LDHA-mediated M2-type macrophage polarization via tumor-derived exosomal EPHA2 promotes renal cell carcinoma progression.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Liss Country of Publication: United States NLM ID: 8811105 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1098-2744 (Electronic) Linking ISSN: 08991987 NLM ISO Abbreviation: Mol Carcinog Subsets: MEDLINE
    • Publication Information:
      Publication: <2005- > : [Hoboken, N.J.] : Wiley-Liss
      Original Publication: New York : Alan R. Liss, Inc., c1988-
    • Subject Terms:
    • Abstract:
      Lactate dehydrogenase A (LDHA) is known to promote the growth and invasion of various types of tumors, affects tumor resistance, and is associated with tumor immune escape. But how LDHA reshapes the tumor microenvironment and promotes the progression of renal cell carcinoma (RCC) remains unclear. In this study, we found that LDHA was highly expressed in clear cell RCC (ccRCC), and this high expression was associated with macrophage infiltration, while macrophages were highly infiltrated in ccRCC, affecting patient prognosis via M2-type polarization. Our in vivo and in vitro experiments demonstrated that LDHA and M2-type macrophages could enhance the proliferation, invasion, and migration abilities of ccRCC cells. Mechanistically, high expression of LDHA in ccRCC cells upregulated the expression of EPHA2 in exosomes derived from renal cancer. Exosomal EPHA2 promoted M2-type polarization of macrophages by promoting activation of the PI3K/AKT/mTOR pathway in macrophages, thereby promoting the progression of ccRCC. All these findings suggest that EPHA2 may prove to be a potential therapeutic target for advanced RCC.
      (© 2024 Wiley Periodicals LLC.)
    • References:
      Capitanio U, Bensalah K, Bex A, et al. Epidemiology of renal cell carcinoma. Eur Urol. 2019;75(1):74‐84.
      Capitanio U, Montorsi F. Renal cancer. Lancet. 2016;387(10021):894‐906.
      Ljungberg B, Albiges L, Abu‐Ghanem Y, et al. European Association of Urology Guidelines on renal cell carcinoma: the 2022 update. Eur Urol. 2022;82(4):399‐410.
      Rini BI, Plimack ER, Stus V, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal‐cell carcinoma. N Engl J Med. 2019;380(12):1116‐1127.
      Motzer RJ, Penkov K, Haanen J, et al. Avelumab plus axitinib versus sunitinib for advanced renal‐cell carcinoma. N Engl J Med. 2019;380(12):1103‐1115.
      Estrella V, Chen T, Lloyd M, et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 2013;73(5):1524‐1535.
      Colegio OR, Chu NQ, Szabo AL, et al. Functional polarization of tumour‐associated macrophages by tumour‐derived lactic acid. Nature. 2014;513(7519):559‐563.
      Sharma D, Singh M, Rani R. Role of LDH in tumor glycolysis: regulation of LDHA by small molecules for cancer therapeutics. Sem Cancer Biol. 2022;87:184‐195.
      Liu J, Zhang C, Zhang T, et al. Metabolic enzyme LDHA activates Rac1 GTPase as a noncanonical mechanism to promote cancer. Nature Metabolism. 2022;4(12):1830‐1846.
      Girgis H, Masui O, White NM, et al. Lactate dehydrogenase A is a potential prognostic marker in clear cell renal cell carcinoma. Mol Cancer. 2014;13(1):101.
      Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L. Macrophages and metabolism in the tumor microenvironment. Cell Metab. 2019;30(1):36‐50.
      Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor‐associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549‐555.
      Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol: Mech Dis. 2020;15(1):123‐147.
      Murray PJ, Wynn TA. Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol. 2011;89(4):557‐563.
      Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32(5):593‐604.
      Wei CY, Zhu MX, Zhang PF, et al. PKCα/ZFP64/CSF1 axis resets the tumor microenvironment and fuels anti‐PD1 resistance in hepatocellular carcinoma. J Hepatol. 2022;77(1):163‐176.
      Chen J, Zhang K, Zhi Y, et al. Tumor‐derived exosomal miR‐19b‐3p facilitates M2 macrophage polarization and exosomal LINC00273 secretion to promote lung adenocarcinoma metastasis via Hippo pathway. Clin Transl Med. 2021;11(9):478.
      Baig MS, Roy A, Rajpoot S, et al. Tumor‐derived exosomes in the regulation of macrophage polarization. Inflamm Res. 2020;69(5):435‐451.
      Chanput W, Mes JJ, Wichers HJ. THP‐1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol. 2014;23(1):37‐45.
      Forrester MA, Wassall HJ, Hall LS, et al. Similarities and differences in surface receptor expression by THP‐1 monocytes and differentiated macrophages polarized using seven different conditioning regimens. Cell Immunol. 2018;332:58‐76.
      Le A, Cooper CR, Gouw AM, et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci. 2010;107(5):2037‐2042.
      Brand A, Singer K, Koehl GE, et al. LDHA‐associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 2016;24(5):657‐671.
      Jiang Y, Li F, Gao B, et al. KDM6B‐mediated histone demethylation of LDHA promotes lung metastasis of osteosarcoma. Theranostics. 2021;11(8):3868‐3881.
      Zhao S, Mi Y, Guan B, et al. Tumor‐derived exosomal miR‐934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. J Hematol Oncol. 2020;13(1):156.
      Pan Z, Zhao R, Li B, et al. EWSR1‐induced circNEIL3 promotes glioma progression and exosome‐mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3. Mol Cancer. 2022;21(1):16.
      Xu Z, Chen Y, Ma L, et al. Role of exosomal non‐coding RNAs from tumor cells and tumor‐associated macrophages in the tumor microenvironment. Mol Ther. 2022;30(10):3133‐3154.
      Yang H, Qin G, Luo Z, et al. MFSD4A inhibits the malignant progression of nasopharyngeal carcinoma by targeting EPHA2. Cell Death Dis. 2022;13(4):332.
      Paraiso KHT, Thakur MD, Fang B, et al. Ligand‐independent EPHA2 signaling drives the adoption of a targeted therapy–mediated metastatic melanoma phenotype. Cancer Discovery. 2015;5(3):264‐273.
      Hsieh JJ, Purdue MP, Signoretti S, et al. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3(1):17009.
      Padala SA, Barsouk A, Thandra KC, et al. Epidemiology of renal cell carcinoma. World J Oncol. 2020;11(3):79‐87.
      Giunta EF, Rescigno P, Pili R. Gene expression profiles and treatments for metastatic renal cell carcinoma: what does still need to be defined? Asian J Urol. 2022;9(3):206‐207.
      Lin CY, Wang BJ, Fu YK, et al. Inhibition of KDM4C/c‐Myc/LDHA signalling axis suppresses prostate cancer metastasis via interference of glycolytic metabolism. Clin Transl Med. 2022;12(3):764.
      Sheng SL, Liu JJ, Dai YH, Sun XG, Xiong XP, Huang G. Knockdown of lactate dehydrogenase A suppresses tumor growth and metastasis of human hepatocellular carcinoma. FEBS J. 2012;279(20):3898‐3910.
      Pathria G, Scott DA, Feng Y, et al. Targeting the Warburg effect via LDHA inhibition engages ATF 4 signaling for cancer cell survival. EMBO J. 2018;37(20):e99735.
      Zhao D, Zou SW, Liu Y, et al. Lysine‐5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell. 2013;23(4):464‐476.
      Chen X, Luo R, Zhang Y, et al. Long noncoding RNA DIO3OS induces glycolytic‐dominant metabolic reprogramming to promote aromatase inhibitor resistance in breast cancer. Nat Commun. 2022;13(1):7160.
      Boudreau A, Purkey HE, Hitz A, et al. Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition. Nat Chem Biol. 2016;12(10):779‐786.
      Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discovery. 2018;17(12):887‐904.
      Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA. The complex role of tumor‐infiltrating macrophages. Nature Immunol. 2022;23(8):1148‐1156.
      Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52‐67.
      Nixon BG, Kuo F, Ji L, et al. Tumor‐associated macrophages expressing the transcription factor IRF8 promote T cell exhaustion in cancer. Immunity. 2022;55(11):2044‐2058.e5.
      Gordon SR, Maute RL, Dulken BW, et al. PD‐1 expression by tumour‐associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545(7655):495‐499.
      Hwang I, Kim JW, Ylaya K, et al. Tumor‐associated macrophage, angiogenesis and lymphangiogenesis markers predict prognosis of non‐small cell lung cancer patients. J Transl Med. 2020;18(1):443.
      Yu Z, Lv Y, Su C, et al. Integrative single‐cell analysis reveals transcriptional and epigenetic regulatory features of clear cell renal cell carcinoma. Cancer Res. 2023;83(5):700‐719.
      Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977.
      Morrissey SM, Zhang F, Ding C, et al. Tumor‐derived exosomes drive immunosuppressive macrophages in a pre‐metastatic niche through glycolytic dominant metabolic reprogramming. Cell Metab. 2021;33(10):2040‐2058.e10.
      Han J, Wang L, Lv H, et al. EphA2 inhibits SRA01/04 cells apoptosis by suppressing autophagy via activating PI3K/Akt/mTOR pathway. Arch Biochem Biophys. 2021;711:109024.
      Cui S, Wu Q, Liu M, et al. EphA2 super‐enhancer promotes tumor progression by recruiting FOSL2 and TCF7L2 to activate the target gene EphA2. Cell Death Dis. 2021;12(3):264.
      Liu B, Sun W, Gao W, et al. microRNA‐451a promoter methylation regulated by DNMT3B expedites bladder cancer development via the EPHA2/PI3K/AKT axis. BMC Cancer. 2020;20(1):1019.
      Zhang J, Li H, Wu Q, et al. Tumoral NOX4 recruits M2 tumor‐associated macrophages via ROS/PI3K signaling‐dependent various cytokine production to promote NSCLC growth. Redox Biol. 2019;22:101116.
      Liu L, Zhu X, Zhao T, Yu Y, Xue Y, Zou H. Sirt1 ameliorates monosodium urate crystal‐induced inflammation by altering macrophage polarization via the PI3K/Akt/STAT6 pathway. Rheumatology. 2019;58(9):1674‐1683.
      Yu T, Gao M, Yang P, et al. Insulin promotes macrophage phenotype transition through PI3K/Akt and PPAR‐γ signaling during diabetic wound healing. J Cell Physiol. 2019;234(4):4217‐4231.
    • Grant Information:
      82072812 National Natural Science Foundation of China; 82103599 National Natural Science Foundation of China; 23ZR1478500 Natural Science Foundation of Shanghai Municipality
    • Contributed Indexing:
      Keywords: EPHA2; exosomes; lactate dehydrogenase A; macrophage; renal cell carcinoma
    • Accession Number:
      EC 2.7.10.1 (Receptor, EphA2)
      0 (EPHA2 protein, human)
      EC 1.1.1.27 (L-Lactate Dehydrogenase)
      EC 2.7.11.1 (TOR Serine-Threonine Kinases)
      EC 2.7.11.1 (Proto-Oncogene Proteins c-akt)
    • Publication Date:
      Date Created: 20240523 Date Completed: 20240709 Latest Revision: 20240805
    • Publication Date:
      20240805
    • Accession Number:
      10.1002/mc.23737
    • Accession Number:
      38780182