Decoding the effect of photoperiodic cues in transducing kisspeptin-melatonin circuit during the pubertal onset in common carp.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Liss Country of Publication: United States NLM ID: 8903333 Publication Model: Print Cited Medium: Internet ISSN: 1098-2795 (Electronic) Linking ISSN: 1040452X NLM ISO Abbreviation: Mol Reprod Dev Subsets: MEDLINE
    • Publication Information:
      Publication: <2005-> : Hoboken, N.J. : Wiley-Liss
      Original Publication: New York, NY : A.R. Liss, 1988-
    • Subject Terms:
    • Abstract:
      This study unravels the intricate interplay between photoperiod, melatonin, and kisspeptin to orchestrate the pubertal onset of Common carp. Female fingerlings exposed to long days (LD) exhibited a hormonal crescendo, with upregulated hypothalamic-pituitary-ovarian (HPO) axis genes (kiss1, kiss1r, kiss2, gnrh2, gnrh3) and their downstream targets (lhr, fshr, ar1, esr1). However, the expression of the melatonin receptor (mtnr1a) diminished in LD, suggesting a potential inhibitory role. This hormonal symphony was further amplified by increased activity of key transcriptional regulators (gata1, gata2, cdx1, sp1, n-myc, hoxc8, plc, tac3, tacr3) and decreased expression of delayed puberty genes (mkrn1, dlk1). In contrast, short days (SD) muted this hormonal chorus, with decreased gnrh gene and regulator expression, elevated mtnr1a, and suppressed gonadal development. In in-vitro, estradiol mimicked the LD effect, boosting gnrh and regulator genes while dampening mtnr1a and melatonin-responsive genes. Conversely, melatonin acted as a conductor, downregulating gnrh and regulator genes and amplifying mtnr1a. Our findings illuminate the crucial roles of melatonin and kisspeptin as opposing forces in regulating pubertal timing. LD-induced melatonin suppression allows the kisspeptin symphony to flourish, triggering GnRH release and, ultimately, gonadal maturation. This delicate dance between photoperiod, melatonin, and kisspeptin orchestrates common carp's transition from juvenile to reproductive life.
      (© 2024 Wiley Periodicals LLC.)
    • References:
      Abreu, A. P., Macedo, D. B., Brito, V. N., Kaiser, U. B., & Latronico, A. C. (2015). A new pathway in the control of the initiation of puberty: The MKRN3 gene. Journal of Molecular Endocrinology, 54(3), R131–R139. https://doi.org/10.1530/JME-14-0315.
      Acharjee, A., Chaube, R., & Joy, K. P. (2017). Effects of altered photoperiod and temperature on expression levels of gonadotrophin subunit mRNAs in the female stinging catfish Heteropneustes fossilis. Journal of Fish Biology, 90(6), 2289–2311. https://doi.org/10.1111/jfb.13305.
      Van Aerle, R., Kille, P., Lange, A., & Tyler, C. R. (2008). Evidence for the existence of a functional Kiss1/Kiss1 receptor pathway in fish. Peptides, 29(1), 57–64. https://doi.org/10.1016/j.peptides.2007.10.018.
      Alvarado, M. V., Carrillo, M., & Felip, A. (2015). Melatonin‐induced changes in kiss/gnrh gene expression patterns in the brain of male sea bass during spermatogenesis. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 185, 69–79. https://doi.org/10.1016/j.cbpa.2015.03.010.
      Basting, R. T., Napimoga, M. H., de Lima, J. M., de Freitas, N. S., & Clemente‐Napimoga, J. T. (2021). Fast and accurate protocol for histology and immunohistochemistry reactions in temporomandibular joint of rats. Archives of Oral Biology, 126, 105115. https://doi.org/10.1016/j.archoralbio.2021.105115.
      Benfey, T. J. (1999). The physiology and behavior of triploid fishes. Reviews in Fisheries Science, 7(1), 39–67. https://doi.org/10.1080/10641269991319162.
      Bromage, N., Porter, M., & Randall, C. (2001). The environmental regulation of maturation in farmed finfish with special reference to the role of photoperiod and melatonin. Aquaculture, 197(1–4), 63–98. https://doi.org/10.1016/S0044-8486(01)00583-X.
      Callard, G. V., Tchoudakova, A. V., Kishida, M., & Wood, E. (2001). Differential tissue distribution, developmental programming, estrogen regulation and promoter characteristics of cyp19 genes in teleost fish. The Journal of Steroid Biochemistry and Molecular Biology, 79(1–5), 305–314. https://doi.org/10.1016/S0960-0760(01)00147-9.
      Cao, M., Chen, J., Peng, W., Wang, Y., Liao, L., Li, Y., Trudeau, V. L., Zhu, Z., & Hu, W. (2014). Effects of growth hormone over‐expression on reproduction in the common carp Cyprinus carpio L. General and Comparative Endocrinology, 195, 47–57. https://doi.org/10.1016/j.ygcen.2013.10.011.
      Chaube, R., Sharma, S., Senthilkumaran, B., Bhat, S. G., & Joy, K. P. (2020). Expression profile of kisspeptin2 and gonadotropin‐releasing hormone2 mRNA during photo‐thermal and melatonin treatments in the female air‐breathing catfish Heteropneustes fossilis. Fish Physiology and Biochemistry, 46, 2403–2419. https://doi.org/10.1007/s10695-020-00888-4.
      Dufour, S., & Rousseau, K. (2007). Neuroendocrinology of fish metamorphosis and puberty: Evolutionary and ecophysiological perspectives. Journal of Marine Science and Technology, 15(5), 6. https://doi.org/10.51400/2709-6998.2058.
      Fernandes, I. M., Bastos, Y. F., Barreto, D. S., Lourenço, L. S., & Penha, J. M. (2017). The efficacy of clove oil as an anaesthetic and in euthanasia procedure for small‐sized tropical fishes. Brazilian Journal of Biology, 77(3), 444–450. https://doi.org/10.1590/1519-6984.15015.
      Filby, A. L., Aerle, R., Duitman, J., & Tyler, C. R. (2008). The kisspeptin/gonadotropin‐releasing hormone pathway and molecular signaling of puberty in fish. Biology of Reproduction, 78(2), 278–289. https://doi.org/10.1095/biolreprod.107.063420.
      García, I. D., Plaul, S. E., Torres, D., Del Fresno, P. S., Miranda, L. A., & Colautti, D. C. (2019). Effect of photoperiod on ovarian maturation in Cheirodon interruptus (Teleostei: Characidae). Brazilian Journal of Biology, 79, 669–677. https://doi.org/10.1590/1519-6984.188607.
      Goto, T., Tomikawa, J., Ikegami, K., Minabe, S., Abe, H., Fukanuma, T., Imamura, T., Takase, K., Sanbo, M., Tomita, K., Hirabayashi, M., Maeda, K., Tsukamura, H., & Uenoyama, Y. (2015). Identification of hypothalamic arcuate nucleus‐specific enhancer region of Kiss1 gene in mice. Molecular Endocrinology, 29(1), 121–129. https://doi.org/10.1210/me.2014-1289.
      Heggberget, T. G. (1988). Reproduction in Atlantic salmon (Salmo Salar): aspects of spawning, incubation, early life history and population structure: A summary of studies in Norwegian streams. Ph.D. Thesis, University of Trondheim.
      Jalabert, B. (2005). Particularities of reproduction and oogenesis in teleost fish compared to mammals. Reproduction, Nutrition, Development, 45(3), 261–279. https://doi.org/10.1051/rnd:2005019.
      Kaiser, U. B., Sabbagh, E., Chen, M. T., Chin, W. W., & Saunders, B. D. (1998). Sp1 binds to the rat luteinizing hormone β (LHβ) gene promoter and mediates gonadotropin‐releasing hormone‐stimulated expression of the LHβ subunit gene. Journal of Biological Chemistry, 273(21), 12943–12951. https://doi.org/10.1074/jbc.273.21.12943.
      Laing, L. V., Viana, J., Dempster, E. L., Uren Webster, T. M., Van Aerle, R., Mill, J., & Santos, E. M. (2018). Sex‐specific transcription and DNA methylation profiles of reproductive and epigenetic associated genes in the gonads and livers of breeding zebrafish. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 222, 16–25. https://doi.org/10.1016/j.cbpa.2018.04.004.
      Macedo, D. B., & Kaiser, U. B. (2019). DLK1, notch signaling and the timing of puberty. Seminars in Reproductive Medicine, 37(4), 174–181. https://doi.org/10.1055/s-0039-3400963.
      Maione, L., Naulé, L., & Kaiser, U. B. (2020). Makorin RING finger protein 3 and central precocious puberty. Current Opinion in Endocrine and Metabolic Research, 14, 152–159. https://doi.org/10.1016/j.coemr.2020.08.003.
      Maitra, S. K., & Hasan, K. N. (2016). The role of melatonin as a hormone and an antioxidant in the control of fish reproduction. Frontiers in Endocrinology, 7, 38. https://doi.org/10.3389/fendo.2016.00038.
      Migaud, H., Davie, A., & Taylor, J. F. (2010). Current knowledge on the photoneuroendocrine regulation of reproduction in temperate fish species. Journal of Fish Biology, 76(1), 27–68. https://doi.org/10.1111/j.1095-8649.2009.02500.x.
      Miranda, L. A., Strüssmann, C. A., & Somoza, G. M. (2009). Effects of light and temperature conditions on the expression of GnRH and GtH genes and levels of plasma steroids in Odontesthes bonariensis females. Fish Physiology and Biochemistry, 35, 101–108. https://doi.org/10.1007/s10695-008-9232-3.
      Nampoothiri, L., Maharjan, R., & Nagar, P. (2010). Effect of Aloe barbadensis Mill. formulation on Letrozole induced polycystic ovarian syndrome rat model. Journal of Ayurveda and Integrative Medicine, 1(4), 273. https://doi.org/10.4103/0975-9476.74090.
      Navarro, V. M. (2020). Tachykinin signaling in the control of puberty onset. Current Opinion in Endocrine and Metabolic Research, 14, 92–96. https://doi.org/10.1016/j.coemr.2020.06.009.
      Nyuji, M., Hamada, K., Kazeto, Y., Mekuchi, M., Gen, K., Soyano, K., & Okuzawa, K. (2018). Photoperiodic regulation of plasma gonadotropin levels in previtellogenic greater amberjack (Seriola dumerili). General and Comparative Endocrinology, 269, 149–155. https://doi.org/10.1016/j.ygcen.2018.09.007.
      Okuzawa, K. (2002). Puberty in teleosts. Fish Physiology and Biochemistry, 26, 31–41. https://doi.org/10.1023/A:1023395025374.
      Oliveira, C. C. V., Fatsini, E., Fernández, I., Anjos, C., Chauvigné, F., Cerdà, J., Mjelle, R., Fernandes, J. M. O., & Cabrita, E. (2020). Kisspeptin influences the reproductive axis and circulating levels of microRNAs in Senegalese sole. International Journal of Molecular Sciences, 21(23), 9051. https://doi.org/10.3390/ijms21239051.
      Palstra, A., Curiel, D., Fekkes, M., de Bakker, M., Székely, C., van Ginneken, V., & van den Thillart, G. (2007). Swimming stimulates oocyte development in European eel. Aquaculture, 270(1–4), 321–332. https://doi.org/10.1016/j.aquaculture.2007.04.015.
      Pandya, P., Parikh, P., & Ambegaonkar, A. (2020). Evaluating the toxic potential of agrochemicals on the hypothalamic‐pituitary‐thyroid axis in tilapia (Oreochromis mossambicus). Journal of Applied Ichthyology, 36(2), 203–211. https://doi.org/10.1111/jai.13998.
      Parhar, I. S., Ogawa, S., & Sakuma, Y. (2004). Laser‐captured single digoxigenin‐labeled neurons of gonadotropin‐releasing hormone types reveal a novel G protein‐coupled receptor (Gpr54) during maturation in cichlid fish. Endocrinology, 145(8), 3613–3618. https://doi.org/10.1210/en.2004-0395.
      Park, J. W., Jin, Y. H., Oh, S. Y., & Kwon, J. Y. (2016). Kisspeptin2 stimulates the HPG axis in immature Nile tilapia (Oreochromis niloticus). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 202, 31–38. https://doi.org/10.1016/j.cbpb.2016.07.009.
      Patiño, R. (2002). Ovarian follicle growth, maturation, and ovulation in teleost fish. Fish Physiology and Biochemistry, 26, 57–70. https://doi.org/10.1023/A:1023311613987.
      Poncin, P., Mélard, C., & Philippart, J. C. (1987). Utilisation de la température et de la photopériode pour controler la maturation sexuelle en captivité de trois espéces de poissons cyprinidés européens: Barbus barbus (L.), Leuciscus cephalus (L.) et Tinca tinca (L.). résultats préliminaires. Bulletin Français de la Pêche et de la Pisciculture, 304, 1–12. https://doi.org/10.1051/kmae:1987010.
      Qujeq, D. (2002). Development of a quantitative assay method for 3 beta‐hydroxy‐delta 5‐steroid dehydrogenase in the rat testis. Steroids, 67(13–14), 1071–1077. https://doi.org/10.1016/S0039-128X(02)00068-5.
      Rather, M. A., Bhat, I. A., Gireesh‐Babu, P., Chaudhari, A., Sundaray, J. K., & Sharma, R. (2016). Molecular characterization of kisspeptin gene and effect of nano‐encapsulted kisspeptin‐10 on reproductive maturation in Catla catla. Domestic Animal Endocrinology, 56, 36–47. https://doi.org/10.1016/j.domaniend.2016.01.005.
      Reiches, M. W., & Ellison, P. T. (2022). Puberty. Human Growth and Development, Academic Press, 3, 125–153. https://doi.org/10.1016/B978-0-12-822652-0.00014-6.
      Reiter, R. J., Tan, D. X., Manchester, L. C., Paredes, S. D., Mayo, J. C., & Sainz, R. M. (2009). Melatonin and reproduction revisited. Biology of Reproduction, 81(3), 445–456. https://doi.org/10.1095/biolreprod.108.075655.
      Schulz, R. W. (2002). Spermatogenesis and its endocrine regulation. Fish Physiology and Biochemistry, 26, 43–56. https://doi.org/10.1023/A:1023303427191.
      Schulz, R. W., & Goos, H. J. T. (1999). Puberty in male fish: Concepts and recent developments with special reference to the African catfish (Clarias gariepinus). Aquaculture, 177(1–4), 5–12. https://doi.org/10.1016/S0044-8486(99)00064-2.
      Semaan, S. J., Dhamija, S., Kim, J., Ku, E. C., & Kauffman, A. S. (2012). Assessment of epigenetic contributions to sexually‐dimorphic Kiss1 expression in the anteroventral periventricular nucleus of mice. Endocrinology, 153(4), 1875–1886. https://doi.org/10.1210/en.2011-1975.
      Shivanandappa, T., & Venkatesh, S. (1997). A colorimetric assay method for 3β‐hydroxy‐δ5‐steroid dehydrogenase. Analytical Biochemistry, 254(1), 57–61. https://doi.org/10.1006/abio.1997.2406.
      Smith, J. T., Cunningham, M. J., Rissman, E. F., Clifton, D. K., & Steiner, R. A. (2005). Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology, 146(9), 3686–3692. https://doi.org/10.1210/en.2005-0488.
      Stoney, P. N., Rodrigues, D., Helfer, G., Khatib, T., Ashton, A., Hay, E. A., Starr, R., Kociszewska, D., Morgan, P., & McCaffery, P. (2017). A seasonal switch in histone deacetylase gene expression in the hypothalamus and their capacity to modulate nuclear signaling pathways. Brain, Behavior, and Immunity, 61, 340–352. https://doi.org/10.1016/j.bbi.2016.12.013.
      Tng, E. (2015). Kisspeptin signalling and its roles in humans. Singapore Medical Journal, 56(12), 649–656. https://doi.org/10.11622/smedj.2015183.
      Waghmare, S. G., Samarin, A. M., Samarin, A. M., Danielsen, M., Møller, H. S., Policar, T., Linhart, O., & Dalsgaard, T. K. (2021). Histone acetylation dynamics during in vivo and in vitro oocyte aging in common carp Cyprinus carpio. International Journal of Molecular Sciences, 22(11), 6036. https://doi.org/10.3390/ijms22116036.
      Weltzien, F. A., Andersson, E., Andersen, Ø., Shalchian‐Tabrizi, K., & Norberg, B. (2004). The brain–pituitary–gonad axis in male teleosts, with special emphasis on flatfish (Pleuronectiformes). Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 137(3), 447–477. https://doi.org/10.1016/j.cbpb.2003.11.007.
      Zanuy, S., Carrillo, M., Felip, A., Rodrı́guez, L., Blázquez, M., Ramos, J., & Piferrer, F. (2001).Genetic, hormonal and environmental approaches for the control of reproduction in the European sea bass (Dicentrarchus labrax L.). Aquaculture, 202(3–4), 187–203. https://doi.org/10.1016/S0044-8486(01)00771-2.
      Zhang, Y., Zhang, S., Liu, Z., Zhang, L., & Zhang, W. (2013). Epigenetic modifications during sex change repress gonadotropin stimulation of cyp19a1a in a teleost ricefield eel (Monopterus albus). Endocrinology, 154(8), 2881–2890. https://doi.org/10.1210/en.2012-2220.
    • Grant Information:
      CRG/2018/000992 SERB-DST, Government of India
    • Contributed Indexing:
      Keywords: HPG axis; kisspeptin; melatonin; photoperiod; puberty
    • Accession Number:
      JL5DK93RCL (Melatonin)
      0 (Kisspeptins)
      0 (Fish Proteins)
    • Publication Date:
      Date Created: 20240527 Date Completed: 20240527 Latest Revision: 20241216
    • Publication Date:
      20241217
    • Accession Number:
      10.1002/mrd.23744
    • Accession Number:
      38800960