Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Surface plasmon resonance microscopy identifies glycan heterogeneity in pancreatic cancer cells that influences mucin-4 binding interactions.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
- Publication Information:
Original Publication: San Francisco, CA : Public Library of Science
- Subject Terms:
- Abstract:
Membrane proteins are the main targets of therapeutic drugs and most of them are glycosylated. Glycans play pivotal roles in several biological processes, and glycosylation changes are a well-established hallmark of several types of cancer, including pancreatic cancer, that contribute to tumor growth. Mucin-4 (MUC-4) is a membrane glycoprotein which is associated with pancreatic cancer and metastasis, and it has been targeted as a promising vaccine candidate. In this study, Surface Plasmon Resonance Microscopy (SPRM) was implemented to study complex influences of the native N-glycan cellular environment on binding interactions to the MUC-4 receptor as this is currently the only commercially available label-free technique with high enough sensitivity and resolution to measure binding kinetics and heterogeneity on single cells. Such unique capability enables for a more accurate understanding of the "true" binding interactions on human cancer cells without disrupting the native environment of the target MUC-4 receptor. Removal of N-linked glycans in pancreatic cancer cells using PNGase F exposed heterogeneity in Concanavalin (Con A) binding by revealing three new binding populations with higher affinities than the glycosylated control cells. Anti-MUC-4 binding interactions of enzymatically N-linked deglycosylated pancreatic cancer cells produced a 25x faster association and 37x higher affinity relative to the glycosylated control cells. Lastly, four interaction modes were observed for Helix Pomatia Agglutinin (HPA) binding to the glycosylated control cells, but shifted and increased in activity upon removal of N-linked glycans. These results identified predominant interaction modes of glycan and MUC-4 in pancreatic cancer cells, the kinetics of their binding interactions were quantified, and the influence of N-linked glycans in MUC-4 binding interactions was revealed.
Competing Interests: I have read the journal’s policy and the authors of this manuscript have the following competing interests: Authors are employees of the Biosensing Instrument Inc., the manufacturer of the SPRM instrument used in the study.
(Copyright: © 2024 Aguilar Díaz de león et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- References:
Semin Immunol. 2020 Feb;47:101391. (PMID: 31952903)
J Hematol Oncol. 2016 Sep 29;9(1):100. (PMID: 27686492)
Cancers (Basel). 2021 Nov 16;13(22):. (PMID: 34830899)
Sci Rep. 2021 Mar 4;11(1):5239. (PMID: 33664400)
Nat Rev Mol Cell Biol. 2012 Jun 22;13(7):448-62. (PMID: 22722607)
Trends Cancer. 2020 Sep;6(9):757-766. (PMID: 32381431)
Mol Cell Proteomics. 2020 Feb;19(2):362-374. (PMID: 31888963)
Technol Cancer Res Treat. 2021 Jan-Dec;20:15330338211019442. (PMID: 34060360)
Sci Rep. 2015 Nov 05;5:16007. (PMID: 26537865)
Oncogene. 2014 Jun 5;33(23):2956-67. (PMID: 23851493)
Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):13729-13737. (PMID: 31213534)
J Pharmacol Exp Ther. 2023 Jul;386(1):35-44. (PMID: 37142444)
Cancers (Basel). 2018 Jun 18;10(6):. (PMID: 29912148)
Biochem J. 1991 Jun 1;276 ( Pt 2):343-7. (PMID: 1646598)
FASEB J. 2008 Apr;22(4):966-81. (PMID: 18024835)
Adv Exp Med Biol. 1995;376:239-45. (PMID: 8597254)
Immunology. 2023 Oct;170(2):202-213. (PMID: 37218360)
Biosens Bioelectron. 2012 May 15;35(1):160-166. (PMID: 22424753)
Carcinogenesis. 2012 Oct;33(10):1953-64. (PMID: 22791819)
Oncotarget. 2016 Jun 7;7(23):35478-89. (PMID: 27007155)
Electrophoresis. 2016 Jun;37(11):1407-19. (PMID: 26872045)
J Proteome Res. 2007 Mar;6(3):1126-38. (PMID: 17249709)
Oncol Lett. 2019 Mar;17(3):2569-2575. (PMID: 30854032)
PLoS One. 2023 Jan 20;18(1):e0280590. (PMID: 36662882)
Anal Chem. 2022 Dec 13;94(49):17303-17311. (PMID: 36454605)
Biochim Biophys Acta Rev Cancer. 2021 Jan;1875(1):188464. (PMID: 33157161)
J Biol Chem. 2018 Oct 26;293(43):16842-16850. (PMID: 30213862)
Annu Rev Pathol. 2015;10:473-510. (PMID: 25621663)
Adv Cancer Res. 2015;126:345-82. (PMID: 25727153)
J Biol Chem. 1985 Jun 10;260(11):6882-7. (PMID: 3997852)
Glycobiology. 2023 Dec 30;33(12):1182-1192. (PMID: 37792857)
PeerJ. 2017 Sep 7;5:e3784. (PMID: 28894650)
Carbohydr Res. 2015 Sep 2;413:5-11. (PMID: 26057990)
Methods Mol Biol. 2018;1785:53-63. (PMID: 29714011)
Trends Pharmacol Sci. 2021 Aug;42(8):657-674. (PMID: 34270922)
Br J Cancer. 2008 Aug 5;99(3):520-6. (PMID: 18665193)
J Membr Biol. 2015 Aug;248(4):611-40. (PMID: 26063070)
Oncotarget. 2017 Feb 21;8(8):14147-14157. (PMID: 27829225)
Histol Histopathol. 2000 Jan;15(1):143-58. (PMID: 10668205)
J Biomed Sci. 2020 Jul 3;27(1):77. (PMID: 32620165)
Mol Cancer. 2015 May 29;14:109. (PMID: 26021314)
Glycobiology. 2012 Jun;22(6):839-48. (PMID: 22322011)
Front Oncol. 2016 Nov 28;6:254. (PMID: 27965934)
J Chromatogr A. 2016 Jul 15;1455:147-155. (PMID: 27289501)
Structure. 1994 Nov 15;2(11):1049-59. (PMID: 7881905)
Mol Pharm. 2023 Apr 3;20(4):2094-2104. (PMID: 36939457)
Front Immunol. 2017 Apr 24;8:455. (PMID: 28484455)
MAbs. 2020 Jan-Dec;12(1):1792673. (PMID: 32744151)
Medicines (Basel). 2019 Oct 13;6(4):. (PMID: 31614918)
Biochim Biophys Acta. 2015 Dec;1856(2):211-25. (PMID: 26318196)
Int J Cancer. 2001 Mar 20;95(2):79-85. (PMID: 11241316)
JCI Insight. 2019 Mar 7;4(5):. (PMID: 30730306)
Chem Commun (Camb). 2013 Nov 4;49(85):9908-10. (PMID: 23948717)
Glycoconj J. 2018 Apr;35(2):217-231. (PMID: 29502191)
Sci Rep. 2017 Feb 22;7:43006. (PMID: 28223691)
PLoS One. 2011;6(8):e23344. (PMID: 21886786)
ACS Chem Neurosci. 2018 Jan 17;9(1):51-72. (PMID: 28982002)
Mol Immunol. 1989 Jan;26(1):1-5. (PMID: 2467192)
Sci Rep. 2015 Sep 15;5:14066. (PMID: 26369583)
Cancer Cell. 2019 Aug 12;36(2):168-178.e4. (PMID: 31327656)
J Cancer. 2021 Jun 16;12(16):4993-5004. (PMID: 34234868)
Endocr Relat Cancer. 2021 Nov 24;29(1):R17-R32. (PMID: 34726614)
Oncotarget. 2016 Apr 12;7(15):19395-413. (PMID: 26539643)
J Biomol Tech. 2019 Dec;30(4):58-63. (PMID: 31598098)
Anticancer Res. 2014 Aug;34(8):3905-10. (PMID: 25075011)
J Biol Chem. 2021 Jan-Jun;296:100183. (PMID: 33310702)
Cancer Res. 2004 Jan 15;64(2):622-30. (PMID: 14744777)
J Biol Chem. 2022 Sep;298(9):102329. (PMID: 35921896)
Sci Rep. 2014 Oct 14;4:6609. (PMID: 25312029)
Electrophoresis. 1989 Dec;10(12):830-5. (PMID: 2482177)
Front Immunol. 2019 Feb 14;10:223. (PMID: 30837990)
Ocul Surf. 2010 Jan;8(1):8-17. (PMID: 20105403)
Langenbecks Arch Surg. 2007 May;392(3):353-8. (PMID: 17235586)
Angew Chem Int Ed Engl. 2020 Jan 27;59(5):1776-1785. (PMID: 31531917)
Cells. 2022 Nov 18;11(22):. (PMID: 36429094)
Cancer Lett. 2021 Apr 10;503:91-102. (PMID: 33485947)
Proteomics. 2010 Mar;10(6):1141-9. (PMID: 20175080)
STAR Protoc. 2023 Sep 15;4(3):102458. (PMID: 37516975)
J Biol Chem. 2021 Jan-Jun;296:100057. (PMID: 33172893)
Biochim Biophys Acta. 2012 Sep;1820(9):1347-53. (PMID: 22178561)
Nat Rev Cancer. 2005 Jul;5(7):526-42. (PMID: 16069816)
Anal Chem. 2013 Mar 5;85(5):2927-36. (PMID: 23368525)
J Biol Chem. 1996 Jan 12;271(2):972-6. (PMID: 8557713)
Cancer Res. 2008 Apr 1;68(7):2065-70. (PMID: 18381409)
- Grant Information:
R42 GM143986 United States GM NIGMS NIH HHS
- Publication Date:
Date Created: 20240522 Date Completed: 20240522 Latest Revision: 20240806
- Publication Date:
20240806
- Accession Number:
PMC11111020
- Accession Number:
10.1371/journal.pone.0304154
- Accession Number:
38776309
No Comments.