashank PR, Meshram NM, Hashmi TR (2019) First record of fall armyworm Spodoptera frugiperda (JE Smith) from Nepal. Indian J Entomol 81:635–639.
      Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JE (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1–16.
      Baudron F, Zaman-Allah MA, Chaipa I, Chari N, Chinwada P (2019) Understanding the factors conditioning fall armyworm (Spodoptera frugiperda J.E. Smith) infestation in African smallholder maize fields and quantifying its impact on yield: a case study in Eastern Zimbabwe. Crop Prot 120:141–150.
      Biber-Freudenberger L, Ziemacki J, Tonnang HE, Borgemeister C (2016) Future risks of pest species under changing climatic conditions. PLoS ONE 11:e0153237.
      Brévault T, Ndiaye A, Badiane D, Bal AB, Sembène M, Silvie P, Haran J (2018) First records of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), in Senegal. Entomol Gen 37:1–14.
      Chakraborty A, Sazzad HMS, Hossain MJ, Islam MS, Parveen S, Husain M, Banu SS, Podder G, Afroj S, Rollin PE, Daszak P (2016) Evolving epidemiology of Nipah virus infection in Bangladesh: evidence from outbreaks during 2010–2011. Epidemiol Infect 144:371–380.
      Chimweta M, Nyakudya IW, Jimu L, Mashingaidze AB (2020) Fall armyworm [Spodoptera frugiperda (JE Smith)] damage in maize: management options for flood-recession cropping smallholder farmers. Int J Pest Manag 66:142–154.
      Chormule A, Shejawal N, Sharanabasappa CM, Asokan R, Swamy HM, Studies Z (2019) First report of the fall Armyworm, Spodoptera frugiperda (JE Smith)(Lepidoptera, Noctuidae) on sugarcane and other crops from Maharashtra, India. J Entomol Zool Stud 7:114–117.
      Clark PL, Molina-Ochoa J, Martinelli S, Skoda SR, Isenhour DJ, Lee DJ, Krumm JT, Foster JE (2007) Population variation of the fall armyworm, Spodoptera frugiperda, in the Western Hemisphere. J Insect Sci 7:1–5.
      Deutsch CA, Tewksbury JJ, Tigchelaar M, Battisti DS, Merrill SC, Huey RB, Naylor RL (2018) Increase in crop losses to insect pests in a warming climate. Science 361:916–919.
      Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46.
      Dormann CF, Bobrowski M, Dehling DM, Harris DJ, Hartig F, Lischke H, Moretti MD, Pagel J, Pinkert S, Schleuning M, Schmidt SI (2018) Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions. Glo Ecol Biogeogr 27:1004–1016.
      Early R, González-Moreno P, Murphy ST, Day R (2018) Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. NeoBiota 40:25–50.
      Elith J, Graham CH, Anderson R, Dudík M, Ferrier S, Guisan A, Hijmans R, Huettmann F, Leathwick J, Lehmann A, Li J (2006) Novel methods improve prediction of species distributions from occurrence data. Ecography 29:129–151.
      Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57.
      Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the coupled model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9:1937–1958.
      Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315.
      Ganeshaiah KN, Barve N, Chandrashekara K, Swamy M, Umashaanker R (2003) Predicting the potential geographical distribution of the sugarcane woolly aphid using GARP and DIVA-GIS. Curr Sci 85:1526–1528.
      Ganiger PC, Yeshwanth HM, Muralimohan K, Vinay N, Kumar ARV, Chandrashekara K (2018) Occurrence of the new invasive pest, fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), in the maize fields of Karnataka, India. Curr Sci 115:621–623.
      Goergen G, Kumar PL, Sankung SB, Togola A, Tamo M (2016) First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 11:e0165632.
      Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27.
      Guillera-Arroita G, Lahoz‐Monfort JJ, Elith J, Gordon A, Kujala H, Lentini PE, McCarthy MA, Tingley R, Wintle BA (2015) Is my species distribution model fit for purpose? Matching data and models to applications. Glob Ecol Biogeogr 24:276–292.
      Huang J, Yu H, Guan X, Wang G, Guo R (2016) Accelerated dryland expansion under climate change. Nat Clim Change 6:166–171.
      Huang C, Li N, Zhang Z, Liu Y, Chen X, Wang F (2020) Assessment of the economic cascading effect on future climate change in China: evidence from agricultural direct damage. J Clean Prod 276:123951.
      Hulme M (2016) 1.5 C and climate research after the Paris Agreement. Nat Clim Change 6:222–224.
      Hutasoit N, Rashid RR, Palanisamy S, Duguid A (2020) Effect of build orientation and post-build heat treatment on the mechanical properties of cold spray additively manufactured copper parts. Int J Adv Manuf Technol 110:2341–2357.
      Jiang J, Zhou T, Chen X, Zhang L (2020) Future changes in precipitation over Central Asia based on CMIP6 projections. Environ Res Lett 15:054009.
      Jiang NJ, Mo BT, Guo H, Yang J, Tang R, Wang CZ (2022) Revisiting the sex pheromone of the fall armyworm Spodoptera frugiperda, a new invasive pest in South China. Insect Sci 29:865–878.
      Kebede M, Shimalis T (2019) Out-break, distribution and management of fall armyworm, Spodoptera frugiperda J.E. Smith in Africa: the status and prospects. Am J Agric Res 4:43.
      Kukal MS, Irmak S (2018) Climate-driven crop yield and yield variability and climate change impacts on the US Great Plains agricultural production. Sci Rep 8:1–18.
      Kumar NV, Yasodha P, Justin CG (2020) Seasonal incidence of maize fall armyworm Spodoptera frugiperda (JE Smith) (Noctuidae; Lepidoptera) in Perambalur district of Tamil Nadu, India. J Entomol Zool Stud 8:1–4.
      Li X, Long D, Scanlon BR, Mann ME, Li X, Tian F, Sun Z, Wang G (2022) Climate change threatens terrestrial water storage over the Tibetan Plateau. Nat Clim Change 12:801–807.
      Lissovsky AA, Dudov SV (2021) Species-distribution modeling: advantages and limitations of its application. 2. MaxEnt. Biol Bull Rev 11:265–275.
      Liu T, Wang J, Hu X, Feng J (2020a) Land-use change drives present and future distributions of fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Sci Total Environ 706:135872.
      Liu W, Zheng L, Qi D (2020b) Variation in leaf traits at different altitudes reflects the adaptive strategy of plants to environmental changes. Ecol Evol 10:8166–8175.
      Montezano DG, Sosa-Gómez DR, Specht A, Roque-Specht VF, Sousa-Silva JC, Paula-Moraes SD, Peterson JA, Hunt TE (2018) Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr Entomol 26:286–300.
      Moya W, Jacome G, Yoo C (2017) Past, current, and future trends of red spiny lobster based on PCA with MaxEnt model in Galapagos Islands, Ecuador. Ecol Evol 7:4881–4890.
      Naganna R, Jethva DM, Bhut JB, Wadaskar PS, Kachot A (2020) Present status of new invasive pest fall armyworm, Spodoptera frugiperda in India: a review. J Entomol Zool Stud 8:150–156.
      Paini DR, Sheppard AW, Cook DC, De Barro PJ, Worner SP, Thomas MB (2016) Global threat to agriculture from invasive species. Proc Natl Acad Sci 113:7575–7579.
      Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. Q Rev Biol 78:419–433.
      Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259.
      Rakshit S, Chikkappa GK (2018) Perspective of maize scenario in India: way forward. Maize J 7:49–55.
      Ramasamy M, Das B, Ramesh R (2022) Predicting climate change impacts on potential worldwide distribution of fall armyworm based on CMIP6 projections. J Pest Sci 95:841–854.
      Ramirez-Cabral NYZ, Kumar L, Shabani F (2017) Future climate scenarios project a decrease in the risk of fall armyworm outbreaks. J Agric Sci 155:1219–1238.
      Riahi K, Vuuren DP, Kriegler E, Edmonds J, O’neill BC, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W (2017) The Shared Socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Change 42:153–168.
      Rosenzweig C, Iglesias A, Yang XB, Epstein PR, Chivian E (2001) Climate Change and Extreme Weather events; implications for Food Production, Plant diseases, and pests. Glob Change Hum Health 2:90–104.
      Savadatti E, Ginnu SA, Mariyanna L, Hosamani A, Desai BR, Subbanna AD, Jalamangala A (2023) Temperature effects on the development of life stages of fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) on Maize. Int J Environ Clim 13:1884–1892.
      Sharanabasappa D, Kalleshwaraswamy CM, Asokan R, Mahadevaswamy HM, Maruthi MS, Pavithra HB, Kavita H, Shivaray N, Prabhu ST, Goergen G (2018) First report of the fall armyworm, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manage Hortic Ecosyst 24:23–29.
      Sisodiya DB, Raghunandan BL, Bhatt NA, Verma HS, Shewale CP, Timbadiya BG, Borad PK (2018) The fall armyworm, Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae); first report of new invasive pest in maize fields of Gujarat, India. J Entomol Zool Stud 6:2089–2091.
      Skendžić S, Zovko M, Živković IP, Lešić V, Lemić D (2021) The impact of climate change on agricultural insect pests. Insects 12:440.
      Sparks AN (1979) A review of the biology of the fall armyworm. Fla Entomol 82–87.
      Srikanth J, Geetha N, Singaravelu B, Ramasubramanian T, Mahesh P, Saravanan L, Salin KP, Chitra N, Muthukumar M (2018) First report of occurrence of fall armyworm Spodoptera frugiperda in sugarcane from Tamil Nadu, India. J Sugarcane Res 8:195–202.
      Suby SB, Soujanya PL, Yadava P, Patil J, Subaharan K, Prasad GS, Babu KS, Jat SL, Yathish KR, Vadassery J, Kalia VK (2020) Invasion of fall armyworm (Spodoptera frugiperda) in India. Curr Sci 119:44–51.
      Tokarska KB, Stolpe MB, Sippel S, Fischer EM, Smith CJ, Lehner F, Knutti R (2020) Past warming trend constrains future warming in CMIP6 models. Sci Adv 6:eaaz9549.
      Valdez-Torres JB, Soto-Landeros F, Osuna-Enciso T, Báez-Sañudo MA (2012) Phenological prediction models for white corn (Zea mays L.) and fall armyworm (Spodoptera frugiperda JE Smith). Agrocienc 46:399–410.
      Valencia-Rodríguez D, Jiménez-Segura L, Rogéliz CA, Parra JL (2021) Ecological niche modeling as an effective tool to predict the distribution of freshwater organisms: the case of the Sabaleta Brycon henni (Eigenmann, 1913). PLoS ONE 16:e0247876.
      Wan JZ, Wang CJ, Yu FH (2019) Effects of occurrence record number, environmental variable number, and spatial scales on MaxEnt distribution modelling for invasive plants. Biol 74:757–766.
      Wang H, Liu H, Cao G, Ma Z, Li Y, Zhang F, Zhao X, Zhao X, Jiang L, Sanders NJ, Classen AT (2020a) Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol Lett 23:701–710.
      Wang R, Jiang C, Guo X, Chen D, You C, Zhang Y, Wang M, Li Q (2020b) Potential distribution of Spodoptera frugiperda (JE Smith) in China and the major factors influencing distribution. Glob Ecol Conserv 21:e00865.
      Wei B, Wang R, Hou K, Wang X, Wu W (2018) Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Glob Ecol Conserv 16:e00477.
      Wenger SJ, Olden JD (2012) Assessing transferability of ecological models: an underappreciated aspect of statistical validation. Methods Ecol Evol 3:260–267.
      Xin X, Wu T, Zhang J, Yao J, Fang Y (2020) Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the east Asian summer monsoon. Int J Climatol 40:6423–6440.
      Xue L, Yang F, Yang C, Chen X, Zhang L, Chi Y, Yang G (2017) Identification of potential impacts of climate change and anthropogenic activities on streamflow alterations in the Tarim River Basin, China. Sci Rep 7:8254.
      Zacarias DA (2020) Global bioclimatic suitability for the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and potential co-occurrence with major host crops under climate change scenarios. Clim Change 16:555–566.
      Zhao G, Cui X, Sun J, Li T, Wang QI, Ye X, Fan B (2021) Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEnt models. Ecol Indic 132:108256.
      Zhu H, Jiang Z, Li J, Li W, Sun C, Li L (2020) Does CMIP6 inspire more confidence in simulating climate extremes over China? Adv Atmos Sci 37:1119–1132.
    • Grant Information:
      DST/CCP/MRDP/145/2018 GOI DST
    • Contributed Indexing:
      Keywords: Spodoptera frugiperda; Climate change; Ecological niche model; Environmental variables; India; Invasive species; MaxEnt; Potential distribution; Species distribution modeling
    • Publication Date:
      Date Created: 20240530 Date Completed: 20241008 Latest Revision: 20241008
    • Publication Date:
      20250114
    • Accession Number:
      10.1007/s00484-024-02715-4
    • Accession Number:
      38814474