Animal-derived food allergen: A review on the available crystal structure and new insights into structural epitope.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Institute of Food Technologists Country of Publication: United States NLM ID: 101305205 Publication Model: Print Cited Medium: Internet ISSN: 1541-4337 (Electronic) Linking ISSN: 15414337 NLM ISO Abbreviation: Compr Rev Food Sci Food Saf Subsets: MEDLINE
    • Publication Information:
      Original Publication: Chicago, Ill. : Institute of Food Technologists
    • Subject Terms:
    • Abstract:
      Immunoglobulin E (IgE)-mediated food allergy is a rapidly growing public health problem. The interaction between allergens and IgE is at the core of the allergic response. One of the best ways to understand this interaction is through structural characterization. This review focuses on animal-derived food allergens, overviews allergen structures determined by X-ray crystallography, presents an update on IgE conformational epitopes, and explores the structural features of these epitopes. The structural determinants of allergenicity and cross-reactivity are also discussed. Animal-derived food allergens are classified into limited protein families according to structural features, with the calcium-binding protein and actin-binding protein families dominating. Progress in epitope characterization has provided useful information on the structural properties of the IgE recognition region. The data reveals that epitopes are located in relatively protruding areas with negative surface electrostatic potential. Ligand binding and disulfide bonds are two intrinsic characteristics that influence protein structure and impact allergenicity. Shared structures, local motifs, and shared epitopes are factors that lead to cross-reactivity. The structural properties of epitope regions and structural determinants of allergenicity and cross-reactivity may provide directions for the prevention, diagnosis, and treatment of food allergies. Experimentally determined structure, especially that of antigen-antibody complexes, remains limited, and the identification of epitopes continues to be a bottleneck in the study of animal-derived food allergens. A combination of traditional immunological techniques and emerging bioinformatics technology will revolutionize how protein interactions are characterized.
      (© 2024 Institute of Food Technologists®.)
    • References:
      Aglas, L., Soh, W. T., Kraiem, A., Wenger, M., Brandstetter, H., & Ferreira, F. (2020). Ligand binding of PR‐10 proteins with a particular focus on the Bet v 1 allergen family. Current Allergy and Asthma Reports, 20(7), 25. https://doi.org/10.1007/s11882‐020‐00918‐4.
      Agrawal, P., Singh, H., Srivastava, H. K., Singh, S., Kishore, G., & Raghava, G. P. S. (2019). Benchmarking of different molecular docking methods for protein‐peptide docking. BMC Bioinformatics, 19, (Suppl 13), 426. https://doi.org/10.1186/s12859‐018‐2449‐y.
      Akdis, C. A., Blesken, T., Akdis, M., Alkan, S. S., Wüthrich, B., Heusser, C. H., & Blaser, K. (1997). Determinant analysis of IgE and IgG4 antibodies and T cells specific for bovine αs1‐casein from the same patients allergic to cow's milk: Existence of αs1‐casein‐specific B cells and T cells characteristic in cow's‐milk allergy. Journal of Allergy and Clinical Immunology, 99(3), 345–353. https://doi.org/10.1016/s0091‐6749(97)70052‐6.
      Apostolovic, D., Stanic‐Vucinic, D., de Jongh, H. H., de Jong, G. A., Mihailovic, J., Radosavljevic, J., Radibratovic, M., Nordlee, J. A., Baumert, J. L., Milcic, M., Taylor, S. L., Garrido Clua, N., Cirkovic Velickovic, T., & Koppelman, S. J. (2016). Conformational stability of digestion‐resistant peptides of peanut conglutins reveals the molecular basis of their allergenicity. Scientific Reports, 6, 29249. https://doi.org/10.1038/srep29249.
      Asaadi, Y., Jouneghani, F. F., Janani, S., & Rahbarizadeh, F. (2021). A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomarker Research, 9(1), 87. https://doi.org/10.1186/s40364‐021‐00332‐6.
      Ayuso, R., Grishina, G., Bardina, L., Carrillo, T., Blanco, C., Ibáñez, M. D., Sampson, H. A., & Beyer, K. (2008). Myosin light chain is a novel shrimp allergen, Lit v 3. Journal of Allergy and Clinical Immunology, 122(4), 795–802. https://doi.org/10.1016/j.jaci.2008.07.023.
      Ayuso, R., Grishina, G., Ibáñez, M. D., Blanco, C., Carrillo, T., Bencharitiwong, R., Sánchez, S., Nowak‐Wegrzyn, A., & Sampson, H. A. (2009). Sarcoplasmic calcium‐binding protein is an EF‐hand‐type protein identified as a new shrimp allergen. Journal of Allergy and Clinical Immunology, 124(1), 114–120. https://doi.org/10.1016/j.jaci.2009.04.016.
      Barbarroja‐Escudero, J., Sánchez‐González, M. J., Pineda, F., Rodríguez‐Rodríguez, M., Castillo, M., & Alvarez‐Mon, M. (2019). Role of creatine kinase as an allergen in immediate selective allergy to pork meat. Journal of Investigational Allergology and Clinical Immunology, 29(1), 64–66. https://doi.org/10.18176/jiaci.0333.
      Bauermeister, K., Wangorsch, A., Garoffo, L. P., Reuter, A., Conti, A., Taylor, S. L., Lidholm, J., Dewitt, A. M., Enrique, E., Vieths, S., Holzhauser, T., Ballmer‐Weber, B., & Reese, G. (2011). Generation of a comprehensive panel of crustacean allergens from the North Sea Shrimp Crangon crangon. Molecular Immunology, 48(15–16), 1983–1992. https://doi.org/10.1016/j.molimm.2011.06.216.
      Bella, J. (2016). Collagen structure: New tricks from a very old dog. Biochemical Journal, 473(8), 1001–1025. https://doi.org/10.1042/BJ20151169.
      Blake, C. C., Koenig, D. F., Mair, G. A., North, A. C., Phillips, D. C., & Sarma, V. R. (1965). Structure of hen egg‐white lysozyme. A three‐dimensional Fourier synthesis at 2 Angstrom resolution. Nature, 206(4986), 757–761. https://doi.org/10.1038/206757a0.
      Bode, W., Epp, O., Huber, R., Laskowski, M., jr., & Ardelt, W. (1985). The crystal and molecular structure of the third domain of silver pheasant ovomucoid (OMSVP3). European Journal of Biochemistry, 147, 387–395. https://doi.org/10.1111/j.1432‐1033.1985.tb08762.x.
      Brassea‐Estardante, H. A., Martínez‐Cruz, O., Cárdenas‐López, J. L., García‐Orozco, K. D., Ochoa‐Leyva, A., & López‐Zavala, A. A. (2022). Identification of arginine kinase as an allergen of brown crab, Callinectes bellicosus, and in silico analysis of IgE‐binding epitopes. Molecular Immunology, 143, 147–156. https://doi.org/10.1016/j.molimm.2022.01.013.
      Bublin, M., & Breiteneder, H. (2020). Cross‐reactivities of non‐homologous allergens. Allergy, 75(5), 1019–1022. https://doi.org/10.1111/all.14120.
      Bublin, M., Eiwegger, T., & Breiteneder, H. (2014). Do lipids influence the allergic sensitization process? Journal of Allergy and Clinical Immunology, 134(3), 521–529. https://doi.org/10.1016/j.jaci.2014.04.015.
      Candreva, Á. M., Smaldini, P. L., Curciarello, R., Fossati, C. A., Docena, G. H., & Petruccelli, S. (2016). The major soybean allergen Gly m Bd 28K induces hypersensitivity reactions in mice sensitized to cow's milk proteins. Journal of Agricultural and Food Chemistry, 64(7), 1590–1599. https://doi.org/10.1021/acs.jafc.5b05623.
      Cases, B., García‐Ara, C., Boyano, M., Pérez‐Gordo, M., Pedrosa, M., Vivanco, F., Quirce, S., & Pastor‐Vargas, C. (2011). Phosphorylation reduces the allergenicity of cow casein in children with selective allergy to goat and sheep milk. Journal of Investigational Allergology and Clinical Immunology, 21, 398–400.
      Cates, M. S., Berry, M. B., Ho, E. L., Li, Q., Potter, J. D., & Phillips, G. N., Jr. (1999). Metal‐ion affinity and specificity in EF‐hand proteins: Coordination geometry and domain plasticity in parvalbumin. Structure (London, England), 7(10), 1269–1278. https://doi.org/10.1016/s0969‐2126(00)80060‐x.
      Chan, S. K., Pomés, A., Hilger, C., Davies, J. M., Mueller, G., Kuehn, A., Lopata, A. L., Gadermaier, G., van Hage, M., Raulf, M., & Goodman, R. E. (2019). Keeping allergen names clear and defined. Frontiers in Immunology, 10, 2600. https://doi.org/10.3389/fimmu.2019.02600.
      Chen, G., Tao, L., & Li, Z. (2022). Recent advancements in mass spectrometry for higher order structure characterization of protein therapeutics. Drug Discovery Today, 27(1), 196–206. https://doi.org/10.1016/j.drudis.2021.09.010.
      Chen, K. W., Blatt, K., Thomas, W. R., Swoboda, I., Valent, P., Valenta, R., & Vrtala, S. (2012). Hypoallergenic Der p 1/Der p 2 combination vaccines for immunotherapy of house dust mite allergy. Journal of Allergy and Clinical Immunology, 130(2), 435–443.e4. https://doi.org/10.1016/j.jaci.2012.05.035.
      Chen, X., & Dreskin, S. C. (2017). Application of phage peptide display technology for the study of food allergen epitopes. Molecular Nutrition and Food Research, 61(6), 1600568. https://doi.org/10.1002/mnfr.201600568.
      Chen, Y. Y., Jin, T. J., Li, M., Yun, X., Huan, F., Liu, Q. M., Hu, M. J., Wei, X. F., Zheng, P. Y., & Liu, G. M. (2023). Crystal structure analysis of sarcoplasmic‐calcium‐binding protein: An allergen in Scylla paramamosain. Journal of Agricultural and Food Chemistry, 71(2), 1214–1223. https://doi.org/10.1021/acs.jafc.2c07267.
      Chen, Y. Y., Li, M. S., Yun, X., Xia, F., Hu, M. J., Jin, T., Cao, M. J., Lai, D., Chen, G., & Liu, G. M. (2021). Site‐directed mutations of calcium‐binding sites contribute to reducing the immunoreactivity of the EF‐hand sarcoplasmic calcium‐binding protein in Scylla paramamosain. Journal of Agricultural and Food Chemistry, 69(1), 428–436. https://doi.org/10.1021/acs.jafc.0c05733.
      Chiniadis, L., Bratsos, I., Bethanis, K., Karpusas, M., Giastas, P., & Papakyriakou, A. (2020). High‐resolution crystal structures of a “half sandwich”‐type Ru(II) coordination compound bound to hen egg‐white lysozyme and proteinase K. Journal of Biological Inorganic Chemistry, 25(4), 635–645. https://doi.org/10.1007/s00775‐020‐01786‐z.
      Chruszcz, M., Chew, F. T., Hoffmann‐Sommergruber, K., Hurlburt, B. K., Mueller, G. A., Pomés, A., Rouvinen, J., Villalba, M., Wöhrl, B. M., & Breiteneder, H. (2021). Allergens and their associated small molecule ligands‐their dual role in sensitization. Allergy, 76(8), 2367–2382. https://doi.org/10.1111/all.14861.
      Chrysina, E. D., Brew, K., & Acharya, K. R. (2000). Crystal structures of apo‐ and holo‐bovine alpha‐lactalbumin at 2. 2‐A resolution reveal an effect of calcium on inter‐lobe interactions. Journal of Biological Chemistry, 275(47), 37021–37029. https://doi.org/10.1074/jbc.M004752200.
      Cia, G., Pucci, F., & Rooman, M. (2023). Critical review of conformational B‐cell epitope prediction methods. Briefings in Bioinformatics, 24(1), bbac567. https://doi.org/10.1093/bib/bbac567.
      Clement, G., Boquet, D., Frobert, Y., Bernard, H., Negroni, L., Chatel, J. M., Adel‐Patient, K., Creminon, C., Wal, J. M., & Grassi, J. (2002). Epitopic characterization of native bovine beta‐lactoglobulin. Journal of Immunological Methods, 266(1–2), 67–78. https://doi.org/10.1016/s0022‐1759(02)00149‐7.
      Costa, J., Bavaro, S. L., Benedé, S., Diaz‐Perales, A., Bueno‐Diaz, C., Gelencser, E., Klueber, J., Larré, C., Lozano‐Ojalvo, D., Lupi, R., Mafra, I., Mazzucchelli, G., Molina, E., Monaci, L., Martín‐Pedraza, L., Piras, C., Rodrigues, P. M., Roncada, P., Schrama, D., … Holzhauser, T. (2020). Are physicochemical properties shaping the allergenic potency of plant allergens? Clinical Reviews in Allergy & Immunology, 62(1), 37–63. https://doi.org/10.1007/s12016‐020‐08810‐9.
      Curciarello, R., Smaldini, P. L., Candreva, A. M., González, V., Parisi, G., Cauerhff, A., Barrios, I., Blanch, L. B., Fossati, C. A., Petruccelli, S., & Docena, G. H. (2014). Targeting a cross‐reactive Gly m 5 soy peptide as responsible for hypersensitivity reactions in a milk allergy mouse model. PLoS ONE, 9(1), e82341. https://doi.org/10.1371/journal.pone.0082341.
      Dalkas, G. A., Teheux, F., Kwasigroch, J. M., & Rooman, M. (2014). Cation‐π, amino‐π, π‐π, and H‐bond interactions stabilize antigen‐antibody interfaces. Proteins, 82, 1734–1746. https://doi.org/10.1002/prot.24527.
      Darabedian, N., Ji, W., Fan, M., Lin, S., Seo, H. S., Vinogradova, E. V., Yaron, T. M., Mills, E. L., Xiao, H., Senkane, K., Huntsman, E. M., Johnson, J. L., Che, J., Cantley, L. C., Cravatt, B. F., Dhe‐Paganon, S., Stegmaier, K., Zhang, T., Gray, N. S., & Chouchani, E. T. (2023). Depletion of creatine phosphagen energetics with a covalent creatine kinase inhibitor. Nature Chemical Biology, 19(7), 815–824. https://doi.org/10.1038/s41589‐023‐01273‐x.
      da Silva, B. M., Myung, Y., Ascher, D. B., & Pires, D. E. V. (2022). epitope3D: A machine learning method for conformational B‐cell epitope prediction. Briefings in Bioinformatics, 23(1), bbab423. https://doi.org/10.1093/bib/bbab423.
      Declercq, J. P., Tinant, B., Parello, J., & Rambaud, J. (1991). Ionic interactions with parvalbumins. Crystal structure determination of pike 4.10 parvalbumin in four different ionic environments. Journal of Molecular Biology, 220, 1017–1039. https://doi.org/10.1016/0022‐2836(91)90369‐h.
      De Magalhães, C. R., Schrama, D., Fonseca, F., Kuehn, A., Morisset, M., Ferreira, S. R., Gonçalves, A., & Rodrigues, P. M. (2020). Effect of EDTA enriched diets on farmed fish allergenicity and muscle quality; a proteomics approach. Food Chemistry, 305, 125508. https://doi.org/10.1016/j.foodchem.2019.125508.
      Demolombe, V., de Brevern, A. G., Felicori, L., NGuyen, C., Machado de Avila, R. A., Valera, L., Jardin‐Watelet, B., Lavigne, G., Lebreton, A., Molina, F., & Moreau, V. (2019). PEPOP 2.0: New approaches to mimic non‐continuous epitopes. BMC Bioinformatics, 20(1), 387. https://doi.org/10.1186/s12859‐019‐2867‐5.
      Devaurs, D., Antunes, D. A., & Borysik, A. J. (2022). Computational modeling of molecular structures guided by hydrogen‐exchange data. Journal of the American Society for Mass Spectrometry, 33(2), 215–237. https://doi.org/10.1021/jasms.1c00328.
      Dhanapala, P., Withanage‐Dona, D., Tang, M. L. K., Doran, T., & Suphioglu, C. (2017). Hypoallergenic variant of the major egg white allergen Gal d 1 produced by disruption of cysteine bridges. Nutrients, 9(2), 171. https://doi.org/10.3390/nu9020171.
      Dijkema, D., Emons, J. A. M., Van de Ven, A. A. J. M., & Oude Elberink, J. N. G. (2022). Fish allergy: Fishing for novel diagnostic and therapeutic options. Clinical Reviews in Allergy & Immunology, 62(1), 64–71. https://doi.org/10.1007/s12016‐020‐08806‐5.
      Di Muzio, M., Wildner, S., Huber, S., Hauser, M., Vejvar, E., Auzinger, W., Regl, C., Laimer, J., Zennaro, D., Wopfer, N., Huber, C. G., van Ree, R., Mari, A., Lackner, P., Ferreira, F., Schubert, M., & Gadermaier, G. (2020). Hydrogen/deuterium exchange memory NMR reveals structural epitopes involved in IgE cross‐reactivity of allergenic lipid transfer proteins. Journal of Biological Chemistry, 295(51), 17398–17410. https://doi.org/10.1074/jbc.RA120.014243.
      Dombre, C., Guyot, N., Moreau, T., Monget, P., da Silva, M., Gautron, J., & Réhault‐Godbert, S. (2017). Egg serpins: The chicken and/or the egg dilemma. Seminars in Cell & Developmental Biology, 62, 120–132. https://doi.org/10.1016/j.semcdb.2016.08.019.
      Dona, D. W., & Suphioglu, C. (2020). Egg allergy: Diagnosis and immunotherapy. International Journal of Molecular Sciences, 21(14), 5010. https://doi.org/10.3390/ijms21145010.
      Ehlers, A. M., Klinge, M., Suer, W., Weimann, Y., Knulst, A. C., Besa, F., Le, T. M., & Otten, H. G. (2019). Ara h 7 isoforms share many linear epitopes: Are 3D epitopes crucial to elucidate divergent abilities? Clinical and Experimental Allergy, 49(11), 1512–1519. https://doi.org/10.1111/cea.13496.
      El‐Salam, M. H. A., & El‐Shibiny, S. (2021). Reduction of milk protein antigenicity by enzymatic hydrolysis and fermentation. A review. Food Reviews International, 37(3), 276–295. https://doi.org/10.1080/87559129.2019.1701010.
      Faber, M. A., Pascal, M., El Kharbouchi, O., Sabato, V., Hagendorens, M. M., Decuyper, I. I., Bridts, C. H., & Ebo, D. G. (2017). Shellfish allergens: Tropomyosin and beyond. Allergy, 72(6), 842–848. https://doi.org/10.1111/all.13115.
      Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO). (2022). Summary report of the Ad hoc Joint FAO/WHO Expert Consultation on Risk Assessment of Food Allergens. Part 1: Review and validation of Codex priority allergen list through risk assessment. FAO/WHO. https://www.fao.org/3/cb4653en/cb4653en.pdf.
      Feng, C., Tian, L., Jiao, Y., Tan, Y., Liu, C., Luo, Y., & Hong, H. (2022). The effect of steam cooking on the proteolysis of pacific oyster (Crassostrea gigas) proteins: Digestibility, allergenicity, and bioactivity. Food Chemistry, 379, 132160. https://doi.org/10.1016/j.foodchem.2022.132160.
      Fernández‐Quintero, M. L., Loeffler, J. R., Waibl, F., Kamenik, A. S., Hofer, F., & Liedl, K. R. (2019). Conformational selection of allergen‐antibody complexes—Surface plasticity of paratopes and epitopes. Protein Engineering Design & Selection, 32(11), 513–523. https://doi.org/10.1093/protein/gzaa014.
      Focke‐Tejkl, M., Civaj, V., Balic, N., Nystrand, M., Härlin, A., Thalhamer, J., Scheiblhofer, S., Keller, W., Pavkov, T., Zafred, D., Niggemann, B., Quirce, S., Mari, A., Pauli, G., Ebner, C., Papadopoulos, N. G., Herz, U., van Tol, E. A., Valenta, R., & Spitzauer, S. (2010). Visualization of clustered IgE epitopes on alpha‐lactalbumin. Journal of Allergy and Clinical Immunology, 125(6), 1279–1285.e9. https://doi.org/10.1016/j.jaci.2010.03.007.n.
      Foo, A. C. Y., & Mueller, G. A. (2021). Abundance and stability as common properties of allergens. Frontiers in Allergy, 2, 769728. https://doi.org/10.3389/falgy.2021.769728.
      Foo, A. C. Y., Nesbit, J. B., Gipson, S. A. Y., Cheng, H., Bushel, P., DeRose, E. F., Schein, C. H., Teuber, S. S., Hurlburt, B. K., Maleki, S. J., & Mueller, G. A. (2022). Structure, immunogenicity, and IgE cross‐reactivity among walnut and peanut vicilin buried peptides. Journal of Agricultural and Food Chemistry, 70(7), 2389–2400. https://doi.org/10.1021/acs.jafc.1c07225.
      Forouharmehr, A., Nazifi, N., Mousavi, S. M., & Jaydari, A. (2022). Designing an efficient epitope‐based vaccine conjugated with a molecular adjuvant against bovine babesiosis: A computational study. Process Biochemistry, 121, 170–177. https://doi.org/10.1016/j.procbio.2022.06.016.
      Fraga, D., Ellington, W. R., & Suzuki, T. (2022). The characterization of novel monomeric creatine kinases in the early branching Alveolata species, Perkinsus marinus: Implications for phosphagen kinase evolution. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 262, 110758. https://doi.org/10.1016/j.cbpb.2022.110758.
      Freidl, R., Gstöttner, A., Baranyi, U., Swoboda, I., Stolz, F., Focke‐Tejkl, M., Wekerle, T., van Ree, R., Valenta, R., & Linhart, B. (2020). Resistance of parvalbumin to gastrointestinal digestion is required for profound and long‐lasting prophylactic oral tolerance. Allergy, 75(2), 326–335. https://doi.org/10.1111/all.13994.
      Fu, L., Wang, C., Zhu, Y., & Wang, Y. B. (2019). Seafood allergy: Occurrence, mechanisms and measures. Trends in Food Science & Technology, 88, 80–92. https://doi.org/10.1016/j.tifs.2019.03.025.
      Fu, L., Wang, J., Ni, S., Wang, C., & Wang, Y. (2018). Identification of allergenic epitopes and critical amino acids of major allergens in Chinese shrimp (Penaeus chinensis) by immunoinformatics coupled with competitive‐binding strategy. Journal of Agricultural and Food Chemistry, 66(11), 2944–2953. https://doi.org/10.1021/acs.jafc.7b06042.
      Fujimoto, W., Fukuda, M., Yokooji, T., Yamamoto, T., Tanaka, A., & Matsuo, H. (2016). Anaphylaxis provoked by ingestion of hydrolyzed fish collagen probably induced by epicutaneous sensitization. Allergology International, 65(4), 474–476. https://doi.org/10.1016/j.alit.2016.03.012.
      Gazme, B., Rezaei, K., & Udenigwe, C. C. (2022). Epitope mapping and the effects of various factors on the immunoreactivity of main allergens in egg white. Food & Function, 13(1), 38–51. https://doi.org/10.1039/d1fo01867a.
      Geng, Q., Zhang, Y., Song, M., Zhou, X., Tang, Y., Wu, Z., & Chen, H. (2023). Allergenicity of peanut allergens and its dependence on the structure. Comprehensive Reviews in Food Science and Food Safety, 22(2), 1058–1081. https://doi.org/10.1111/1541‐4337.13101.
      Glesner, J., Kapingidza, A. B., Godzwon, M., Offermann, L. R., Mueller, G. A., DeRose, E. F., Wright, P., Richardson, C. M., Woodfolk, J. A., Vailes, L. D., Wünschmann, S., London, R. E., Chapman, M. D., Ohlin, M., Chruszcz, M., & Pomés, A. (2019). A Human IgE antibody binding site on der p 2 for the design of a recombinant allergen for immunotherapy. The Journal of Immunology, 203(9), 2545–2556. https://doi.org/10.4049/jimmunol.1900580.
      Gonzalez‐Sapienza, G., Rossotti, M. A., & Tabares‐da Rosa, S. (2017). Single‐domain antibodies as versatile affinity reagents for analytical and diagnostic applications. Frontiers in Immunology, 8, 977. https://doi.org/10.3389/fimmu.2017.00977.
      Goodman, R. E., Ebisawa, M., Ferreira, F., Sampson, H. A., van Ree, R., Vieths, S., Baumert, J. L., Bohle, B., Lalithambika, S., Wise, J., & Taylor, S. L. (2016). AllergenOnline: A peer‐reviewed, curated allergen database to assess novel food proteins for potential cross‐reactivity. Molecular Nutrition & Food Research, 60(5), 1183–1198. https://doi.org/10.1002/mnfr.201500769.
      Greener, J. G., Kandathil, S. M., Moffat, L., & Jones, D. T. (2022). A guide to machine learning for biologists. Nature Reviews Molecular Cell Biology, 23(1), 40–55. https://doi.org/10.1038/s41580‐021‐00407‐0.
      Guan, X., Noble, K. A., Tao, Y., Roux, K. H., Sathe, S. K., Young, N. L., & Marshall, A. G. (2015). Epitope mapping of 7S cashew antigen in complex with antibody by solution‐phase H/D exchange monitored by FT‐ICR mass spectrometry. Journal of Mass Spectrometry, 50(6), 812–819. https://doi.org/10.1002/jms.3589.
      Hamada, Y., Nagashima, Y., & Shiomi, K. (2001). Identification of collagen as a new fish allergen. Bioscience Biotechnology and Biochemistry, 65(2), 285–291. https://doi.org/10.1271/bbb.65.285.
      Han, T. J., Huan, F., Liu, M., Li, M. S., Yang, Y., Chen, G. X., Lai, D., Cao, M. J., & Liu, G. M. (2021). IgE epitope analysis of sarcoplasmic‐calcium‐binding protein, a heat‐resistant allergen in Crassostrea angulata. Food & Function, 12(18), 8570–8582. https://doi.org/10.1039/d1fo01058a.
      Han, T. J., Liu, M., Huan, F., Li, M. S., Xia, F., Chen, Y. Y., Chen, G. X., Cao, M. J., & Liu, G. M. (2020). Identification and cross‐reactivity analysis of sarcoplasmic‐calcium‐binding protein: A novel allergen in Crassostrea angulata. Journal of Agricultural and Food Chemistry, 68(18), 5221–5231. https://doi.org/10.1021/acs.jafc.0c01543.
      Hazebrouck, S., Patil, S. U., Guillon, B., Lahood, N., Dreskin, S. C., Adel‐Patient, K., & Bernard, H. (2022). Immunodominant conformational and linear IgE epitopes lie in a single segment of Ara h 2. Journal of Allergy and Clinical Immunology, 150(1), 131–139. https://doi.org/10.1016/j.jaci.2021.12.796.
      He, R., Zhang, H., Shen, N., Guo, C., Ren, Y., Xie, Y., Gu, X., Lai, W., Peng, X., & Yang, G. (2018). Molecular characterization and allergenicity potential of triosephosphate isomerase from Sarcoptes scabiei. Veterinary Parasitology, 257, 40–47. https://doi.org/10.1016/j.vetpar.2018.05.016.
      He, X. R., Yang, Y., Kang, S., Chen, Y. X., Zheng, P. Y., Chen, G. X., Chen, X. M., Cao, M. J., Jin, T., & Liu, G. M. (2022). Crystal structure analysis and IgE epitope mapping of allergic predominant region in Scylla paramamosain filamin C, Scy p 9. Journal of Agricultural and Food Chemistry, 70(4), 1282–1292. https://doi.org/10.1021/acs.jafc.1c07922.
      Hoffman, D. R., Day, E. D., Jr., & Miller, J. S. (1981). The major heat stable allergen of shrimp. Annals of Allergy, 47(1), 17–22.
      Hu, M. J., Liu, G. Y., Yang, Y., Pan, T. M., Liu, Y. X., Sun, L. C., Cao, M. J., & Liu, G. M. (2017). Cloning, expression, and the effects of processing on sarcoplasmic calcium‐binding protein: An important allergen in mud crab. Journal of Agricultural and Food Chemistry, 65(30), 6247–6257. https://doi.org/10.1021/acs.jafc.7b02381.
      Huan, F., Gao, S., Han, T. J., Liu, M., Li, M. S., Yang, Y., Chen, Y. Y., Lai, D., Cao, M. J., & Liu, G. M. (2022). Identification of the immunoglobulin E epitope of arginine kinase, an important allergen from Crassostrea angulata. Journal of Agricultural and Food Chemistry, 70(41), 13419–13430. https://doi.org/10.1021/acs.jafc.2c05420.
      Huang, Y., Li, Z., Wu, Y., Li, Y., Pramod, S., Chen, G., Zhu, W., Zhang, Z., Wang, H., & Lin, H. (2023). Comparative analysis of allergenicity and predicted linear epitopes in α and β parvalbumin from turbot (Scophthalmus maximus). Journal of the Science of Food and Agriculture, 03(5), 2313–2324. https://doi.org/10.1002/jsfa.12432.
      Hurne, A. M., Chai, C. L. L., & Waring, P. (2000). Inactivation of rabbit muscle creatine kinase by reversible formation of an internal disulfide bond induced by the fungal toxin gliotoxin. Journal of Biological Chemistry, 275(33), 25202–25206. https://doi.org/10.1074/jbc.M002278200.
      Iwashita, K., Handa, A., & Shiraki, K. (2017). Co‐aggregation of ovalbumin and lysozyme. Food Hydrocolloids, 67, 206–215. https://doi.org/10.1016/j.foodhyd.2017.01.014.
      Jaiswal, L., & Worku, M. (2021). Recent perspective on cow's milk allergy and dairy nutrition. Critical Reviews in Food Science and Nutrition, 62(27), 7503–7517. https://doi.org/10.1080/10408398.2021.1915241.
      James, J. K., Pike, D. H., Khan, I. J., & Nanda, V. (2018). Structural and dynamic properties of allergen and non‐allergen forms of tropomyosin. Structure (London, England), 26(7), 997–1006.e5. https://doi.org/10.1016/j.str.2018.05.002.
      Jensen, K. K., Andreatta, M., Marcatili, P., Buus, S., Greenbaum, J. A., Yan, Z., Sette, A., Peters, B., & Nielsen, M. (2018). Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology, 154(3), 394–406. https://doi.org/10.1111/imm.12889.
      Jespersen, M. C., Peters, B., Nielsen, M., & Marcatili, P. (2017). BepiPred‐2.0: Improving sequence‐based B‐cell epitope prediction using conformational epitopes. Nucleic Acids Research, 45(W1), W24–W29. https://doi.org/10.1093/nar/gkx346.
      Jiang, X., & Rao, Q. (2021). Effect of processing on fish protein antigenicity and allergenicity. Foods, 10(5), 969. https://doi.org/10.3390/foods10050969.
      Kalyanasundaram, A., & Santiago, T. C. (2015). Identification and characterization of new allergen troponin C (Pen m 6.0101) from Indian black tiger shrimp Penaeus monodon. European Food Research and Technology, 240, 509–515. https://doi.org/10.1007/s00217‐014‐2349‐y.
      Kamath, S. D., Bublin, M., Kitamura, K., Matsui, T., Ito, K., & Lopata, A. L. (2023). Cross‐reactive epitopes and their role in food allergy. Journal of Allergy and Clinical Immunology, 151(5), 1178–1190. https://doi.org/10.1016/j.jaci.2022.12.827.
      Karmakar, B., Saha, B., Jana, K., & Bhattacharya, S. G. (2021). Correction: Identification and biochemical characterisation of Asp t 36, a new fungal allergen from Aspergillus terreus. Journal Of Biological Chemistry, 295(51), 17852–17864. https://doi.org/10.1016/j.jbc.2021.100379.
      Karnaneedi, S., Huerlimann, R., Johnston, E. B., Nugraha, R., Ruethers, T., Taki, A. C., Kamath, S. D., Wade, N. M., Jerry, D. R., & Lopata, A. L. (2020). Novel allergen discovery through comprehensive de novo transcriptomic analyses of five shrimp species. International Journal of Molecular Sciences, 22(1), 32. https://doi.org/10.3390/ijms22010032.
      Kato, Y. S., Yumoto, F., Tanaka, H., Miyakawa, T., Miyauchi, Y., Takeshita, D., Sawano, Y., Ojima, T., Ohtsuki, I., & Tanokura, M. (2012). Structure of the Ca2+‐saturated C‐terminal domain of scallop troponin C in complex with a troponin I fragment. Biological Chemistry, 394(1), 55–68. https://doi.org/10.1515/hsz‐2012‐0152.
      Kawasaki, H., & Kretsinger, R. H. (2017). Structural and functional diversity of EF‐hand proteins: Evolutionary perspectives. Protein Science, 26(10), 1898–1920. https://doi.org/10.1002/pro.3233.
      Khan, M. U., Lin, H., Ahmed, I., Chen, Y., Zhao, J., Hang, T., Dasanayaka, B. P., & Li, Z. (2021). Whey allergens: Influence of nonthermal processing treatments and their detection methods. Comprehensive Reviews in Food Science and Food Safety, 20(5), 4480–4510. https://doi.org/10.1111/1541‐4337.12793.
      Khan, P. M., & Roy, K. (2018). Current approaches for choosing feature selection and learning algorithms in quantitative structure‐activity relationships (QSAR). Expert Opinion on Drug Discovery, 13(12), 1075–1089. https://doi.org/10.1080/17460441.2018.1542428.
      Khanaruksombat, S., Srisomsap, C., Chokchaichamnankit, D., Punyarit, P., & Phiriyangkul, P. (2014). Identification of a novel allergen from muscle and various organs in banana shrimp (Fenneropenaeus merguiensis). Annals of Allergy Asthma & Immunology, 113, 301–306. https://doi.org/10.1016/j.anai.2014.06.002.
      Kido, J., & Matsumoto, T. (2015). Attenuated allergenic activity of ovomucoid after electrolysis. Allergy Asthma & Immunology Research, 7(6), 599–604. https://doi.org/10.4168/aair.2015.7.6.599.
      Klug, C., Hemmer, W., Román‐Carrasco, P., Focke‐Tejkl, M., Quirce, S., Boyano‐Martínez, T., Gaubitzer, E., Wank, H., & Swoboda, I. (2020). Gal d 7‐a major allergen in primary chicken meat allergy. Journal of Allergy and Clinical Immunology, 46(1), 169–179.e5. https://doi.org/10.1016/j.jaci.2020.02.033.
      Kobayashi, Y., Akiyama, H., Huge, J., Kubota, H., Chikazawa, S., Satoh, T., Miyake, T., Uhara, H., Okuyama, R., Nakagawara, R., Aihara, M., & Hamada‐Sato, N. (2016). Fish collagen is an important panallergen in the Japanese population. Allergy, 71(5), 720–723. https://doi.org/10.1111/all.12836.
      Krause, T., Röckendorf, N., Meckelein, B., Sinnecker, H., Schwager, C., Möckel, S., Jappe, U., & Frey, A. (2020). IgE epitope profiling for allergy diagnosis and therapy‐parallel analysis of a multitude of potential linear epitopes using a high throughput screening platform. Frontiers in Immunology, 11, 565243. https://doi.org/10.3389/fimmu.2020.565243.
      Kringelum, J. V., Lundegaard, C., Lund, O., & Nielsen, M. (2012). Reliable B cell epitope predictions: Impacts of method development and improved benchmarking. PLoS Computational Biology, 8(12), e1002829. https://doi.org/10.1371/journal.pcbi.1002829.
      Kulkarni‐Kale, U., Bhosle, S., & Kolaska, A. S. (2005). CEP: A conformational epitope prediction server. Nucleic Acids Research, 33(Web Server issue), W168–W171. https://doi.org/10.1093/nar/gki460.
      Kumar, V. D., Lee, L., & Edwards, B. F. (1990). Refined crystal structure of calcium‐liganded carp parvalbumin 4.25 at 1.5‐A resolution. Biochemistry, 29, 1404–1412. https://doi.org/10.1021/bi00458a010.
      Kurokawa, H., Mikami, B., & Hirose, M. (1995). Crystal structure of diferric hen ovotransferrin at 2.4 A resolution. Journal of Molecular Biology, 254, 196–207. https://doi.org/10.1006/jmbi.1995.0611.
      Kurpiewska, K., Biela, A., Loch, J. I., Swiatek, S., Jachimska, B., & Lewinski, K. (2018). Investigation of high pressure effect on the structure and adsorption of beta‐lactoglobulin. Colloids and Surfaces B—Biointerfaces, 161, 387–393. https://doi.org/10.1016/j.colsurfb.2017.10.069.
      LaHood, N. A., Min, J., Keswani, T., Richardson, C. M., Amoako, K., Zhou, J., Marini‐Rapoport, O., Bernard, H., Hazebrouck, S., Shreffler, W. G., Love, J. C., Pomés, A., Pedersen, L. C., Mueller, G. A., & Patil, S. U. (2023). Immunotherapy‐induced neutralizing antibodies disrupt allergen binding and sustain allergen tolerance in peanut allergy. The Journal of Clinical Investigation, 133(2), e164501. https://doi.org/10.1172/JCI164501.
      Lam, K. S., Salmon, S. E., Hersh, E. M., Hruby, V. J., Kazmierski, W. M., & Knapp, R. J. (1991). A new type of synthetic peptide library for identifying ligand‐binding activity. Nature, 354, 82–84. https://doi.org/10.1038/354082a0.
      Larco‐Rojas, X., González‐Gutiérrez, M. L., Vázquez‐Cortés, S., Bartolomé, B., Pastor‐Vargas, C., & Fernández‐Rivas, M. (2017). Occupational asthma and urticaria in a fishmonger due to creatine kinase, a cross‐reactive fish allergen. Journal of Investigational Allergology and Clinical Immunology, 27(6), 386–388. https://doi.org/10.18176/jiaci.0195.
      Lee, C. S., Tsai, L. C., Chao, P. L., Lin, C. Y., Hung, M. W., Chien, A. I., Chiang, Y. T., & Han, S. H. (2004). Protein sequence analysis of a novel 103‐kDa Dermatophagoides pteronyssinus mite allergen and prevalence of serum immunoglobulin E reactivity to rDer p 11 in allergic adult patients. Clinical and Experimental Allergy, 34(3), 354–362. https://doi.org/10.1111/j.1365‐2222.2004.01878.x.
      Lee, M. F., Chang, C. W., Song, P. P., Hwang, G. Y., Lin, S. J., & Chen, Y. H. (2015). IgE‐binding epitope mapping and tissue localization of the major American cockroach allergen Per a 2. Allergy Asthma & Immunology Research, 7(4), 376–383. https://doi.org/10.4168/aair.2015.7.4.376.
      Lee, T. W., Qasim, M. A., Laskowski, M., & James, M. N. (2007). Structural insights into the non‐additivity effects in the sequence‐to‐reactivity algorithm for serine peptidases and their inhibitors. Journal of Molecular Biology, 367(2), 527–546. https://doi.org/10.1016/j.jmb.2007.01.008.
      Leung, N. Y., Wai, C. Y., Ho, M. H., Liu, R., Lam, K. S., Wang, J. J., Shu, S. A., Chu, K. H., & Leung, P. S. (2017). Screening and identification of mimotopes of the major shrimp allergen tropomyosin using one‐bead‐one‐compound peptide libraries. Cell & Molecular Immunology, 14(3), 308–318. https://doi.org/10.1038/cmi.2015.83.
      Li, M. S., Xia, F., Liu, M., He, X. R., Chen, Y. Y., Bai, T. L., Chen, G. X., Wang, L., Cao, M. J., & Liu, G. M. (2019). Cloning, expression, and epitope identification of myosin light chain 1: An allergen in mud crab. Journal of Agricultural and Food Chemistry, 67(37), 10458–10469. https://doi.org/10.1021/acs.jafc.9b04294.
      Li, M. S., Xia, F., Liu, Q., Chen, Y., Yun, X., Liu, M., Chen, G. X., Wang, L., Cao, M. J., & Liu, G. M. (2022). IgE epitope analysis for Scy p 1 and Scy p 3, the heat‐stable myofibrillar allergens in mud crab. Journal of Agricultural and Food Chemistry, 70(38), 12189–12202. https://doi.org/10.1021/acs.jafc.2c04849.
      Li, X., Gao, J. Y., He, S. F., Wu, Y. Y., & Chen, H. B. (2014). Identification of conformational antigenic epitopes and dominant amino acids of buffalo β‐lactoglobulin. Journal of Food Science, 79(4), T748–T756. https://doi.org/10.1111/1750‐3841.12409.
      Li, X., Yuan, S., He, S., Gao, J., & Chen, H. (2015). Identification and characterization of the antigenic site (epitope) on bovine β‐lactoglobulin: Common residues in linear and conformational epitopes. Journal of Science and Food Agriculture, 95(14), 2916–2923. https://doi.org/10.1002/jsfa.7033.
      Li, X., Yuan, S., Huang, M., Gao, J., Wu, Z., Tong, P., Yang, A., & Chen, H. (2016). Identification of IgE and IgG epitopes on native Bos d 4 allergen specific to allergic children. Food & Function, 7(7), 2996–3005. https://doi.org/10.1039/c6fo00416d.
      Liburd, J., Chitayat, S., Crawley, S. W., Munro, K., Miller, E., Denis, C. M., Spencer, H. L., Côté, G. P., & Smith, S. P. (2014). Structure of the small Dictyostelium discoideum myosin light chain MlcB provides insights into MyoB IQ motif recognition. Journal of Biological Chemistry, 289(24), 17030–17042. https://doi.org/10.1074/jbc.M113.536532.
      Linhart, B., Focke‐Tejkl, M., Weber, M., Narayanan, M., Neubauer, A., Mayrhofer, H., Blatt, K., Lupinek, C., Valent, P., & Valenta, R. (2015). Molecular evolution of hypoallergenic hybrid proteins for vaccination against grass pollen allergy. Journal of Immunology, 194(8), 4008–4018. https://doi.org/10.4049/jimmunol.1400402.
      Liu, C., & Sathe, S. K. (2018). Food allergen epitope mapping. Journal of Agricultural and Food Chemistry, 66(28), 7238–7248. https://doi.org/10.1021/acs.jafc.8b01967.
      Liu, F. H., Gao, J. Y., Li, X., & Chen, H. B. (2016). Molecular modeling and conformational IgG epitope mapping on bovine β‐casein. European Food Research and Technology, 242(11), 1893–1902. https://doi.org/10.1007/s00217‐016‐2689‐x.
      Liu, G. Y., Mei, X. J., Hu, M. J., Yang, Y., Liu, M., Li, M. S., Zhang, M. L., Cao, M. J., & Liu, G. M. (2018). Analysis of the allergenic epitopes of tropomyosin from mud crab using phage display and site‐directed mutagenesis. Journal of Agricultural and Food Chemistry, 66(34), 9127–9137. https://doi.org/10.1021/acs.jafc.8b03466.
      Loch, J., Bonarek, P., & Lewinski, K. (2019). Conformational flexibility and ligand binding properties of ovine beta‐lactoglobulin. Acta Biochimica Polonica, 66, 577–584. https://doi.org/10.18388/abp.2019_2883.
      Loch, J., Polit, A., Gorecki, A., Bonarek, P., Kurpiewska, K., Dziedzicka‐Wasylewska, M., & Lewinski, K. (2011). Two modes of fatty acid binding to bovine beta‐lactoglobulin‐crystallographic and spectroscopic studies. Journal of Molecular Recognition, 24, 341–349. https://doi.org/10.1002/jmr.1084.
      Loch, J. I., Bonarek, P., Polit, A., Jabłoński, M., Czub, M., Ye, X., & Lewiński, K. (2015). β‐Lactoglobulin interactions with local anaesthetic drugs – Crystallographic and calorimetric studies. International Journal of Biological Macromolecules, 80, 87–94. https://doi.org/10.1016/j.ijbiomac.2015.06.013.
      López‐Zavala, A. A., García‐Orozco, K. D., Carrasco‐Miranda, J. S., Sugich‐Miranda, R., Velázquez‐Contreras, E. F., Criscitiello, M. F., Brieba, L. G., Rudiño‐Piñera, E., & Sotelo‐Mundo, R. R. (2013). Crystal structure of shrimp arginine kinase in binary complex with arginine‐a molecular view of the phosphagen precursor binding to the enzyme. Journal of Bioenergetics and Biomembranes, 45(6), 511–518. https://doi.org/10.1007/s10863‐013‐9521‐0.
      Lopez‐Zavala, A. A., Sotelo‐Mundo, R. R., Garcia‐Orozco, K. D., Isac‐Martinez, F., Brieba, L. G., & Rudino‐Pinera, E. (2012). Crystallization and X‐ray diffraction studies of arginine kinase from the white Pacific shrimp Litopenaeus vannamei. Acta Crystallographica Section F—Structural Biology Communications, 68, 783. https://doi.org/10.1107/S1744309112020180.
      Luzar, J., Strukelj, B., & Lunder, M. (2017). Phage display peptide libraries in molecular allergology: From epitope mapping to mimotope‐based immunotherapy. Allergy, 71(11), 1526–1532. https://doi.org/10.1111/all.12965.
      Majorek, K. A., Porebski, P. J., Dayal, A., Zimmerman, M. D., Jablonska, K., Stewart, A. J., Chruszcz, M., & Minor, W. (2012). Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Molecular Immunology, 52(3–4), 174–182. https://doi.org/10.1016/j.molimm.2012.05.011.
      Malherbe, L. (2009). T‐cell epitope mapping. Annals of Allergy Asthma & Immunology, 103(1), 76–79. https://doi.org/10.1016/S1081‐1206(10)60147‐0.
      Malito, E., Biancucci, M., Faleri, A., Ferlenghi, I., Scarselli, M., Maruggi, G., Lo Surdo, P., Veggi, D., Liguori, A., Santini, L., Bertoldi, I., Petracca, R., Marchi, S., Romagnoli, G., Cartocci, E., Vercellino, I., Savino, S., Spraggon, G., Norais, N., … Bottomley, M. J. (2014). Structure of the meningococcal vaccine antigen NadA and epitope mapping of a bactericidal antibody. Proceedings of the National Academy of Sciences of the United States of America, 111(48), 17128–17133. https://doi.org/10.1073/pnas.1419686111.
      Mao, Z. F., & Nakamura, F. (2020). Structure and function of filamin C in the muscle Z‐disc. International Journal of Molecular Sciences, 21(8), 2696. https://doi.org/10.3390/ijms21082696.
      Markoska, T., Vasiljevic, T., & Huppertz, T. (2020). Unravelling conformational aspects of milk protein structure‐contributions from nuclear magnetic resonance studies. Foods, 9(8), 1128. https://doi.org/10.3390/foods9081128.
      Martiel, I., Huang, C. Y., Villanueva‐Perez, P., Panepucci, E., Basu, S., Caffrey, M., Pedrini, B., Bunk, O., Stampanoni, M., & Wang, M. (2020). Low‐dose in situ prelocation of protein microcrystals by 2D X‐ray phase‐contrast imaging for serial crystallography. IUCrJ, 7(Pt 6), 1131–1141. https://doi.org/10.1107/S2052252520013238.
      Martins, L. M. L., Peltre, G., da Costa Faro, C. J. F., Pires, E. M. V., & Da Cruz Inácio, F. F. (2004). The Helix aspersa (brown garden snail) allergen repertoire. International Archives of Allergy and Immunology, 136(1), 7–15. https://doi.org/10.1159/000082579.
      Mei, X. J., Li, M. S., Yang, Y., Liu, M., Mao, H. Y., Zhang, M. L., Cao, M. J., & Liu, G. M. (2019). Reducing allergenicity to arginine kinase from mud crab using site‐directed mutagenesis and peptide aptamers. Journal of Agricultural and Food Chemistry, 67(17), 4958–4966. https://doi.org/10.1021/acs.jafc.9b00608.
      Mita, H., Koketsu, A., Ishizaki, S., & Shiomi, K. (2013). Molecular cloning and functional expression of allergenic sarcoplasmic calcium‐binding proteins from Penaeus shrimps. Journal of the Science of Food and Agriculture, 93(7), 1737–1742. https://doi.org/10.1002/jsfa.5961.
      Mizutani, K., Mikami, B., Aibara, S., & Hirose, M. (2005). Structure of aluminium‐bound ovotransferrin at 2.15 Angstroms resolution. Acta Crystallographica Section D—Structural Biology, 61, 1636–1642. https://doi.org/10.1107/S090744490503266X.
      Moore, S. A., Anderson, B. F., Groom, C. R., Haridas, M., & Baker, E. N. (1997). Three‐dimensional structure of diferric bovine lactoferrin at 2.8 A resolution. Journal of Molecular Biology, 274(2), 222–236. https://doi.org/10.1006/jmbi.1997.1386.
      Morales‐Amparano, M. B., Huerta‐Ocampo, J. Á., Pastor‐Palacios, G., & Teran, L. M. (2021). The role of enolases in allergic disease. The Journal of Allergy and Clinical Immunology: In Practice, 9(8), 3026–3032. https://doi.org/10.1016/j.jaip.2021.04.005.
      Morgunov, A. S., Saar, K. L., Vendruscolo, M., & Knowles, T. P. J. (2021). New frontiers for machine learning in protein science. Journal of Molecular Biology, 433(20), 167232. https://doi.org/10.1016/j.jmb.2021.167232.
      Mueller, G. A. (2017). Contributions and future directions for structural biology in the study of allergens. International Archives of Allergy and Immunology, 174(2), 57–66. https://doi.org/10.1159/000481078.
      Mueller, G. A., Min, J., Foo, A. C. Y., Pomés, A., & Pedersen, L. C. (2019). Structural analysis of recent allergen‐antibody complexes and future directions. Current Allergy and Asthma Reports, 19(3), 17. https://doi.org/10.1007/s11882‐019‐0848‐4.
      Mueller, G. A., Pedersen, L. C., Glesner, J., Edwards, L. L., Zakzuk, J., London, R. E., Arruda, L. K., Chapman, M. D., Caraballo, L., & Pomés, A. (2015). Analysis of glutathione S‐transferase allergen cross‐reactivity in a North American population: Relevance for molecular diagnosis. Journal of Allergy and Clinical Immunology, 136(5), 1369–1377. https://doi.org/10.1016/j.jaci.2015.03.015.
      Musil, D., Bode, W., Huber, R., Laskowski, M. Jr., Lin, T. Y., & Ardelt, W. (1991). Refined X‐ray crystal structures of the reactive site modified ovomucoid inhibitor third domains from silver pheasant (OMSVP3*) and from Japanese quail (OMJPQ3*). Journal of Molecular Biology, 220, 739–755. https://doi.org/10.1016/0022‐2836(91)90114‐l.
      Nakatsuji, M., Sugiura, K., Suda, K., Sakurai, M., Ubatani, M., Muroya, H., Okubo, R., Noguchi, R., Kamata, Y., Fukutomi, Y., Ishibashi, O., Nishimura, S., & Inui, T. (2022). Structure‐based prediction of the IgE epitopes of the major dog allergen Can f 1. FEBS Journal, 289(6), 1668–1679. https://doi.org/10.1111/febs.16252.
      Niemi, M., Jylhä, S., Laukkanen, M. L., Söderlund, H., Mäkinen‐Kiljunen, S., Kallio, J. M., Hakulinen, N., Haahtela, T., Takkinen, K., & Rouvinen, J. (2007). Molecular interactions between a recombinant IgE antibody and the beta‐lactoglobulin allergen. Structure (London, England), 15(11), 1413–1421. https://doi.org/10.1016/j.str.2007.09.012.
      Nugraha, R., Kamath, S. D., Johnston, E., Karnaneedi, S., Ruethers, T., & Lopata, A. L. (2019). Conservation analysis of B‐cell allergen epitopes to predict clinical cross‐reactivity between shellfish and inhalant invertebrate allergens. Frontiers in Immunology, 10, 2676. https://doi.org/10.3389/fimmu.2019.02676.
      Oksanen, E., Jaakola, V. P., Tolonen, T., Valkonen, K., Akerstrom, B., Kalkkinen, N., Virtanen, V., & Goldman, A. (2006). Reindeer beta‐lactoglobulin crystal structure with pseudo‐body‐centred noncrystallographic symmetry. Acta Crystallographica Section D—Structural Biology, 62, 1369–1374. https://doi.org/10.1107/S0907444906031519.
      Olaleye, O., Graf, C., Spanov, B., Govorukhina, N., Groves, M. R., van de Merbel, N. C., & Bischoff, R. (2023). Determination of binding sites on trastuzumab and pertuzumab to selective affimers using hydrogen‐deuterium exchange mass spectrometry. Journal of the American Society for Mass Spectrometry, 34(4), 775–783. https://doi.org/10.1021/jasms.3c00069.
      Orgel, J. P., Irving, T. C., Miller, A., & Wess, T. J. (2006). Microfibrillar structure of type I collagen in situ. Proceeding of the National Academy of Science of the United States of America, 103(24), 9001–9005. https://doi.org/10.1073/pnas.0502718103.
      Osinski, T., Pomés, A., Majorek, K. A., Glesner, J., Offermann, L. R., Vailes, L. D., Chapman, M. D., Minor, W., & Chruszcz, M. (2015). Structural analysis of Der p 1‐antibody complexes and comparison with complexes of proteins or peptides with monoclonal antibodies. Journal of Immunology, 195(1), 307–316. https://doi.org/10.4049/jimmunol.1402199.
      Pan, J. C., Yu, Z. H., Hui, E. F., & Zhou, H. M. (2004). Conformational change and inactivation of arginine kinase from shrimp Feneropenaeus chinensis in oxidized dithiothreitol solutions. Biochemistry and Cell Biology, 82(3), 361–367. https://doi.org/10.1139/O04‐033.
      Pekar, J., Ret, D., & Untersmayr, E. (2018). Stability of allergens. Molecular Immunology, 100, 14–20. https://doi.org/10.1016/j.molimm.2018.03.017.
      Peng, H. P., Lee, K. H., Jian, J. W., & Yang, A. S. (2014). Origins of specificity and affinity in antibody‐protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 111(26), E2656–E2665. https://doi.org/10.1073/pnas.1401131111.
      Perez‐Perez, J., Fernandez‐Caldas, E., Maranon, F., Sastre, J., Bernal, M. L., Rodriguez, J., & Bedate, C. A. (2000). Molecular cloning of paramyosin, a new allergen of Anisakis simplex. International Archives of Allergy and Immunology, 123(2), 120–129. https://doi.org/10.1159/000024442.
      Perusko, M., Apostolovic, D., Kiewiet, M. B. G., Grundström, J., Hamsten, C., Starkhammar, M., Cirkovic Velickovic, T., & van Hage, M. (2021). Bovine γ‐globulin, lactoferrin, and lactoperoxidase are relevant bovine milk allergens in patients with α‐Gal syndrome. Allergy, 76(12), 3766–3775. https://doi.org/10.1111/all.14889.
      Pollard, T. D. (2016). Actin and actin‐binding proteins. Cold Spring Harbor Perspectives in Biology, 8(8), a018226. https://doi.org/10.1101/cshperspect.a018226.
      Pomés, A., Mueller, G. A., & Chruszcz, M. (2020). Structural aspects of the allergen‐antibody interaction. Frontiers in Immunology, 11, 2067. https://doi.org/10.3389/fimmu.2020.02067.
      Ponomarenko, J., Bui, H. H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: A new structure‐based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9, 514. https://doi.org/10.1186/1471‐2105‐9‐514.
      Potocnakova, L., Bhide, M., & Pulzova, L. B. (2016). An introduction to B‐Cell epitope mapping and in silico epitope prediction. Journal of Immunology Research, 2016, 6760830. https://doi.org/10.1155/2016/6760830.
      Ramaraj, T., Angel, T., Dratz, E. A., Jesaitis, A. J., & Mumey, B. (2012). Antigen‐antibody interface properties: Composition, residue interactions, and features of 53 non‐redundant structures. Biochimica Et Biophysica Acta‐Proteins and Proteomics, 1824(3), 520–532. https://doi.org/10.1016/j.bbapap.2011.12.007.
      Rao, J. K., Bujacz, G., & Wlodawer, A. (1998). Crystal structure of rabbit muscle creatine kinase. FEBS Letters, 439(1–2), 133–137. https://doi.org/10.1016/s0014‐5793(98)01355‐6.
      Rapberger, R., Lukas, A., & Mayer, B. (2007). Identification of discontinuous antigenic determinants on proteins based on shape complementarities. Journal of Molecular Recognition, 20(2), 113–121. https://doi.org/10.1002/jmr.819.
      Rawas, A., Muirhead, H., & Williams, J. (1996). Structure of diferric duck ovotransferrin at 2.35 A resolution. Acta Crystallographica Section D—Biological Crystallography, 52, 631–640. https://doi.org/10.1107/S0907444996000212.
      Rouet, R., Dudgeon, K., Christie, M., Langley, D., & Christ, D. (2015). Fully human VH single domains that rival the stability and cleft recognition of camelid antibodies. Journal of Biological Chemistry, 290(19), 11905–11917. https://doi.org/10.1074/jbc.M114.614842.
      Saetang, J., Tipmanee, V., & Benjakul, S. (2022). In silico prediction of cross‐reactive epitopes of tropomyosin from shrimp and other arthropods involved in allergy. Molecules (Basel, Switzerland), 27(9), 2667. https://doi.org/10.3390/molecules27092667.
      Sander, I., Rozynek, P., Rihs, H. P., van Kampen, V., Chew, F. T., Lee, W. S., Kotschy‐Lang, N., Merget, R., Brüning, T., & Raulf‐Heimsoth, M. (2011). Multiple wheat flour allergens and cross‐reactive carbohydrate determinants bind IgE in baker's asthma. Allergy, 66(9), 1208–1215. https://doi.org/10.1111/j.1398‐9995.2011.02636.x.
      Santos, A. F., Barbosa‐Morais, N. L., Hurlburt, B. K., Ramaswamy, S., Hemmings, O., Kwok, M., O'Rourke, C., Bahnson, H. T., Cheng, H., James, L., Gould, H. J., Sutton, B. J., Maleki, S. J., & Lack, G. (2020). IgE to epitopes of Ara h 2 enhance the diagnostic accuracy of Ara h 2‐specific IgE. Allergy, 75(9), 2309–2318. https://doi.org/10.1111/all.14301.
      Schmalz, S., Mayr, V., Shosherova, A., Gepp, B., Ackerbauer, D., Sturm, G., Bohle, B., Breiteneder, H., & Radauer, C. (2022). Isotype‐specific binding patterns of serum antibodies to multiple conformational epitopes of Bet v 1. Journal of Allergy and Clinical Immunology, 149(5), 1786–1794.e12. https://doi.org/10.1016/j.jaci.2021.10.026.
      Shahriari‐Farfani, T., Shahpiri, A., & Taheri‐Kafrani, A. (2019). Enhancement of tryptic digestibility of milk β‐lactoglobulin through treatment with recombinant rice glutathione/thioredoxin and NADPH thioredoxin reductase/thioredoxin systems. Applied Biochemistry and Biotechnology, 187(2), 649–661. https://doi.org/10.1007/s12010‐018‐2793‐4.
      Sheriff, S., Silverton, E. W., Padlan, E. A., Cohen, G. H., Smith‐Gill, S. J., Finzel, B. C., & Davies, D. R. (1987). Three‐dimensional structure of an antibody‐antigen complex. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84(22), 8075–8079. https://doi.org/10.1073/pnas.84.22.8075.
      Shibata, Y., Serada, S., Fujimoto, M., Oishi, T., Ohko, K., Fujieda, M., Naka, T., & Sano, S. (2019). Myosin heavy chain, a novel allergen for fish allergy in patients with atopic dermatitis. British Journal of Dermatology, 181(6), 1322–1324. https://doi.org/10.1111/bjd.18226.
      Sicherer, S. H., & Sampson, H. A. (2018). Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. Journal of Allergy and Clinical Immunology, 141(1), 41–58. https://doi.org/10.1016/j.jaci.2017.11.003.
      Silva, C. D., Dhanapala, P., King, S., Doran, T., Tang, M., & Suphioglu, C. (2018). Immunological comparison of native and recombinant hen's egg yolk allergen, chicken serum albumin (Gal d 5), produced in Kluveromyces lactis. Nutrients, 10(6), 757. https://doi.org/10.3390/nu10060757.
      Sim, D. W., Lee, J. S., Park, K. H., Jeong, K. Y., Ye, Y. M., Lee, J. H., & Park, J. W. (2017). Accurate assessment of alpha‐gal syndrome using cetuximab and bovine thyroglobulin‐specific IgE. Molecular Nutrition and Food Research, 61(10), 1601046. https://doi.org/10.1002/mnfr.201601046.
      Sozańska, B. (2019). Raw cow's milk and its protective effect on allergies and asthma. Nutrients, 11(2), 469. https://doi.org/10.3390/nu11020469.
      Stein, P. E., Leslie, A. G., Finch, J. T., & Carrell, R. W. (1991). Crystal structure of uncleaved ovalbumin at 1.95 A resolution. Journal of Molecular Biology, 221(3), 941–959. https://doi.org/10.1016/0022‐2836(91)80185‐w.
      Sudharson, S., Kalic, T., Hafner, C., & Breiteneder, H. (2021). Newly defined allergens in the WHO/IUIS Allergen Nomenclature Database during 01/2019‐03/2021. Allergy, 6(11), 3359–3373. https://doi.org/10.1111/all.15021.
      Sukumar, N., Biswal, B. K., & Vijayan, M. (1999). Structures of orthorhombic lysozyme grown at basic pH and its low‐humidity variant. Acta Crystallographica Section D—Structural Biology, 55(Pt 4), 934–937. https://doi.org/10.1107/s0907444998015522.
      Sun, H., Ma, L., Wang, L., Xiao, P., Li, H., Zhou, M., & Song, D. (2021). Research advances in hydrogen‐deuterium exchange mass spectrometry for protein epitope mapping. Analytical and Bioanalytical Chemistry, 413(9), 2345–2359. https://doi.org/10.1007/s00216‐020‐03091‐9.
      Suzuki, M., Kobayashi, Y., Hiraki, Y., Nakata, H., & Shiomi, K. (2011). Paramyosin of the disc abalone Haliotis discus discus: Identification as a new allergen and cross‐reactivity with tropomyosin. Food Chemistry, 124, 921–926. https://doi.org/10.1016/j.foodchem.2010.07.020.
      Suzuki, M., Shimizu, K., Kobayashi, Y., Ishizaki, S., & Shiomi, K. (2014). Paramyosin from the disc abalone Haliotis discus discus. Journal of Food Biochemistry, 38(4), 444–451. https://doi.org/10.1111/jfbc.12072.
      Swain, A. L., Kretsinger, R. H., & Amma, E. L. (1989). Restrained least squares refinement of native (calcium) and cadmium‐substituted carp parvalbumin using X‐ray crystallographic data at 1.6‐A resolution. Journal of Biological Chemistry, 264(28), 16620–16628.
      Sweredoski, M. J., & Baldi, P. (2008). PEPITO: Improved discontinuous B‐cell epitope prediction using multiple distance thresholds and half sphere exposure. Bioinformatics, 24(12), 1459–1460. https://doi.org/10.1093/bioinformatics/btn199.
      Swoboda, I., Bugajska‐Schretter, A., Linhart, B., Verdino, P., Keller, W., Schulmeister, U., Sperr, W. R., Valent, P., Peltre, G., Quirce, S., Douladiris, N., Papadopoulos, N. G., Valenta, R., & Spitzauer, S. (2007). A recombinant hypoallergenic parvalbumin mutant for immunotherapy of IgE‐mediated fish allergy. Journal of Immunology, 178(10), 6290–6296. https://doi.org/10.4049/jimmunol.178.10.6290.
      Tahir, S., Bourquard, T., Musnier, A., Jullian, Y., Corde, Y., Omahdi, Z., Mathias, L., Reiter, E., Crépieux, P., Bruneau, G., & Poupon, A. (2021). Accurate determination of epitope for antibodies with unknown 3D structures. MABs, 13(1), 1961349. https://doi.org/10.1080/19420862.2021.1961349.
      Untersmayr, E., Szalai, K., Riemer, A. B., Hemmer, W., Swoboda, I., Hantusch, B., Schöll, I., Spitzauer, S., Scheiner, O., Jarisch, R., Boltz‐Nitulescu, G., & Jensen‐Jarolim, E. (2006). Mimotopes identify conformational epitopes on parvalbumin, the major fish allergen. Molecular Immunology, 43(9), 1454–1461. https://doi.org/10.1016/j.molimm.2005.07.038.
      Vijayalakshmi, L., Krishna, R., Sankaranarayanan, R., & Vijayan, M. (2008). An asymmetric dimer of beta‐lactoglobulin in a low humidity crystal form‐structural changes that accompany partial dehydration and protein action. Proteins, 71(1), 241–249. https://doi.org/10.1002/prot.21695.
      Villa, C., Costa, J., & Mafra, I. (2020). Lupine allergens: Clinical relevance, molecular characterization, cross‐reactivity, and detection strategies. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3886–3915. https://doi.org/10.1111/1541‐4337.12646.
      Wai, C. Y. Y., Leung, N. Y. H., Leung, P. S. C., & Chu, K. H. (2019). Immunotherapy of food allergy: A comprehensive review. Clinical Reviews in Allergy & Immunology, 57(1), 55–73. https://doi.org/10.1007/s12016‐017‐8647‐y.
      Wang, X., Hu, Y., Tan, H., Dong, X., Zhang, S., Fu, S., Gao, J., Chen, H., Liu, G., & Li, X. (2023). Glutamine and lysine as common residues from epitopes on α‐lactalbumin and β‐lactoglobulin from cow milk identified by phage display technology. Journal of Dairy Science, 106(11), 7382–7395. https://doi.org/10.3168/jds.2022‐23151.
      Weiss, M. S., Palm, G. J., & Hilgenfeld, R. (2000). Crystallization, structure solution and refinement of hen egg‐white lysozyme at pH 8.0 in the presence of MPD. Acta Crystallographica Section D—Structural Biology, 56(Pt 8), 952–958. https://doi.org/10.1107/s0907444900006685.
      Wilkinson, D. J. (2021). Serpins in cartilage and osteoarthritis: What do we know? Biochemical Society Transactions, 49(2), 1013–1026. https://doi.org/10.1042/BST20201231.
      Williams, D. C., Jr., Benjamin, D. C., Poljak, R. J., & Rule, G. S. (1996). Global changes in amide hydrogen exchange rates for a protein antigen in complex with three different antibodies. Journal of Molecular Biology, 257(4), 866–876. https://doi.org/10.1006/jmbi.1996.0207.
      Williams, S. C., Badley, R. A., Davis, P. J., Puijk, W. C., & Meloen, R. H. (1998). Identification of epitopes within beta lactoglobulin recognized by polyclonal antibodies using phage display and PEPSCAN. Journal of Immunology Methods, 213(1), 1–17. https://doi.org/10.1016/s0022‐1759(98)00022‐2.
      Willison, L. N., Zhang, Q., Su, M., Teuber, S. S., Sathe, S. K., & Roux, K. H. (2013). Conformational epitope mapping of Pru du 6, a major allergen from almond nut. Molecular Immunology, 55(3–4), 253–263. https://doi.org/10.1016/j.molimm.2013.02.004.
      Wu, X. A., Ye, S., Guo, S. Y., Yan, W. P., Bartlam, M., & Rao, Z. H. (2010). Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity. FASEB Journal, 24(1), 242–252. https://doi.org/10.1096/fj.09‐140194.
      Xia, F., Li, M. S., Liu, Q. M., Liu, M., Yang, Y., Cao, M. J., Chen, G. X., Jin, T., & Liu, G. M. (2019). Crystal structure analysis and conformational epitope mutation of triosephosphate isomerase, a mud crab allergen. Journal of Agricultural and Food Chemistry, 67(46), 12918–12926. https://doi.org/10.1021/acs.jafc.9b05279.
      Xie, V. C., Styles, M. J., & Dickinson, B. C. (2022). Methods for the directed evolution of biomolecular interactions. Trends in Biochemical Sciences, 47(5), 403–416. https://doi.org/10.1016/j.tibs.2022.01.001.
      Xu, F., Zhu, J., Chen, Y., He, K., Guo, J., Bai, S., Zhao, R., Du, J., & Shen, B. (2021). Physical interaction of tropomyosin 3 and STIM1 regulates vascular smooth muscle contractility and contributes to hypertension. Biomedicine & Pharmacotherapy, 134, 111126. https://doi.org/10.1016/j.biopha.2020.111126.
      Yamasaki, M., Takahashi, N., & Hirose, M. (2003). Crystal structure of S‐ovalbumin as a non‐loop‐inserted thermostabilized serpin form. Journal of Molecular Biology, 278, 35524–35530. https://doi.org/10.1074/jbc.M305926200.
      Yamashita, T. (2023). Molecular dynamics simulation for investigating antigen‐antibody interaction. Methods in Molecular Biology, 2552, 101–107. https://doi.org/10.1007/978‐1‐0716‐2609‐2_4.
      Yang, R. Q., Chen, Y. L., Chen, F., Wang, H., Zhang, Q., Liu, G. M., Jin, T., & Cao, M. J. (2018). Purification, characterization, and crystal structure of parvalbumins, the major allergens in Mustelus griseus. Journal of Agricultural and Food Chemistry, 66(30), 8150–8159. https://doi.org/10.1021/acs.jafc.8b01889.
      Yang, W. H., Tu, Z. C., Wang, H., Li, X., & Tian, M. (2017). High‐intensity ultrasound enhances the immunoglobulin (Ig)G and IgE binding of ovalbumin. Journal of the Science of Food and Agriculture, 97(9), 2714–2720. https://doi.org/10.1002/jsfa.8095.
      Yang, Y., Cao, M. J., Alcocer, M., Liu, Q. M., Fei, D. X., Mao, H. Y., & Liu, G. M. (2015). Mapping and characterization of antigenic epitopes of arginine kinase of Scylla paramamosain. Molecular Immunology, 65(2), 310–320. https://doi.org/10.1016/j.molimm.2015.02.010.
      Yang, Y., Chen, Z. W., Hurlburt, B. K., Li, G. L., Zhang, Y. X., Fei, D. X., Shen, H. W., Cao, M. J., & Liu, G. M. (2017). Identification of triosephosphate isomerase as a novel allergen in Octopus fangsiao. Molecular Immunology, 85, 35–46. https://doi.org/10.1016/j.molimm.2017.02.004.
      Yang, Y., Gourinath, S., Kovács, M., Nyitray, L., Reutzel, R., Himmel, D. M., O'Neall‐Hennessey, E., Reshetnikova, L., Szent‐Györgyi, A. G., Brown, J. H., & Cohen, C. (2007). Rigor‐like structures from muscle myosins reveal key mechanical elements in the transduction pathways of this allosteric motor. Structure (London, England), 15(5), 553–564. https://doi.org/10.1016/j.str.2007.03.010.
      Yang, Y., Hu, M. J., Jin, T. C., Zhang, Y. X., Liu, G. Y., Li, Y. B., Zhang, M. L., Cao, M. J., Su, W. J., & Liu, G. M. (2019). A comprehensive analysis of the allergenicity and IgE epitopes of myosinogen allergens in Scylla paramamosain. Clinical and Experimental Allergy, 49(1), 108–119. https://doi.org/10.1111/cea.13266.
      Yang, Y., Liu, G. Y., Yang, H., Hu, M. J., Cao, M. J., Su, J., & Jin, T., & Liu, G. M. (2019). Crystal structure determination of Scylla paramamosain arginine kinase, an allergen that may cause cross‐reactivity among invertebrates. Food Chemistry, 271, 597–605. https://doi.org/10.1016/j.foodchem.2018.08.003.
      Yang, Y., Yan, H. F., Zhang, Y. X., Chen, H. L., Cao, M. J., Li, M. S., Zhang, M. L., He, X. R., & Liu, G. M. (2020). Expression and epitope identification of myosin light chain isoform 1, an allergen in Procambarus clarkii. Food Chemistry, 317, 126422. https://doi.org/10.1016/j.foodchem.2020.126422.
      Yang, Y., Zhang, Y. X., Liu, M., Maleki, S. J., Zhang, M. L., Liu, Q. M., Cao, M. J., Su, W. J., & Liu, G. M. (2017). Triosephosphate isomerase and filamin c share common epitopes as novel allergens of Procambarus clarkii. Journal of Agricultural and Food Chemistry, 65(4), 950–963. https://doi.org/10.1021/acs.jafc.6b04587.
      Yano, D., & Suzuki, T. (2022). Phosphagen kinases from five groups of eukaryotic protists (Choanomonada, Alveolate, Stramenopiles, Haptophyta, and Cryptophyta): Diverse enzyme activities and phylogenetic relationship with metazoan enzymes. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 257, 110663. https://doi.org/10.1016/j.cbpb.2021.110663.
      Yu, C., Gao, X., Lin, H., Lin, H., Zhang, Z., Khan, M. U., Li, Y., Chen, Y., & Li, Z. (2021). Identification and amino acid analysis of allergenic epitopes of a novel allergen paramyosin (Rap v 2) from Rapana venosa. Journal of Agricultural and Food Chemistry, 69(18), 5381–5391. https://doi.org/10.1021/acs.jafc.1c00775.
      Yu, C., Gao, X., Lin, H., Xu, L., Ahmed, I., Khan, M. U., Xu, M., Chen, Y., & Li, Z. (2020). Purification, characterization, and three‐dimensional structure prediction of paramyosin, a novel allergen of Rapana venosa. Journal of Agricultural and Food Chemistry, 68(49), 14632–14642. https://doi.org/10.1021/acs.jafc.0c04418.
      Yu, C. J., Lin, Y. F., Chiang, B. L., & Chow, L. P. (2003). Proteomics and immunological analysis of a novel shrimp allergen, Pen m 2. Journal of Immunology, 170(1), 445–453. https://doi.org/10.4049/jimmunol.170.1.445.
      Yu, X. X., Liang, W. Y., Yin, J. Y., Zhou, Q., Chen, D. M., & Zhang, Y. H. (2021). Combining experimental techniques with molecular dynamics to investigate the impact of different enzymatic hydrolysis of β‐lactoglobulin on the antigenicity reduction. Food Chemistry, 350, 129139. https://doi.org/10.1016/j.foodchem.2021.129139.
      Yu, X. X., Liu, M. Q., Li, X. Y., Zhang, Y. H., & Tao, B. J. (2023). Qualitative and quantitative prediction of food allergen epitopes based on machine learning combined with in vitro experimental validation. Food Chemistry, 405(Pt A), 134796. https://doi.org/10.1016/j.foodchem.2022.134796.
      Yun, X., Li, M. S., Chen, Y., Huan, F., Cao, M. J., Lai, D., Chen, G. X., & Liu, G. M. (2022). Characterization, epitope identification, and cross‐reactivity analysis of tropomyosin: An important allergen of Crassostrea angulata. Journal of Agricultural Food Chemistry, 70(29), 9201–9213. https://doi.org/10.1021/acs.jafc.2c03754.
      Zhang, Q., Noble, K. A., Mao, Y., Young, N. L., Sathe, S. K., Roux, K. H., & Marshall, A. G. (2013). Rapid screening for potential epitopes reactive with a polycolonal antibody by solution‐phase H/D exchange monitored by FT‐ICR mass spectrometry. Journal of the American Society for Mass Spectrometry, 24(7), 1016–1025. https://doi.org/10.1007/s13361‐013‐0644‐7.
      Zhang, Q., Yang, J., Bautista, J., Badithe, A., Olson, W., & Liu, Y. (2018). Epitope mapping by HDX‐MS elucidates the surface coverage of antigens associated with high blocking efficiency of antibodies to birch pollen allergen. Analytical Chemistry, 90(19), 11315–11323. https://doi.org/10.1021/acs.analchem.8b01864.
      Zhang, Y., Che, H., Li, C., & Jin, T. (2023). Food allergens of plant origin. Foods, 12(11), 2232. https://doi.org/10.3390/foods12112232.
      Zhang, Z., Xiao, H., Zhang, X., & Zhou, P. (2019). Conformation, allergenicity and human cell allergy sensitization of tropomyosin from Exopalaemon modestus: Effects of deglycosylation and Maillard reaction. Food Chemistry, 276, 520–527. https://j.foodchem.2018.10.032.
      Zhang, Z. H., Koh, J. L., Zhang, G. L., Choo, K. H., Tammi, M. T., & Tong, J. C. (2007). AllerTool: A web server for predicting allergenicity and allergic cross‐reactivity in proteins. Bioinformatics, 23(4), 504–506. https://doi.org/10.1093/bioinformatics/btl621.
      Zhou, C., Chen, Z., Zhang, L., Yan, D., Mao, T., Tang, K., Qiu, T., & Cao, Z. (2019). SEPPA 3.0‐enhanced spatial epitope prediction enabling glycoprotein antigens. Nucleic Acids Research, 47(W1), W388–W394. https://doi.org/10.1093/nar/gkz413.
      Zhou, F. L., He, S. D., Sun, H. J., Wang, Y. F., & Zhang, Y. (2021). Advances in epitope mapping technologies for food protein allergens: A review. Trends in Food Science & Technology, 107, 226–239. https://doi.org/10.1016/j.tifs.2020.10.035.
      Zhou, W., Bias, K., Lenczewski‐Jowers, D., Henderson, J., Cupp, V., Ananga, A., Ochieng, J. W., & Tsolova, V. (2022). Analysis of protein sequence identity, binding sites, and 3D structures identifies eight pollen species and ten fruit species with high risk of cross‐reactive allergies. Genes (Basel), 13(8), 1464. https://doi.org/10.3390/genes13081464.
      Zieglmayer, P., Focke‐Tejkl, M., Schmutz, R., Lemell, P., Zieglmayer, R., Weber, M., Kiss, R., Blatt, K., Valent, P., Stolz, F., Huber, H., Neubauer, A., Knoll, A., Horak, F., Henning, R., & Valenta, R. (2016). Mechanisms, safety and efficacy of a B cell epitope‐based vaccine for immunotherapy of grass pollen allergy. Ebiomedicine, 1, 43–57. https://doi.org/10.1016/j.ebiom.2016.08.022.
    • Grant Information:
      2023J011666 The Grant from the Provincial Natural Scientific Foundation of Fujian Province; 31901811 National Natural Scientific Foundation of China; 32072336 National Natural Scientific Foundation of China; 32001695 National Natural Scientific Foundation of China; 2022YFF1100103 The National Key R&D Program of China; HX201808 the Financial Support of Scientific Research Foundation of Xiamen Huaxia University
    • Contributed Indexing:
      Keywords: animal‐derived food allergen; conformational epitope; cross‐reactivity; crystal structure; protein family
    • Accession Number:
      0 (Allergens)
      0 (Epitopes)
      37341-29-0 (Immunoglobulin E)
    • Publication Date:
      Date Created: 20240523 Date Completed: 20240523 Latest Revision: 20240523
    • Publication Date:
      20240524
    • Accession Number:
      10.1111/1541-4337.13340
    • Accession Number:
      38778570