Modafinil lightens apoptosis and inflammatory response in hepatic ischemia-reperfusion injury through inactivation of TLR9/Myd88/p38 signaling.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Zhang T;Zhang T; Wang X; Wang X
  • Source:
    Drug development research [Drug Dev Res] 2024 Jun; Vol. 85 (4), pp. e22210.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Wiley-Liss Country of Publication: United States NLM ID: 8204468 Publication Model: Print Cited Medium: Internet ISSN: 1098-2299 (Electronic) Linking ISSN: 02724391 NLM ISO Abbreviation: Drug Dev Res Subsets: MEDLINE
    • Publication Information:
      Publication: New York Ny : Wiley-Liss
      Original Publication: New York : Alan R. Liss, c1981-
    • Subject Terms:
    • Abstract:
      Hepatic ischemia/reperfusion injury (IRI) remains a severe threat during liver surgery and transplantation, accounting for unfavorable clinical outcomes. Modafinil (MOD), a wakefulness-inducing compound, is increasingly disclosed to protect against IRI. However, the specific literatures covering the association between MOD and hepatic IRI are few. Here, this paper is committed to unraveling the role and response mechanism of MOD in hepatic IRI. After the establishment of hepatic IRI mice model and cell model, relevant assay kits measured the concentrations of biochemical indicators of hepatotoxicity and hematoxylin and eosin staining estimated liver morphology. Enzyme-linked immunosorbent assay, reverse-transcription quantitative polymerase chain reaction, and western blot evaluated inflammatory levels. Terminal-deoxynucleoitidyl transferase-mediated nick end labeling assay and western blot appraised apoptosis. Western blot also analyzed the expression of Toll-like receptor 9 (TLR9)/myeloid differentiation primary response gene 88 (MyD88)/p38 signaling-associated proteins. Cell counting kit-8 method judged cell viability. MOD was discovered to mitigate liver dysfunction and morphological damage, inflammatory response, apoptosis in vivo and improve cell viability, suppress inflammatory response and apoptosis in vitro. In addition, MOD inactivated TLR9/Myd88/p38 signaling both in vitro and in vivo. Further, TLR9 elevation reversed the inhibitory role of MOD in inflammatory response and cell apoptosis in vitro. Anyway, MOD blocked TLR9/Myd88/p38 signaling to exhibit anti-inflammatory and anti-apoptotic properties in hepatic IRI.
      (© 2024 Wiley Periodicals LLC.)
    • References:
      Abbasi, Y., Mousavizadeh, K., Shabani, R., Katebi, M., & Mehdizadeh, M. (2020). Behavioral changes in combination therapy of ethanol and modafinil on rats focal cerebral ischemia. Basic and Clinical Neuroscience Journal, 11, 269–278.
      Abbasi, Y., Shabani, R., Mousavizadeh, K., Soleimani, M., & Mehdizadeh, M. (2019). Neuroprotective effect of ethanol and Modafinil on focal cerebral ischemia in rats. Metabolic Brain Disease, 34, 805–819.
      Alharbi, K. S., Fuloria, N. K., Fuloria, S., Rahman, S. B., Al‐Malki, W. H., Javed Shaikh, M. A., Thangavelu, L., Singh, S. K., Rama Raju Allam, V. S., Jha, N. K., Chellappan, D. K., Dua, K., & Gupta, G. (2021). Nuclear factor‐kappa B and its role in inflammatory lung disease. Chemico‐Biological Interactions, 345, 109568.
      Bayer, A. L., & Alcaide, P. (2021). MyD88: At the heart of inflammatory signaling and cardiovascular disease. Journal of Molecular and Cellular Cardiology, 161, 75–85.
      Bernardi, A., Torres, O. V., Sosa, M., Muñiz, J. A., Urbano, F. J., Cadet, J. L., & Bisagno, V. (2020). Acute regulation of the arousal‐enhancing drugs caffeine and modafinil on class IIa HDACs in vivo and in vitro: Focus on HDAC7. Neurotoxicity Research, 38, 498–507.
      Bruckheimer, E. M., Cho, S. H., Sarkiss, M., Herrmann, J., & Mcdonnell, T. J. (1998). The Bcl‐2 gene family and apoptosis. Advances in Biochemical Engineering/Biotechnology, 62, 75–105.
      Cao, Y., Li, Q., Liu, L., Wu, H., Huang, F., Wang, C., Lan, Y., Zheng, F., Xing, F., Zhou, Q., Li, Q., Shi, H., Zhang, B., Wang, Z., & Wu, X. (2019). Modafinil protects hippocampal neurons by suppressing excessive autophagy and apoptosis in mice with sleep deprivation. British Journal of Pharmacology, 176, 1282–1297.
      Chen, H. D., Jiang, M. Z., Zhao, Y. Y., Li, X., Lan, H., Yang, W. Q., & Lai, Y. (2023). Effects of breviscapine on cerebral ischemia‐reperfusion injury and intestinal flora imbalance by regulating the TLR4/MyD88/NF‐κB signaling pathway in rats. Journal of Ethnopharmacology, 300, 115691.
      Chen, X., Lin, S., Dai, S., Han, J., Shan, P., Wang, W., Huang, Z., Ye, B., & Huang, W. (2022). Trimetazidine affects pyroptosis by targeting GSDMD in myocardial ischemia/reperfusion injury. Inflammation Research, 71, 227–241.
      Choi, E. K., & Lim, D. G. (2023). Hepatic ischemia‐reperfusion injury with respect to oxidative stress and inflammatory response: A narrative review. Journal of Yeungnam Medical Science, 40, 115–122.
      Choi, S., Kim, J. A., Li, H., Jo, S. E., Lee, H., Kim, T. H., Kim, M., Kim, S. J., & Suh, S. H. (2021). Anti‐inflammatory and anti‐fibrotic effects of modafinil in nonalcoholic liver disease. Biomedicine & Pharmacotherapy, 144, 112372.
      Han, J., Chen, D., Liu, D., & Zhu, Y. (2018). Modafinil attenuates inflammation via inhibiting Akt/NF‐κB pathway in apoE‐deficient mouse model of atherosclerosis. Inflammopharmacology, 26, 385–393.
      Kamel, M., Ahmed, S. M., & Abdelzaher, W. (2020). The potential protective effect of modafinil in intestinal ischemic reperfusion‐induced in rats. International Immunopharmacology, 88, 106983.
      Kowsari, G., Mehrabi, S., Soleimani Asl, S., Pourhamzeh, M., Mousavizadeh, K., & Mehdizadeh, M. (2021). Nicotine and modafinil combination protects against the neurotoxicity induced by 3,4‐methylenedioxymethamphetamine in hippocampal neurons of male rats. Journal of Chemical Neuroanatomy, 116, 101986.
      Kredlow, M. A., Keshishian, A., Oppenheimer, S., & Otto, M. W. (2019). The efficacy of modafinil as a cognitive enhancer: A systematic review and meta‐analysis. Journal of Clinical Psychopharmacology, 39, 455–461.
      Lester, S. N., & Li, K. (2014). Toll‐like receptors in antiviral innate immunity. Journal of Molecular Biology, 426, 1246–1264.
      Li, F., Zhou, X., Chu, S., & Chen, N. (2021). Inhibition of CKLF1 ameliorates hepatic ischemia‐reperfusion injury via MAPK pathway. Cytokine, 141, 155429.
      Liu, B., Yan, L., Jiao, X., Sun, X., Zhao, Z., Yan, J., Guo, M., & Zang, Y. (2020). Lycopene alleviates hepatic hypoxia/reoxygenation injury through Nrf2/HO‐1 pathway in AML12 cell. Journal of Interferon & Cytokine Research, 40, 406–417.
      Liu, H., & Man, K. (2021). New insights in mechanisms and therapeutics for short‐ and long‐term impacts of hepatic ischemia reperfusion injury post liver transplantation. International Journal of Molecular Sciences, 22, 8210.
      Liu, X., Zhang, P., Song, X., Cui, H., & Shen, W. (2022). PPARγ mediates protective effect against hepatic ischemia/reperfusion injury via NF‐κB pathway. Journal of Investigative Surgery, 35, 1648–1659.
      Liu, Y., Lei, Z., Chai, H., Kang, Q., & Qin, X. (2022). Salidroside alleviates hepatic ischemia‐reperfusion injury during liver transplant in rat through regulating TLR‐4/NF‐κB/NLRP3 inflammatory pathway. Scientific Reports, 12, 13973.
      Mao, X. L., Cai, Y., Chen, Y. H., Wang, Y., Jiang, X. X., Ye, L. P., & Li, S. W. (2021). Novel targets and therapeutic strategies to protect against hepatic ischemia‐reperfusion injury. Frontiers in Medicine (Lausanne), 8, 757336.
      Morsy, M. A., Ibrahim, Y. F., Abdel Hafez, S. M. N., Zenhom, N. M., Nair, A. B., Venugopala, K. N., Shinu, P., & Abdel‐Gaber, S. A. (2022). Paeonol attenuates hepatic ischemia/reperfusion injury by modulating the Nrf2/HO‐1 and TLR4/MYD88/NF‐κB signaling pathways. Antioxidants, 11, 1687.
      Nastos, C., Kalimeris, K., Papoutsidakis, N., Tasoulis, M. K., Lykoudis, P. M., Theodoraki, K., Nastou, D., Smyrniotis, V., & Arkadopoulos, N. (2014). Global consequences of liver ischemia/reperfusion injury. Oxidative Medicine and Cellular Longevity, 2014, 1–13.
      National Research Council Institute For Laboratory Animals. (1996). Guide for the care and use of laboratory animals. National Academies Press (US).
      Ni, M., Fu, H., Huang, F., Zhao, T., Chen, J. K., Li, D. J., & Shen, F. M. (2016). Vagus nerve attenuates hepatocyte apoptosis upon ischemia‐reperfusion via α7 nicotinic acetylcholine receptor on Kupffer cells in mice. Anesthesiology, 125, 1005–1016.
      Rajpoot, S., Wary, K. K., Ibbott, R., Liu, D., Saqib, U., Thurston, T. L. M., & Baig, M. S. (2021). TIRAP in the mechanism of inflammation. Frontiers in Immunology, 12, 697588.
      Shaker, M. E., Trawick, B. N., & Mehal, W. Z. (2016). The novel TLR9 antagonist COV08‐0064 protects from ischemia/reperfusion injury in non‐steatotic and steatotic mice livers. Biochemical Pharmacology, 112, 90–101.
      Sookoian, S., & Pirola, C. J. (2015). Liver enzymes, metabolomics and genome‐wide association studies: From systems biology to the personalized medicine. World Journal of Gastroenterology, 21, 711–725.
      Toledo‐Pereyra, L. H., Rodriguez, F. J., & Cejalvo, D. (1993). Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury. Transplantation, 55, 1265–1271.
      Wu, J., Lu, Y., Qin, A., Li, S., Huang, B., Jiang, X., & Qiao, Z. (2020). Modafinil ameliorated pancreatic injury and inflammation through upregulating SNIP1. General Physiology and Biophysics, 39, 383–392.
      Wu, M. Y., Yiang, G. T., Liao, W. T., Tsai, A. P. Y., Cheng, Y. L., Cheng, P. W., Li, C. Y., & Li, C. J. (2018). Current mechanistic concepts in ischemia and reperfusion injury. Cellular Physiology and Biochemistry, 46, 1650–1667.
      Xiang, W., Chao, Z. Y., & Feng, D. Y. (2015). Role of Toll‐like receptor/MYD88 signaling in neurodegenerative diseases. Reviews in the Neurosciences, 26, 407–414.
      Yang, J., Wu, Y., Xu, Y., Jia, J., Xi, W., Deng, H., & Tu, W. (2021). Dexmedetomidine resists intestinal ischemia‐reperfusion injury by inhibiting TLR4/MyD88/NF‐κB signaling. Journal of Surgical Research, 260, 350–358.
      Ye, Y., Wang, W., Zhang, W., Peng, Y., Liu, Y., Yu, S., Chen, Q., Geng, L., Zhou, L., Xie, H., Lai, M., Yu, J., & Zheng, S. (2019). Galectin‐1 attenuates hepatic ischemia reperfusion injury in mice. International Immunopharmacology, 77, 105997.
      Yousefi‐Manesh, H., Shirooie, S., Hemati, S., Shokrian‐Zeini, M., Zarei, N., Raoufi, M., Farrokhi, V., & Dehpour, A. R. (2019). Protective effects of modafinil administration on testicular torsion/detorsion damage in rats. Experimental and Molecular Pathology, 111, 104305.
      Zhang, S., Zhang, Q., Wang, F., Guo, X., Liu, T., Zhao, Y., Gu, B., Chen, H., & Li, Y. (2020). Hydroxychloroquine inhibiting neutrophil extracellular trap formation alleviates hepatic ischemia/reperfusion injury by blocking TLR9 in mice. Clinical Immunology, 216, 108461.
      Zhang, Y., Pan, Q., & Liu, Y. (2020). CXCL16 silencing alleviates hepatic ischemia‐reperfusion injury during liver transplantation by inhibiting p38 phosphorylation. Pathology, Research and Practice, 216, 152913.
      Zhou, H., Sun, J., Zhong, W., Pan, X., Liu, C., Cheng, F., Wang, P., & Rao, Z. (2020). Dexmedetomidine preconditioning alleviated murine liver ischemia and reperfusion injury by promoting macrophage M2 activation via PPARγ/STAT3 signaling. International Immunopharmacology, 82, 106363.
    • Contributed Indexing:
      Keywords: TLR9/Myd88/p38 signaling; inflammatory response; ischemia/reperfusion injury; liver; modafinil
    • Accession Number:
      0 (Toll-Like Receptor 9)
      0 (Myeloid Differentiation Factor 88)
      0 (Tlr9 protein, mouse)
      0 (Myd88 protein, mouse)
      EC 2.7.11.24 (p38 Mitogen-Activated Protein Kinases)
      0 (Benzhydryl Compounds)
    • Publication Date:
      Date Created: 20240530 Date Completed: 20240530 Latest Revision: 20240606
    • Publication Date:
      20240606
    • Accession Number:
      10.1002/ddr.22210
    • Accession Number:
      38812444