Characterization of posterior circulation blood perfusion in patients with different degrees of basilar artery tortuosity.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Yu C;Yu C; Li Y; Li Y; Xiao Y; Xiao Y; Li Q; Li Q; Lu W; Lu W; Qiu J; Qiu J; Wang F; Wang F; Li J; Li J
  • Source:
    Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology [Neurol Sci] 2024 Nov; Vol. 45 (11), pp. 5337-5345. Date of Electronic Publication: 2024 May 29.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Springer-Verlag Italia Country of Publication: Italy NLM ID: 100959175 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1590-3478 (Electronic) Linking ISSN: 15901874 NLM ISO Abbreviation: Neurol Sci Subsets: MEDLINE
    • Publication Information:
      Original Publication: Milano, Italy : Springer-Verlag Italia, c2000-
    • Subject Terms:
    • Abstract:
      Objective: The morphology of basilar artery (BA) may affect posterior circulation blood perfusion. We aimed to investigate whether different degrees of BA tortuosity could lead to the alterations of posterior circulation perfusion.
      Methods: We collected 138 subjects with different BA tortuosity scores, including 32 cases of score 0, 45 cases of score 1, 43 cases of score 2, and 18 cases of score 3. A higher score represented a higher degree of BA tortuosity. Ordered logistic regression analysis was performed to investigate the risk factors for BA tortuosity. We quantitatively measured the cerebral blood flow (CBF) in eight posterior circulation brain regions using arterial spin labeling. SPSS 25.0 was used for statistical analysis. The correlation between the CBF and BA tortuosity was corrected by the Bonferroni method. The significance level was set at 0.006 (0.05/8).
      Results: Hypertension (HR: 2.39; 95%CI: 1.23-4.71; P = 0.01) and vertebral artery dominance (HR: 2.38; 95%CI: 1.10-4.67; P = 0.03) were risk factors for BA tortuosity. CBF in occipital gray matter (R = -0.383, P < 0.001), occipital white matter (R = -0.377, P < 0.001), temporal gray matter (R = -0.292, P = 0.001), temporal white matter (R = -0.297, P < 0.001), and cerebellum (R = -0.328, P < 0.001) were negatively correlated with BA tortuosity degree. No significant correlation was found between the BA tortuosity degree and CBF in hippocampus (R = -0.208, P = 0.014), thalamus (R = -0.001, P = 0.988) and brainstem (R = -0.204, P = 0.016).
      Conclusions: BA tortuosity could affect posterior circulation blood perfusion. CBF was negatively correlated with BA tortuosity degree. The morphology of BA may serve as a biomarker for posterior circulation and the severity of posterior circulation ischemia.
      (© 2024. Fondazione Società Italiana di Neurologia.)
    • References:
      Gutierrez J, Sacco RL, Wright CB (2011) Dolichoectasia—an evolving arterial disease. Nat Rev Neurol 7:41–50. (PMID: 10.1038/nrneurol.2010.18121221115)
      Strecker C, Krafft AJ, Kaufhold L, Hüllebrandt M, Weber S, Ludwig U, Wolkewitz M, Hennemuth A, Hennig J, Harloff A (2020) Carotid geometry is an independent predictor of wall thickness–a 3D cardiovascular magnetic resonance study in patients with high cardiovascular risk. J Cardiovasc Magn Reson 22:1–12. (PMID: 10.1186/s12968-020-00657-5)
      Burulday V, Doğan A, Akgül MH, Alpua M, Çankaya I (2019) Is there a relationship between basilar artery tortuosity and vertigo? Clin Neurol Neurosurg 178:97–100. (PMID: 10.1016/j.clineuro.2019.02.00630771568)
      Hori S, Hori E, Umemura K, Shibata T, Okamoto S, Kubo M, Horie Y, Kuroda S (2020) Anatomical Variations of Vertebrobasilar Artery are Closely Related to the Occurrence of Vertebral Artery Dissection—An MR Angiography Study. J Stroke Cerebrovasc Dis 29:104636. (PMID: 10.1016/j.jstrokecerebrovasdis.2020.10463632008922)
      Yang D, Zhang C, Omran SS, Cucchiara B, Rundek T, Wright CB, Sacco RL, Elkind MS, Gutierrez J (2022) Basilar artery curvature is associated with migraine with aura in the Northern Manhattan Study. J Neurol Sci 432:120073. (PMID: 10.1016/j.jns.2021.12007334861637)
      Samim M, Goldstein A, Schindler J, Johnson MH (2016) Multimodality imaging of vertebrobasilar dolichoectasia: clinical presentations and imaging spectrum. Radiographics 36:1129–1146. (PMID: 10.1148/rg.201615003227315445)
      Li W, Feng Y, Lu W, Xie X, Xiong Z, Jing Z, Cai X (2016) Evaluating the morphological changes of intracranial arteries and whole-brain perfusion in undetermined isolated vertigo. J Neurol Sci 370:70–77. (PMID: 10.1016/j.jns.2016.09.024277727915082828)
      Ding S, Yan X, Guo H, Yin F, Sun X, Yang A, Yao W, Zhang J (2020) Morphological characteristics of the vertebrobasilar artery system in patients with hemifacial spasm and measurement of bending length for evaluation of tortuosity. Clin Neurol Neurosurg 198:106144. (PMID: 10.1016/j.clineuro.2020.10614432932027)
      Cha KS, Kim MH, Kim HJ (2003) Prevalence and clinical predictors of severe tortuosity of right subclavian artery in patients undergoing transradial coronary angiography. Am J Cardiol 92:1220–1222. (PMID: 10.1016/j.amjcard.2003.07.03814609604)
      Han H-C (2012) Twisted blood vessels: symptoms, etiology and biomechanical mechanisms. J Vasc Res 49:185–197. (PMID: 10.1159/000335123224334583369246)
      Wang Y, Huang J, Qian G, Jiang S, Miao C (2022) Study on the correlation between different levels of patients with vertebrobasilar dolichoectasia and posterior circulation blood perfusion. J Stroke Cerebrovasc Dis 31:106378. (PMID: 10.1016/j.jstrokecerebrovasdis.2022.10637835287024)
      Szalontai L (2022) The morphology of the vertebrobasilar system. Doctoral dissertation.
      Saba L, Sanfilippo R, Suri JS, Cademartiri F, Corrias G, Mannelli L, Zucca S, Senis I, Montisci R, Wintermark M (2021) Does carotid artery tortuosity play a role in stroke? Can Assoc Radiol J 72:789–796. (PMID: 10.1177/084653712199105733656944)
      Wake-Buck AK, Gatenby JC, Gore JC (2012) Hemodynamic characteristics of the vertebrobasilar system analyzed using MRI-based models. PLoS ONE 7:e51346. (PMID: 10.1371/journal.pone.0051346232515033519605)
      Deng S, Zheng J, Wu Y, Yang D, Chen H, Sun B, Xue Y, Zhao X (2021) Geometrical characteristics associated with atherosclerotic disease in the basilar artery: a magnetic resonance vessel wall imaging study. Quant Imaging Med Surg 11:2711. (PMID: 10.21037/qims-20-1291340797358107302)
      Smoker W, Price MJ, Keyes WD, Corbett JJ, Gentry LR (1986) High-resolution computed tomography of the basilar artery: 1. Normal size and position. Am J Neuroradiol 7:55–60. (PMID: 30821448334772)
      Giang D, Perlin S, Monajati A, Kido D, Hollander J (1988) Vertebrobasilar dolichoectasia: assessment using MR. Neuroradiology 30:518–523. (PMID: 10.1007/BF003396933226539)
      Hong JM, Chung C-S, Bang OY, Yong SW, Joo IS, Huh K (2009) Vertebral artery dominance contributes to basilar artery curvature and peri-vertebrobasilar junctional infarcts. J Neurol Neurosurg Psychiatry 80:1087–1092. (PMID: 10.1136/jnnp.2008.16980519414436)
      La Barbera G, La Marca G, Martino A, Lo Verde R, Valentino F, Lipari D, Peri G, Cappello F, Valentino B (2006) Kinking, coiling, and tortuosity of extracranial internal carotid artery: is it the effect of a metaplasia? Surg Radiol Anat 28:573–580. (PMID: 10.1007/s00276-006-0149-117119858)
      Ciurică S, Lopez-Sublet M, Loeys BL, Radhouani I, Natarajan N, Vikkula M, Maas AH, Adlam D, Persu A (2019) Arterial tortuosity: novel implications for an old phenotype. Hypertension 73:951–960. (PMID: 10.1161/HYPERTENSIONAHA.118.1164730852920)
      Chen Y-Y, Chao A-C, Hsu H-Y, Chung C-P, Hu H-H (2010) Vertebral artery hypoplasia is associated with a decrease in net vertebral flow volume. Ultrasound Med Biol 36:38–43. (PMID: 10.1016/j.ultrasmedbio.2009.08.01219900752)
      Zhang D-p, Zhang S-l, Zhang J-w, Zhang H-t, Fu S-q, Yu M, Ren Y-f, Ji P (2014) Basilar artery bending length, vascular risk factors, and pontine infarction. J Neurol Sci 338:142–147. (PMID: 10.1016/j.jns.2013.12.03724548482)
      Olindo S, Khaddam S, Bocquet J, Chausson N, Aveillan M, Cabre P, Smadja D (2010) Association between basilar artery hypoplasia and undetermined or lacunar posterior circulation ischemic stroke. Stroke 41:2371–2374. (PMID: 10.1161/STROKEAHA.110.59314520798365)
      Thierfelder KM, Baumann AB, Sommer WH, Armbruster M, Opherk C, Janssen H, Reiser MF, Straube A, von Baumgarten L (2014) Vertebral artery hypoplasia: frequency and effect on cerebellar blood flow characteristics. Stroke 45:1363–1368. (PMID: 10.1161/STROKEAHA.113.00418824699051)
      Cao S-G, Ni X, Wu Q, He J, Cui P, Ge T, Li Y, Wang J, Wen’an X, Xia M (2020) Basilar artery dolichosis is associated with a poor 90-day outcome in acute isolated pontine infarction. Sci Rep 10:6557.
      Zhu Y-Q, Xing H, Dai D, Kallmes D, Kadirvel R (2017) Differential interstrain susceptibility to vertebrobasilar dolichoectasia in a mouse model. Am J Neuroradiol 38:611–616. (PMID: 10.3174/ajnr.A5028279797957959994)
      Zhou L, Yan Y, Du H, Ni X, Wang G, Wang Q (2020) Plaque features and vascular geometry in basilar artery atherosclerosis. Medicine 99:e19742.
      Liu J, Lin C, Minuti A, Lipton M (2021) Arterial spin labeling compared to dynamic susceptibility contrast MR perfusion imaging for assessment of ischemic penumbra: A systematic review. J Neuroimaging 31:1067–1076. (PMID: 10.1111/jon.1291334388271)
      Cutajar M, Thomas DL, Hales PW, Banks T, Clark CA, Gordon I (2014) Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility. Eur Radiol 24:1300–1308. (PMID: 10.1007/s00330-014-3130-024599625)
      Clement P, Petr J, Dijsselhof MBJ, Padrela B, Pasternak M, Dolui S, Jarutyte L, Pinter N, Hernandez-Garcia L, Jahn A et al (2022) A Beginner’s Guide to Arterial Spin Labeling (ASL) Image Processing. Front Radiol 2:929533. (PMID: 10.3389/fradi.2022.9295333749266610365107)
      Peng YF, Zhang HL, Zhang DP, Zhao M, Zhang SL, Yin S (2018) Perfusion by delayed time to peak in vertebrobasilar dolichoectasia patients with vertigo. Ann Clin Transl Neurol 5:1562–1573. (PMID: 10.1002/acn3.665305646226292190)
      McBryde FD, Malpas SC, Paton J (2017) Intracranial mechanisms for preserving brain blood flow in health and disease. Acta Physiol 219:274–287. (PMID: 10.1111/apha.12706)
      Lucifero AG, Baldoncini M, Bruno N, Tartaglia N, Ambrosi A, Marseglia GL, Galzio R, Campero A, Hernesniemi J, Luzzi S (2021) Microsurgical Neurovascular Anatomy of the Brain: The Posterior Circulation (Part II). Acta Bio Medica: Atenei Parmensis 92:e2021413.
      Tatu L, Vuillier F (2014) Structure and vascularization of the human hippocampus. Hippocampus Clin Neurosci 34:18–25. (PMID: 10.1159/000356440)
      Rodríguez-Hernández A, Rhoton AL, Lawton MT (2011) Segmental anatomy of cerebellar arteries: a proposed nomenclature. J Neurosurg 115:387–397. (PMID: 10.3171/2011.3.JNS10141321548748)
      Willie CK, Tzeng YC, Fisher JA, Ainslie PN (2014) Integrative regulation of human brain blood flow. J Physiol 592:841–859. (PMID: 10.1113/jphysiol.2013.268953243960593948549)
      Stojanović N, Stefanović I, Kostić A, Radisavejević M, Stojanov D, Petrović S (2015) Analysis of the symmetric configuration of the circle of Willis in a series of autopsied corpses. Vojnosanit Pregl 72:356–360. (PMID: 10.2298/VSP1504356S26040182)
      Claassen J, Thijssen DHJ, Panerai RB, Faraci FM (2021) Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev 101:1487–1559. (PMID: 10.1152/physrev.00022.2020337691018576366)
    • Contributed Indexing:
      Keywords: Arterial spin labeling; Basilar artery tortuosity; Cerebral blood flow; Vertebral artery dominance
    • Publication Date:
      Date Created: 20240529 Date Completed: 20241012 Latest Revision: 20241012
    • Publication Date:
      20241013
    • Accession Number:
      10.1007/s10072-024-07591-9
    • Accession Number:
      38809448