Potato E3 ubiquitin ligase StRFP1 positively regulates late blight resistance by degrading sugar transporters StSWEET10c and StSWEET11.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley on behalf of New Phytologist Trust Country of Publication: England NLM ID: 9882884 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-8137 (Electronic) Linking ISSN: 0028646X NLM ISO Abbreviation: New Phytol Subsets: MEDLINE
    • Publication Information:
      Publication: Oxford : Wiley on behalf of New Phytologist Trust
      Original Publication: London, New York [etc.] Academic Press.
    • Subject Terms:
    • Abstract:
      Potato (Solanum tuberosum) is the fourth largest food crop in the world. Late blight, caused by oomycete Phytophthora infestans, is the most devastating disease threatening potato production. Previous research has shown that StRFP1, a potato Arabidopsis Tóxicos en Levadura (ATL) family protein, positively regulates late blight resistance via its E3 ligase activity. However, the underlying mechanism is unknown. Here, we reveal that StRFP1 is associated with the plasma membrane (PM) and undergoes constitutive endocytic trafficking. Its PM localization is essential for inhibiting P. infestans colonization. Through in vivo and in vitro assays, we investigated that StRFP1 interacts with two sugar transporters StSWEET10c and StSWEET11 at the PM. Overexpression (OE) of StSWEET10c or StSWEET11 enhances P. infestans colonization. Both StSWEET10c and StSWEET11 exhibit sucrose transport ability in yeast, and OE of StSWEET10c leads to an increased sucrose content in the apoplastic fluid of potato leaves. StRFP1 ubiquitinates StSWEET10c and StSWEET11 to promote their degradation. We illustrate a novel mechanism by which a potato ATL protein enhances disease resistance by degrading susceptibility (S) factors, such as Sugars Will Eventually be Exported Transporters (SWEETs). This offers a potential strategy for improving disease resistance by utilizing host positive immune regulators to neutralize S factors.
      (© 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.)
    • References:
      Abelenda JA, Bergonzi S, Oortwijn M, Sonnewald S, Du M, Visser RGF, Sonnewald U, Bachem CWB. 2019. Source‐sink regulation is mediated by interaction of an FT homolog with a SWEET protein in potato. Current Biology 29: 1178–1186.
      Aguilar‐Hernández V, Aguilar‐Henonin L, Guzmán P. 2011. Diversity in the architecture of ATLs, a family of plant ubiquitin‐ligases, leads to recognition and targeting of substrates in different cellular environments. PLoS ONE 6: e23934.
      Akizuki Y, Morita M, Mori Y, Kaiho‐Soma A, Dixit S, Endo A, Shimogawa M, Hayashi G, Naito M, Okamoto A et al. 2023. cIAP1‐based degraders induce degradation via branched ubiquitin architectures. Nature Chemical Biology 19: 311–322.
      Ariani P, Regaiolo A, Lovato A, Giorgetti A, Porceddu A, Camiolo S, Wong D, Castellarin S, Vandelle E, Polverari A. 2016. Genome‐wide characterisation and expression profile of the grapevine ATL ubiquitin ligase family reveal biotic and abiotic stress‐responsive and development‐related members. Scientific Reports 6: 38260.
      Batistic O, Sorek N, Schültke S, Yalovsky S, Kudla J. 2008. Dual fatty acyl modification determines the localization and plasma membrane targeting of CBL/CIPK Ca2+ signaling complexes in Arabidopsis. Plant Cell 20: 1346–1362.
      Breia R, Conde A, Badim H, Fortes AM, Geros H, Granell A. 2021. Plant SWEETs: from sugar transport to plant‐pathogen interaction and more unexpected physiological roles. Plant Physiology 186: 836–852.
      Bueso E, Rodriguez L, Lorenzo‐Orts L, Gonzalez‐Guzman M, Sayas E, Muñoz‐Bertomeu J, Ibañez C, Serrano R, Rodriguez PL. 2014. The single‐subunit RING‐type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling. The Plant Journal 80: 1057–1071.
      Chandran D. 2015. Co‐option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance. IUBMB Life 67: 461–471.
      Chen HY, Huh JH, Yu YC, Ho LH, Chen LQ, Tholl D, Frommer WB, Guo WJ. 2015. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. The Plant Journal 83: 1046–1058.
      Chen LQ. 2014. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytologist 201: 1150–1155.
      Chen LQ, Cheung LS, Feng L, Tanner W, Frommer WB. 2015. Transport of sugars. Annual Review of Biochemistry 84: 865–894.
      Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo WJ, Kim JG, Underwood W, Chaudhuri B et al. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468: 527–532.
      Chen Y, Song Y, Liu J, Xu G, Dou D. 2022. Ubiquitination of receptorsomes, frontline of plant immunity. International Journal of Molecular Sciences 23: 2937.
      Chong J, Piron MC, Meyer S, Merdinoglu D, Bertsch C, Mestre P. 2014. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea. Journal of Experimental Botany 65: 6589–6601.
      Cikos S, Bukovská A, Koppel J. 2007. Relative quantification of mRNA: comparison of methods currently used for real‐time PCR data analysis. BMC Molecular Biology 8: 113.
      Copeland C, Li X. 2019. Regulation of plant immunity by the proteasome. International Review of Cell and Molecular Biology 343: 37–63.
      Deng F, Guo T, Lefebvre M, Scaglione S, Antico CJ, Jing T, Yang X, Shan W, Ramonell KM. 2017. Expression and regulation of ATL9, an E3 ubiquitin ligase involved in plant defense. PLoS ONE 12: e0188458.
      Du B, Nie N, Sun S, Hu Y, Bai Y, He S, Zhao N, Liu Q, Zhai H. 2021. A novel sweetpotato RING‐H2 type E3 ubiquitin ligase gene IbATL38 enhances salt tolerance in transgenic Arabidopsis. Plant Science 304: 110802.
      Fang T, Peng Y, Rao Y, Li S, Zeng L. 2020. Genome‐wide identification and expression analysis of Sugar Transporter (ST) gene family in longan (Dimocarpus longan L.). Plants 9: 342.
      Foot N, Henshall T, Kumar S. 2017. Ubiquitination and the regulation of membrane proteins. Physiological Reviews 97: 253–281.
      Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N et al. 2012. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486: 228–232.
      Gautam T, Dutta M, Jaiswal V, Zinta G, Gahlaut V, Kumar S. 2022. Emerging roles of sweet sugar transporters in plant development and abiotic stress responses. Cells 11: 1303.
      Georgelis N, Fencil K, Richael CM. 2018. Validation of a rapid and sensitive HPLC/MS method for measuring sucrose, fructose and glucose in plant tissues. Food Chemistry 262: 191–198.
      Guo L, Qi Y, Mu Y, Zhou J, Lu W, Tian Z. 2022. Potato StLecRK‐IV.1 negatively regulates late blight resistance by affecting the stability of a positive regulator StTET8. Horticulture Research 9: uhac010.
      Guzmán P. 2012. The prolific ATL family of RING‐H2 ubiquitin ligases. Plant Signaling & Behavior 7: 1014–1021.
      Hasegawa Y, Huarancca Reyes T, Uemura T, Baral A, Fujimaki A, Luo Y, Morita Y, Saeki Y, Maekawa S, Yasuda S et al. 2022. The TGN/EE SNARE protein SYP61 and the ubiquitin ligase ATL31 cooperatively regulate plant responses to carbon/nitrogen conditions in Arabidopsis. Plant Cell 34: 1354–1374.
      Jelínková A, Malínská K, Simon S, Kleine‐Vehn J, Parezová M, Pejchar P, Kubes M, Martinec J, Friml J, Zazímalová E et al. 2010. Probing plant membranes with FM dyes: tracking, dragging or blocking? The Plant Journal 61: 883–892.
      Ji J, Yang L, Fang Z, Zhang Y, Zhuang M, Lv H, Wang Y. 2022. Plant sweet family of sugar transporters: structure, evolution and biological functions. Biomolecules 12: 205.
      Jing S, Jiang P, Sun X, Yu L, Wang E, Qin J, Zhang F, Prat S, Song B. 2023. Long‐distance control of potato storage organ formation by SELF PRUNING 3D and FLOWERING LOCUS T‐like 1. Plant Communications 11: 100547.
      Joazeiro CA, Weissman AM. 2000. RING finger proteins: mediators of ubiquitin ligase activity. Cell 102: 549–552.
      Kang H, Zhang TT, Fu LL, You CX, Wang XF, Hao YJ. 2020. The apple RING‐H2 protein MdCIP8 regulates anthocyanin accumulation and hypocotyl elongation by interacting with MdCOP1. Plant Science 301: 110665.
      Kanwar P, Jha G. 2019. Alterations in plant sugar metabolism: signatory of pathogen attack. Planta 249: 305–318.
      Kardile HB, Karkute SG, Challam C, Sharma NK, Shelake RM, Kawar PG, Patil VU, Deshmukh R, Bhardwaj V, Chourasia KN et al. 2023. Hemibiotrophic Phytophthora infestans modulates the expression of SWEET genes in potato (Solanum tuberosum L.). Plants 12: 3433.
      Kim P, Xue CY, Song HD, Gao Y, Feng L, Li Y, Xuan YH. 2021. Tissue‐specific activation of DOF11 promotes rice resistance to sheath blight disease and increases grain weight via activation of SWEET14. Plant Biotechnology Journal 19: 409–411.
      Kong F, Guo T, Ramonell KM. 2021. Arabidopsis Toxicos en Levadura 12 (ATL12): a gene involved in chitin‐induced, hormone‐related and nadph oxidase‐mediated defense responses. Journal of Fungi 7: 883.
      Lauwers E, Jacob C, André B. 2009. K63‐linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway. The Journal of Cell Biology 185: 493–502.
      Li C, Wei J, Lin Y, Chen H. 2012. Gene silencing using the recessive rice bacterial blight resistance gene xa13 as a new paradigm in plant breeding. Plant Cell Reports 31: 851–862.
      Likun L, Qiming C, Kaili Y, Caihua X, Qinghai Q, Xiaosan H, Shaoling Z. 2023. PbrATL18, an E3 ubiquitin ligase identified by genome‐wide identification, is a positive factor in pear resistance to drought and Colletotrichum fructicola infection. Horticultural Plant Journal. doi: 10.1016/j.hpj.2023.04.007.
      Liu J, Liu M, Tan L, Huai B, Ma X, Pan Q, Zheng P, Wen Y, Zhang Q, Zhao Q et al. 2021. AtSTP8, an endoplasmic reticulum‐localised monosaccharide transporter from Arabidopsis, is recruited to the extrahaustorial membrane during powdery mildew infection. New Phytologist 230: 2404–2419.
      Liu X, Zhou Y, Du M, Liang X, Fan F, Huang G, Zou Y, Bai J, Lu D. 2022. The calcium‐dependent protein kinase CPK28 is targeted by the ubiquitin ligases ATL31 and ATL6 for proteasome‐mediated degradation to fine‐tune immune signaling in Arabidopsis. Plant Cell 34: 679–697.
      Liu YH, Song YH, Ruan YL. 2022. Sugar conundrum in plant‐pathogen interactions: roles of invertase and sugar transporters depend on pathosystems. Journal of Experimental Botany 73: 1910–1925.
      Ma X, Claus LAN, Leslie ME, Tao K, Wu Z, Liu J, Yu X, Li B, Zhou J, Savatin DV et al. 2020. Ligand‐induced monoubiquitination of BIK1 regulates plant immunity. Nature 581: 199–203.
      MacGurn JA, Hsu PC, Emr SD. 2012. Ubiquitin and membrane protein turnover: from cradle to grave. Annual Review of Biochemistry 81: 231–259.
      Maekawa S, Sato T, Asada Y, Yasuda S, Yoshida M, Chiba Y, Yamaguchi J. 2012. The Arabidopsis ubiquitin ligases ATL31 and ATL6 control the defense response as well as the carbon/nitrogen response. Plant Molecular Biology 79: 217–227.
      Manck‐Götzenberger J, Requena N. 2016. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Frontiers in Plant Science 7: 487.
      Martin S, Dohmann EM, Cayrel A, Johnson A, Fischer W, Pojer F, Satiat‐Jeunemaître B, Jaillais Y, Chory J, Geldner N et al. 2015. Internalization and vacuolar targeting of the brassinosteroid hormone receptor BRI1 are regulated by ubiquitination. Nature Communications 6: 6151.
      McLellan H, Chen K, He Q, Wu X, Boevink PC, Tian Z, Birch PRJ. 2020. The ubiquitin E3 ligase PUB17 positively regulates immunity by targeting a negative regulator, KH17, for degradation. Plant Communications 1: 100020.
      Morreale FE, Walden H. 2016. Types of ubiquitin ligases. Cell 165: 248.
      Morris K, Thornber S, Codrai L, Richardson C, Craig A, Sadanandom A, Thomas B, Jackson S. 2010. DAY NEUTRAL FLOWERING represses CONSTANS to prevent Arabidopsis flowering early in short days. Plant Cell 22: 1118–1128.
      Ohtake F, Saeki Y, Ishido S, Kanno J, Tanaka K. 2016. The K48‐K63 branched ubiquitin chain regulates NF‐κB signaling. Molecular Cell 64: 251–266.
      Ohtake F, Tsuchiya H, Saeki Y, Tanaka K. 2018. K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains. Proceedings of the National Academy of Sciences, USA 115: E1401–E1408.
      Oliva R, Ji C, Atienza‐Grande G, Huguet‐Tapia JC, Perez‐Quintero A, Li T, Eom JS, Li C, Nguyen H, Liu B et al. 2019. Broad‐spectrum resistance to bacterial blight in rice using genome editing. Nature Biotechnology 37: 1344–1350.
      Onelli E, Scali M, Caccianiga M, Stroppa N, Morandini P, Pavesi G, Moscatelli A. 2018. Microtubules play a role in trafficking prevacuolar compartments to vacuoles in tobacco pollen tubes. Open Biology 8: 180078.
      Orosa B, He Q, Mesmar J, Gilroy EM, McLellan H, Yang C, Craig A, Bailey M, Zhang C, Moore JD et al. 2017. BTB‐BACK domain protein POB1 suppresses immune cell death by targeting ubiquitin E3 ligase PUB17 for degradation. PLoS Genetics 13: e1006540.
      Pommerrenig B, Müdsam C, Kischka D, Neuhaus HE. 2020. Treat and trick: common regulation and manipulation of sugar transporters during sink establishment by the plant and the pathogen. Journal of Experimental Botany 71: 3930–3940.
      Qi Y, Yang Z, Sun X, He H, Guo L, Zhou J, Xu M, Luo M, Chen H, Tian Z. 2022. Heterologous overexpression of StERF3 triggers cell death in Nicotiana benthamiana. Plant Science 315: 111149.
      Riesmeier JW, Willmitzer L, Frommer WB. 1992. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO Journal 11: 4705–4713.
      Roman‐Reyna V, Rathjen JP. 2017. Apoplastic sugar extraction and quantification from wheat leaves infected with biotrophic fungi. In: Periyannan S, ed. Wheat rust diseases: methods and protocols. New York, NY, USA: Springer New York, 128–130.
      Saeed B, Deligne F, Brillada C, Dünser K, Ditengou FA, Turek I, Allahham A, Grujic N, Dagdas Y, Ott T et al. 2023. K63‐linked ubiquitin chains are a global signal for endocytosis and contribute to selective autophagy in plants. Current Biology 33: 1337–1345.
      Sato T, Maekawa S, Yasuda S, Sonoda Y, Katoh E, Ichikawa T, Nakazawa M, Seki M, Shinozaki K, Matsui M et al. 2009. CNI1/ATL31, a RING‐type ubiquitin ligase that functions in the carbon/nitrogen response for growth phase transition in Arabidopsis seedlings. The Plant Journal 60: 852–864.
      Serrano I, Gu Y, Qi D, Dubiella U, Innes RW. 2014. The Arabidopsis EDR1 protein kinase negatively regulates the ATL1 E3 ubiquitin ligase to suppress cell death. Plant Cell 26: 4532–4546.
      Silva GM, Finley D, Vogel C. 2015. K63 polyubiquitination is a new modulator of the oxidative stress response. Nature Structural & Molecular Biology 22: 116–123.
      Springael JY, Galan JM, Haguenauer‐Tsapis R, André B. 1999. NH4+‐induced down‐regulation of the Saccharomyces cerevisiae Gap1p permease involves its ubiquitination with lysine‐63‐linked chains. Journal of Cell Science 112: 1375–1383.
      Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, Szurek B. 2013. Five phylogenetically close rice SWEET genes confer TAL effector‐mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytologist 200: 808–819.
      Suh JY, Kim SJ, Oh TR, Cho SK, Yang SW, Kim WT. 2016. Arabidopsis Tóxicos en Levadura 78 (AtATL78) mediates ABA‐dependent ROS signaling in response to drought stress. Biochemical and Biophysical Research Communications 469: 8–14.
      Sun J, Sun Y, Ahmed RI, Ren A, Xie AM. 2019. Research progress on plant RING‐finger proteins. Genes 10: 973.
      Swatek KN, Komander D. 2016. Ubiquitin modifications. Cell Research 26: 399–422.
      Tamayo E, Figueira‐Galán D, Manck‐Götzenberger J, Requena N. 2022. Overexpression of the potato monosaccharide transporter StSWEET7a promotes root colonization by symbiotic and pathogenic fungi by increasing root sink strength. Frontiers in Plant Science 13: 837231.
      Tao Y, Cheung LS, Li S, Eom JS, Chen LQ, Xu Y, Perry K, Frommer WB, Feng L. 2015. Structure of a eukaryotic SWEET transporter in a homotrimeric complex. Nature 527: 259–263.
      Tian M, Lou L, Liu L, Yu F, Zhao Q, Zhang H, Wu Y, Tang S, Xia R, Zhu B et al. 2015. The RING finger E3 ligase STRF1 is involved in membrane trafficking and modulates salt‐stress response in Arabidopsis thaliana. The Plant Journal 82: 81–92.
      Toma‐Fukai S, Shimizu T. 2021. Structural diversity of ubiquitin E3 ligase. Molecules 26: 6682.
      Trujillo M. 2021. Ubiquitin signalling: controlling the message of surface immune receptors. New Phytologist 231: 47–53.
      Vida TA, Emr SD. 1995. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. The Journal of Cell Biology 128: 779–792.
      Wong DCJ, Ariani P, Castellarin S, Polverari A, Vandelle E. 2018. Co‐expression network analysis and cis‐regulatory element enrichment determine putative functions and regulatory mechanisms of grapevine ATL E3 ubiquitin ligases. Scientific Reports 8: 3151.
      Xia FN, Zeng B, Liu HS, Qi H, Xie LJ, Yu LJ, Chen QF, Li JF, Chen YQ, Jiang L et al. 2020. SINAT E3 ubiquitin ligases mediate FREE1 and VPS23A degradation to modulate abscisic acid signaling. Plant Cell 32: 3290–3310.
      Xu Z, Xu X, Gong Q, Li Z, Li Y, Wang S, Yang Y, Ma W, Liu L, Zhu B et al. 2019. Engineering broad‐spectrum bacterial blight resistance by simultaneously disrupting variable TALE‐binding elements of multiple susceptibility genes in rice. Molecular Plant 12: 1434–1446.
      Xuan YH, Hu YB, Chen LQ, Sosso D, Ducat DC, Hou BH, Frommer WB. 2013. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. Proceedings of the National Academy of Sciences, USA 110: E3685–E3694.
      Yamada K, Saijo Y, Nakagami H, Takano Y. 2016. Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science 354: 1427–1430.
      Yao T, Gai XT, Pu ZJ, Gao Y, Xuan YH. 2022. From functional characterization to the application of SWEET sugar transporters in plant resistance breeding. Journal of Agricultural and Food Chemistry 70: 5273–5283.
      Yau R, Rape M. 2016. The increasing complexity of the ubiquitin code. Nature Cell Biology 18: 579–586.
      Zhang C, Tong C, Cao L, Zheng P, Tang X, Wang L, Miao M, Liu Y, Cao S. 2023. Regulatory module WRKY33‐ATL31‐IRT1 mediates cadmium tolerance in Arabidopsis. Plant, Cell & Environment 46: 1653–1670.
      Zhang X, Feng C, Wang M, Li T, Liu X, Jiang J. 2021. Plasma membrane‐localized SlSWEET7a and SlSWEET14 regulate sugar transport and storage in tomato fruits. Horticulture Research 8: 186.
      Zhang ZD, Xiong TC, Yao SQ, Wei MC, Chen M, Lin D, Zhong B. 2020. RNF115 plays dual roles in innate antiviral responses by catalyzing distinct ubiquitination of MAVS and MITA. Nature Communications 11: 5536.
      Zhong C, Ren Y, Qi Y, Yu X, Wu X, Tian Z. 2018. PAMP‐responsive ATL gene StRFP1 and its orthologue NbATL60 positively regulate Phytophthora infestans resistance in potato and Nicotiana benthamiana. Plant Science 270: 47–57.
    • Grant Information:
      31761143007 National Natural Science Foundation of China; 32072121 National Natural Science Foundation of China; 32372172 National Natural Science Foundation of China; 2023YFF000404 National Key Research and Development Program of China
    • Contributed Indexing:
      Keywords: E3 ligase; SWEETs; StRFP1; S factor; late blight; potato
    • Accession Number:
      0 (Plant Proteins)
      EC 2.3.2.27 (Ubiquitin-Protein Ligases)
      57-50-1 (Sucrose)
    • Publication Date:
      Date Created: 20240521 Date Completed: 20240620 Latest Revision: 20240720
    • Publication Date:
      20240720
    • Accession Number:
      10.1111/nph.19848
    • Accession Number:
      38769723