A highly resolved nuclear phylogeny uncovers strong phylogenetic conservatism and correlated evolution of fruit color and size in Solanum L.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley on behalf of New Phytologist Trust Country of Publication: England NLM ID: 9882884 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-8137 (Electronic) Linking ISSN: 0028646X NLM ISO Abbreviation: New Phytol Subsets: MEDLINE
    • Publication Information:
      Publication: Oxford : Wiley on behalf of New Phytologist Trust
      Original Publication: London, New York [etc.] Academic Press.
    • Subject Terms:
    • Abstract:
      Mutualisms between plants and fruit-eating animals were key to the radiation of angiosperms. Still, phylogenetic uncertainties limit our understanding of fleshy-fruit evolution, as in the case of Solanum, a genus with remarkable fleshy-fruit diversity, but with unresolved phylogenetic relationships. We used 1786 nuclear genes from 247 species, including 122 newly generated transcriptomes/genomes, to reconstruct the Solanum phylogeny and examine the tempo and mode of the evolution of fruit color and size. Our analysis resolved the backbone phylogeny of Solanum, providing high support for its clades. Our results pushed back the origin of Solanum to 53.1 million years ago (Ma), with most major clades diverging between 35 and 27 Ma. Evolution of Solanum fruit color and size revealed high levels of trait conservatism, where medium-sized berries that remain green when ripe are the likely ancestral form. Our analyses revealed that fruit size and color are evolutionary correlated, where dull-colored fruits are two times larger than black/purple and red fruits. We conclude that the strong phylogenetic conservatism shown in the color and size of Solanum fruits could limit the influences of fruit-eating animals on fleshy-fruit evolution. Our findings highlight the importance of phylogenetic constraints on the diversification of fleshy-fruit functional traits.
      (© 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.)
    • References:
      Ackerly D. 2009. Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. Proceedings of the National Academy of Sciences, USA 106: 19699–19706.
      Agosta SJ, Klemens JA. 2008. Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecology Letters 11: 1123–1134.
      Arruda Bueno AD, Motta‐Junior JC. 2004. Food habits of two syntopic canids, the maned wolf (Chrysocyon brachyurus) and the crab‐eating fox (Cerdocyon thous), in southeastern Brazil. Revista Chilena de Historia Natural 77: 5–14.
      Barnett JR, Sharma R, Buonauro G, Gillis IM, Rashidzade M, Caicedo AL. 2023a. Evidence of fruit syndromes in the recently diverged wild tomato clade opens new possibilities for the study of fleshy fruit evolution. Plants, People, Planet 5: 948–962.
      Barnett JR, Tieman DM, Caicedo AL. 2023b. Variation in ripe fruit volatiles across the tomato clade: an evolutionary framework for studying fruit scent diversity in a crop wild relative. American Journal of Botany 110: e16223.
      Bascompte J, Jordano P. 2007. Plant‐animal mutualistic networks: the architecture of biodiversity. Annual Review of Ecology, Evolution, and Systematics 38: 567–593.
      Bohs L. 2005. Major clades in Solanum based on ndhF sequence data. In: Keating RC, Hollowell VC, Croat TB, eds. A Festschrift for William G. D'Arcy: the legacy of a taxonomist. St Luis, MO, USA: Missouri Botanical Garden Press, 27–49.
      Borges R, Machado JP, Gomes C, Rocha AP, Antunes A. 2019. Measuring phylogenetic signal between categorical traits and phylogenies. Bioinformatics 35: 1862–1869.
      Bushnell B. 2015. BBMap short‐read aligner, and other bioinformatics tools. [WWW document] URL https://sourceforge.net/projects/bbmap/ [accessed 20 August 2022].
      Cáceres NC, Moura MO. 2003. Fruit removal of a wild tomato, Solanum granulosoleprosum Dunal (Solanaceae), by birds, bats and non‐flying mammals in an urban Brazilian environment. Revista Brasileira de Zoologia 20: 519–522.
      Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. Blast+: architecture and applications. BMC Bioinformatics 10: 421.
      Capella‐Gutiérrez S, Silla‐Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large‐scale phylogenetic analyses. Bioinformatics 25: 1972–1973.
      Chalker‐Scott L. 1999. Environmental significance of anthocyanins in plant stress responses. Photochemistry and Photobiology 70: 1–9.
      Charles‐Dominique T, Davies TJ, Hempson GP, Bezeng BS, Daru BH, Kabongo RM, Maurin O, Muasya AM, van der Bank M, Bond WJ. 2016. Spiny plants, mammal browsers, and the origin of African savannas. Proceedings of the National Academy of Sciences, USA 113: E5572–E5579.
      Cipollini ML, Bohs LA, Mink K, Paulk E, Böhning‐Gaese K. 2002. Secondary metabolites of ripe fleshy fruits: ecology and phylogeny in the genus Solanum. In: Levey DJ, Silva WR, Galetti M, eds. Seed dispersal and frugivory: ecology, evolution and conservation. Wallingford, UK: CABI, 111–128.
      Cipollini ML, Levey DJ. 1991. Why some fruits are green when they are ripe: carbon balance in fleshy fruits. Oecologia 88: 371–377.
      Dantas VL, Pausas JG. 2022. The legacy of the extinct Neotropical megafauna on plants and biomes. Nature Communications 13: 129.
      Deanna R, Martínez C, Manchester S, Wilf P, Campos A, Knapp S, Chiarini FE, Barboza GE, Bernardello G, Sauquet H et al. 2023. Fossil berries reveal global radiation of the nightshade family by the early Cenozoic. New Phytologist 238: 2685–2697.
      Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.
      Echeverría‐Londoño S, Särkinen T, Fenton IS, Purvis A, Knapp S. 2020. Dynamism and context‐dependency in diversification of the megadiverse plant genus Solanum (Solanaceae). Journal of Systematics and Evolution 58: 767–782.
      Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology 20: 238.
      Eriksson O. 2016. Evolution of angiosperm seed disperser mutualisms: the timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores. Biological Reviews 91: 168–186.
      Ezquerro M, Burbano‐Erazo E, Rodriguez‐Concepcion M. 2023. Overlapping and specialized roles of tomato phytoene synthases in carotenoid and abscisic acid production. Plant Physiology 193: 2021–2036.
      Fischer KE, Chapman CA. 1993. Frugivores and fruit syndromes: differences in patterns at the genus and species level. Oikos 66: 472–482.
      Fleming TH. 1986. Opportunism versus specialization: the evolution of feeding strategies in frugivorous bats. In: Estrada A, Fleming TH, eds. Frugivores and seed dispersal. Dordrecht, the Netherlands: Springer, 105–118.
      Fleming TH, Dávalos LM, Mello MAR. 2020. Phyllostomid bats: a unique mammalian radiation. Chicago, IL, USA: University of Chicago Press.
      Fleming TH, Kress WJ. 2013. The ornaments of life: coevolution and conservation in the tropics. Chicago, IL, USA: University of Chicago Press.
      Frodin DG. 2004. History and concepts of big plant genera. Taxon 53: 753–776.
      Frost LA, O'Leary N, Lagomarsino LP, Tank DC, Olmstead RG. 2021. Phylogeny, classification, and character evolution of tribe Citharexyleae (Verbenaceae). American Journal of Botany 108: 1982–2001.
      Gagnon E, Hilgenhof R, Orejuela A, McDonnell A, Sablok G, Aubriot X, Giacomin L, Gouvêa Y, Bragionis T, Stehmann JR et al. 2022. Phylogenomic discordance suggests polytomies along the backbone of the large genus Solanum. American Journal of Botany 109: 580–601.
      Gardner EM, Bruun‐Lund S, Niissalo M, Chantarasuwan B, Clement WL, Geri C, Harrison RD, Hipp AL, Holvoet M, Khew G et al. 2023. Echoes of ancient introgression punctuate stable genomic lineages in the evolution of figs. Proceedings of National Academy of Sciences, USA 120: e2222035120.
      Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q et al. 2011. Full‐length transcriptome assembly from RNA‐Seq data without a reference genome. Nature Biotechnology 29: 644–652.
      Guo C, Luo Y, Gao LM, Yi TS, Li HT, Yang JB, Li DZ. 2023. Phylogenomics and the flowering plant tree of life. Journal of Integrative Plant Biology 65: 299–323.
      Herrera CM. 1985. Determinants of plant–animal coevolution: the case of mutualistic dispersal of seeds by vertebrates. Oikos 44: 132–141.
      Hilgenhof R, Gagnon E, Knapp S, Aubriot X, Tepe EJ, Bohs L, Giacomin LL, Gouvêa YF, Martine CT, Orejuela A et al. 2023. Morphological trait evolution in Solanum (Solanaceae): evolutionary lability of key taxonomic characters. Taxon 72: 811–847.
      Huang B, Ruess H, Liang Q, Colleoni C, Spooner DM. 2019. Analyses of 202 plastid genomes elucidate the phylogeny of Solanum section Petota. Scientific Reports 9: 4454.
      Huang J, Xu W, Zhai J, Hu Y, Guo J, Zhang C, Zhao Y, Zhang L, Martine C, Ma H et al. 2023. Nuclear phylogeny and insights into whole‐genome duplications and reproductive development of Solanaceae plants. Plant Communications 4: 100595.
      Huang W, Zhang L, Columbus JT, Hu Y, Zhao Y, Tang L, Guo Z, Chen W, McKain M, Bartlett M et al. 2022. A well‐supported nuclear phylogeny of Poaceae and implications for the evolution of C4 photosynthesis. Molecular Plant 15: 755–777.
      Huelsenbeck JP, Nielsen R, Bollback JP. 2003. Stochastic mapping of morphological characters. Systematic Biology 52: 131–158.
      Jacomassa FAF, Pizo MA. 2010. Birds and bats diverge in the qualitative and quantitative components of seed dispersal of a pioneer tree. Acta Oecologica 36: 493–496.
      Janson CH. 1983. Adaptation of fruit morphology to dispersal agents in a Neotropical forest. Science 219: 187–189.
      Janzen DH. 1985. On ecological fitting. Oikos 45: 308–310.
      Jaramillo C, Ochoa D, Contreras L, Pagani M, Carvajal‐Ortiz H, Pratt LM, Krishnan S, Cardona A, Romero M, Quiroz L et al. 2010. Effects of rapid global warming at the Paleocene–Eocene boundary on Neotropical vegetation. Science 330: 957–961.
      Jordano P. 1995. Angiosperm fleshy fruits and seed dispersers: a comparative analysis of adaptation and constraints in plant‐animal interactions. The American Naturalist 145: 163–191.
      Katoh K, Standley DM. 2013. Mafft multiple sequence alignment software v.7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780.
      Knapp S, Bohs L, Nee M, Spooner DM. 2004. Solanaceae – a model for linking genomics with biodiversity. Comparative and Functional Genomics 5: 285–291.
      Kürschner WM, Kvaček Z, Dilcher DL. 2008. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proceedings of the National Academy of Sciences, USA 105: 449–453.
      Lewis PO. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50: 913–925.
      Livingstone K, Anderson S. 2009. Patterns of variation in the evolution of carotenoid biosynthetic pathway enzymes of higher plants. Journal of Heredity 100: 754–761.
      Lobova TA, Geiselman CK, Mori SA. 2009. Seed dispersal by bats in the neotropics. Bronx, NY, USA: New York Botanical Garden.
      Lomáscolo SB, Levey DJ, Kimball RT, Bolker BM, Alborn HT. 2010. Dispersers shape fruit diversity in Ficus (Moraceae). Proceedings of the National Academy of Sciences, USA 107: 14668–14672.
      Lomáscolo SB, Speranza P, Kimball RT. 2008. Correlated evolution of fig size and color supports the dispersal syndromes hypothesis. Oecologia 156: 783–796.
      Lu L, Fritsch PW, Matzke NJ, Wang H, Kron KA, Li D‐Z, Wiens JJ. 2019. Why is fruit colour so variable? Phylogenetic analyses reveal relationships between fruit‐colour evolution, biogeography and diversification. Global Ecology and Biogeography 28: 891–903.
      Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y et al. 2012. SOAPdenovo2: an empirically improved memory‐efficient short‐read de novo assembler. GigaScience 1: 18.
      MacFadden BJ, Higgins P. 2004. Ancient ecology of 15‐million‐year‐old browsing mammals within C3 plant communities from Panama. Oecologia 140: 169–182.
      Meseguer AS, Michel A, Fabre P‐H, Pérez Escobar OA, Chomicki G, Riina R, Antonelli A, Antoine P‐O, Delsuc F, Condamine FL. 2022. Diversification dynamics in the Neotropics through time, clades, and biogeographic regions. eLife 11: e74503.
      Moyle LC. 2008. Ecological and evolutionary genomics in the wild tomatoes (Solanum sect. Lycopersicon). Evolution 62: 2995–3013.
      do Nascimento LF, Guimarães PR, Onstein RE, Kissling WD, Pires MM. 2020. Associated evolution of fruit size, fruit colour and spines in Neotropical palms. Journal of Evolutionary Biology 33: 858–868.
      Nevo O, Valenta K, Razafimandimby D, Melin AD, Ayasse M, Chapman CA. 2018. Frugivores and the evolution of fruit colour. Biology Letters 14: 20180377.
      Obeso JR. 2002. The costs of reproduction in plants. New Phytologist 155: 321–348.
      Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877–884.
      Paradis E, Claude J, Strimmer K. 2004. Ape: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290.
      Pease JB, Haak DC, Hahn MW, Moyle LC. 2016. Phylogenomics reveals three sources of adaptive variation during a rapid radiation. PLoS Biology 14: e1002379.
      Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Wörheide G, Baurain D. 2011. Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biology 9: e1000602.
      Rausher MD, Miller RE, Tiffin P. 1999. Patterns of evolutionary rate variation among genes of the anthocyanin biosynthetic pathway. Molecular Biology and Evolution 16: 266–274.
      Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217–223.
      Revell LJ. 2021. A variable‐rate quantitative trait evolution model using penalized‐likelihood. PeerJ 9: e11997.
      Rojas D, Warsi OM, Dávalos LM. 2016. Bats (Chiroptera: Noctilionoidea) challenge a recent origin of extant Neotropical diversity. Systematic Biology 65: 432–448.
      Ruan Y‐L, Patrick JW, Bouzayen M, Osorio S, Fernie AR. 2012. Molecular regulation of seed and fruit set. Trends in Plant Science 17: 656–665.
      Saldaña‐Vázquez RA, Fleming TH. 2020. The frugivores: evolution, functional traits, and their role in seed dispersal. In: Fleming TH, Dávalos LM, Mello AR, eds. Phyllostomid bats: a unique mammalian radiation. Chicago, IL, USA: University of Chicago Press, 295–307.
      Särkinen T, Bohs L, Olmstead RG, Knapp S. 2013. A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000‐tip tree. BMC Evolutionary Biology 13: 214.
      Särkinen T, Kottner S, Stuppy W, Ahmed F, Knapp S. 2018. A new commelinid monocot seed fossil from the early Eocene previously identified as Solanaceae. American Journal of Botany 105: 95–107.
      Schupp EW, Jordano P, Gómez JM. 2010. Seed dispersal effectiveness revisited: a conceptual review. New Phytologist 188: 333–353.
      Shen W, Le S, Li Y, Hu F. 2016. SeqKit: a cross‐platform and ultrafast toolkit for Fasta/Q file manipulation. PLoS ONE 11: e0163962.
      Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. Busco: assessing genome assembly and annotation completeness with single‐copy orthologs. Bioinformatics 31: 3210–3212.
      Sinnott‐Armstrong MA, Lee C, Clement WL, Donoghue MJ. 2020. Fruit syndromes in Viburnum: correlated evolution of color, nutritional content, and morphology in bird‐dispersed fleshy fruits. BMC Evolutionary Biology 20: 7.
      Smith SA, O'Meara BC. 2012. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28: 2689–2690.
      Spriggs EL, Clement WL, Sweeney PW, Madriñán S, Edwards EJ, Donoghue MJ. 2015. Temperate radiations and dying embers of a tropical past: the diversification of Viburnum. New Phytologist 207: 340–354.
      Stamatakis A. 2014. RAxML v.8: a tool for phylogenetic analysis and post‐analysis of large phylogenies. Bioinformatics 30: 1312–1313.
      Stern S, Agra MDF, Bohs L. 2011. Molecular delimitation of clades within New World species of the ‘spiny solanums’ (Solanum subg. Leptostemonum). Taxon 60: 1429–1441.
      Stournaras KE, Lo E, Böhning‐Gaese K, Cazetta E, Matthias Dehling D, Schleuning M, Stoddard MC, Donoghue MJ, Prum RO, Martin Schaefer H. 2013. How colorful are fruits? Limited color diversity in fleshy fruits on local and global scales. New Phytologist 198: 617–629.
      Strickler SR, Bombarely A, Munkvold JD, York T, Menda N, Martin GB, Mueller LA. 2015. Comparative genomics and phylogenetic discordance of cultivated tomato and close wild relatives. PeerJ 3: e793.
      Sukumaran J, Holder MT. 2010. DendroPy: a Python library for phylogenetic computing. Bioinformatics 26: 1569–1571.
      Symon DE. 1979. Fruit Diversity and Dispersal in Solanum in Australia. Journal of the Adelaide Botanic Garden 1: 321–331.
      Symonds MRE, Blomberg SP. 2014. A primer on phylogenetic generalised least squares. In: Garamszegi LZ, ed. Modern phylogenetic comparative methods and their application in evolutionary biology. Berlin, Heidelberg, Germany: Springer Berlin Heidelberg, 105–130.
      Tang D, Jia Y, Zhang J, Li H, Cheng L, Wang P, Bao Z, Liu Z, Feng S, Zhu X et al. 2022. Genome evolution and diversity of wild and cultivated potatoes. Nature 606: 535–541.
      Tepe EJ, Anderson GJ, Spooner DM, Bohs L. 2016. Relationships among wild relatives of the tomato, potato, and pepino. Taxon 65: 262–276.
      Utescher T, Mosbrugger V. 2007. Eocene vegetation patterns reconstructed from plant diversity – a global perspective. Palaeogeography, Palaeoclimatology, Palaeoecology 247: 243–271.
      Valenta K, Kalbitzer U, Razafimandimby D, Omeja P, Ayasse M, Chapman CA, Nevo O. 2018. The evolution of fruit colour: phylogeny, abiotic factors and the role of mutualists. Scientific Reports 8: 14302.
      Valenta K, Nevo O. 2020. The dispersal syndrome hypothesis: how animals shaped fruit traits, and how they did not. Functional Ecology 34: 1158–1169.
      Valido A, Schaefer HM, Jordano P. 2011. Colour, design and reward: phenotypic integration of fleshy fruit displays. Journal of Evolutionary Biology 24: 751–760.
      Van Der Pijl L. 1982. Principles of dispersal in higher plants. Berlin, Heidelberg, Germany: Springer.
      Vasconcellos‐Neto J, Albuquerque LBD, Silva WR. 2009. Seed dispersal of Solanum thomasiifolium Sendtner (Solanaceae) in the Linhares Forest, Espírito Santo state, Brazil. Acta Botanica Brasilica 23: 1171–1179.
      Voigt FA, Bleher B, Fietz J, Ganzhorn JU, Schwab D, Böhning‐Gaese K. 2004. A comparison of morphological and chemical fruit traits between two sites with different frugivore assemblages. Oecologia 141: 94–104.
      Weese TL, Bohs L. 2007. A three‐gene phylogeny of the genus Solanum (Solanaceae). Systematic Botany 32: 445–463.
      Wheelwright NT. 1985. Fruit‐size, gape width, and the diets of fruit‐eating birds. Ecology 66: 808–818.
      Wheelwright NT, Janson CH. 1985. Colors of fruit displays of bird‐dispersed plants in two tropical forests. The American Naturalist 126: 777–799.
      Wilf P, Carvalho MR, Gandolfo MA, Cúneo NR. 2017. Eocene lantern fruits from Gondwanan Patagonia and the early origins of Solanaceae. Science 355: 71–75.
      Xiang Y, Huang C‐H, Hu Y, Wen J, Li S, Yi T, Chen H, Xiang J, Ma H. 2017. Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Molecular Biology and Evolution 34: 262–281.
      Xiang Y, Zhang T, Zhao Y, Dong H, Chen H, Hu Y, Huang C‐H, Xiang J, Ma H. 2024. Angiosperm‐wide analysis of fruit and ovary evolution aided by a new nuclear phylogeny supports association of the same ovary type with both dry and fleshy fruits. Journal of Integrative Plant Biology 66: 228–251.
      Zhang C, Rabiee M, Sayyari E, Mirarab S. 2018. ASTRAL‐III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19: 153.
      Zhang G, Hu Y, Huang M, Huang W, Liu D, Zhang D, Hu H, Downing JL, Liu Z, Ma H. 2023. Comprehensive phylogenetic analyses of Orchidaceae using nuclear genes and evolutionary insights into epiphytism. Journal of Integrative Plant Biology 65: 1204–1225.
      Zhang G, Ma H. 2024. Nuclear phylogenomics of angiosperms and insights into their relationships and evolution. Journal of Integrative Plant Biology 66: 546–578.
      Zhang L, Morales‐Briones DF, Li Y, Zhang G, Zhang T, Huang C‐H, Guo P, Zhang K, Wang Y, Wang H et al. 2023. Phylogenomics insights into gene evolution, rapid species diversification, and morphological innovation of the apple tribe (Maleae, Rosaceae). New Phytologist 240: 2102–2120.
      Zhang S, Yu H, Wang K, Zheng Z, Liu L, Xu M, Jiao Z, Li R, Liu X, Li J et al. 2018. Detection of major loci associated with the variation of 18 important agronomic traits between Solanum pimpinellifolium and cultivated tomatoes. The Plant Journal 95: 312–323.
    • Grant Information:
      Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; DEB-2129365 National Science Foundation; Fulbright Program; Pennsylvania State University; Association for Tropical Biology and Conservation Seed Research Grant
    • Contributed Indexing:
      Keywords: Solanaceae; dispersal syndrome hypothesis; eggplant; fruit evolution; nightshades; phylogenomics; potato; tomato
    • Publication Date:
      Date Created: 20240527 Date Completed: 20240620 Latest Revision: 20240720
    • Publication Date:
      20240721
    • Accession Number:
      10.1111/nph.19849
    • Accession Number:
      38798267