Peroxynitrite-Triggered Carbon Monoxide Donor Improves Ischemic Stroke Outcome by Inhibiting Neuronal Apoptosis and Ferroptosis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Humana Press Country of Publication: United States NLM ID: 8900963 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-1182 (Electronic) Linking ISSN: 08937648 NLM ISO Abbreviation: Mol Neurobiol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Clifton, NJ : Humana Press, c1987-
    • Subject Terms:
    • Abstract:
      Cerebral ischemia-reperfusion injury produces excessive reactive oxygen and nitrogen species, including superoxide, nitric oxide, and peroxynitrite (ONOO - ). We recently developed a new ONOO - -triggered metal-free carbon monoxide donor (PCOD585), exhibiting a notable neuroprotective outcome on the rat middle cerebral artery occlusion model and rendering an exciting intervention opportunity toward ischemia-induced brain injuries. However, its therapeutic mechanism still needs to be addressed. In the pharmacological study, we found PCOD585 inhibited neuronal Bcl2/Bax/caspase-3 apoptosis pathway in the peri-infarcted area of stroke by scavenging ONOO - . ONOO - scavenging further led to decreased Acyl-CoA synthetase long-chain family member 4 and increased glutathione peroxidase 4, to minimize lipoperoxidation. Additionally, the carbon monoxide release upon the ONOO - reaction with PCOD585 further inhibited the neuronal Iron-dependent ferroptosis associated with ischemia-reperfusion. Such a synergistic neuroprotective mechanism of PCOD585 yields as potent a neuroprotective effect as Edaravone. Additionally, PCOD585 penetrates the blood-brain barrier and reduces the degradation of zonula occludens-1 by inhibiting matrix metalloproteinase-9, thereby protecting the integrity of the blood-brain barrier. Our study provides a new perspective for developing multi-functional compounds to treat ischemic stroke.
      Competing Interests: Declarations. Ethics Approval: The animal experiment was conducted by the national and institutional guidelines on ethics and biosafety, and the protocol was approved by the Institutional Animal Care and Use Committee of Xuzhou Medical University (License ID: 201907W079). Consent to Participate: Not applicable. Consent for Publication: Not applicable. Competing Interests: The authors declare no competing interests.
      (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Zhang Y, Chen S, Tang W (2017) Two-year outcome after endovascular treatment for stroke. N Engl J Med 376(26):2597. (PMID: 2869178510.1056/NEJMc1705673)
      Nezu T, Mukai T, Uemura J, Yamashita M, Kitano T, Wada Y et al (2016) Multiple infarcts are associated with long-term stroke recurrence and all-cause mortality in cryptoge nic stroke patients. Stroke 47(9):2209–2215. (PMID: 2746211610.1161/STROKEAHA.116.014178)
      Salinas J, Sprinkhuizen SM, Ackerson T, Bernhardt J, Davie C, George MG et al (2016) An international standard set of patient-centered outcome measures after stroke. Stroke. 47(1):180–186. (PMID: 2660425110.1161/STROKEAHA.115.010898)
      Weisenburger-Lile D, Blanc R, Kyheng M, Desilles JP, Labreuche J, Piotin M et al (2019) Direct admission versus secondary transfer for acute stroke patients treated with intravenous thrombo lysis and thrombectomy: insights from the endovascular treatment in ischemic stroke registry. Cerebrovasc Dis 47(3-4):112–120. (PMID: 3106399810.1159/000499112)
      Chouchani ET, Pell VR, Gaude E, Aksentijevi D, Sundier SY, Robb EL et al (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 515(7527):431–435. (PMID: 25383517425524210.1038/nature13909)
      Jiang XC, Xiang JJ, Wu HH, Zhang TY, Zhang DP, Xu QH et al (2019) Neural stem cells transfected with reactive oxygen species-responsive polyplexes for effective treatm ent of ischemic stroke. Adv Mater 31(10):e1807591. (PMID: 3063339510.1002/adma.201807591)
      Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229–317. (PMID: 22878108390479510.1016/B978-0-12-394309-5.00006-7)
      Morris B (2003) The components of the wired spanning forest are recurrent. Probab Theory Relat Fields 125(2):259–265. (PMID: 10.1007/s00440-002-0236-0)
      Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 149(5):1060–1072. (PMID: 22632970336738610.1016/j.cell.2012.03.042)
      Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL et al (2017) Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry 22(11):1520–1530. (PMID: 2888600910.1038/mp.2017.171)
      Ji C, Steimle BL, Bailey DK, Kosman DJ (2018) The ferroxidase hephaestin but not amyloid precursor protein is required for ferroportin-supported iron efflux in primary hippocampal neurons. Cell Mol Neurobiol 38(4):941–954. (PMID: 2917763810.1007/s10571-017-0568-z)
      Omori N, Maruyama K, Jin G, Li F, Wang SJ, Hamakawa Y et al (2003) Targeting of post-ischemic cerebral endothelium in rat by liposomes bearing polyethylene glycol-coupled transferrin. Neurol Res 25(3):275–279. (PMID: 1273923710.1179/016164103101201508)
      Liu J, Guo ZN, Yan XL, Huang S, Ren JX, Luo Y et al (2020) Crosstalk between autophagy and ferroptosis and its putative role in ischemic stroke. Front Cell Neurosci 14:577403. (PMID: 33132849756616910.3389/fncel.2020.577403)
      Sakai O, Yasuzawa T, Sumikawa Y, Ueta T, Imai H, Sawabe A et al (2017) Role of GPx4 in human vascular endothelial cells, and the compensatory activity of brown rice on GPx4 ablation condition. Pathophysiology 24(1):9–15. (PMID: 2796488010.1016/j.pathophys.2016.11.002)
      Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171(2):273–285. (PMID: 28985560568518010.1016/j.cell.2017.09.021)
      Chen LD, Wu RH, Huang YZ, Chen MX, Zeng AM, Zhuo GF et al (2020) The role of ferroptosis in chronic intermittent hypoxia-induced liver injury in rats. Sleep Breath 24(4):1767–1773. (PMID: 3236196010.1007/s11325-020-02091-4)
      Yang H, Zhao L, Gao Y, Yao F, Marti TM, Schmid RA et al (2020) Pharmacotranscriptomic analysis reveals novel drugs and gene networks regulating ferroptosis in cancer. Cancers (Basel) 12(11):3273. (PMID: 3316741410.3390/cancers12113273)
      Wu X, Li Y, Zhang S, Zhou X (2021) Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics. 11(7):3052–3059. (PMID: 33537073784768410.7150/thno.54113)
      Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E et al (2019) Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell 177(5):1262–1279.e1225. (PMID: 3105628410.1016/j.cell.2019.03.032)
      Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1-2):317–331. (PMID: 24439385407641410.1016/j.cell.2013.12.010)
      García-Yébenes I, Sobrado M, Moraga A, Zarruk JG, Romera VG, Pradillo JM et al (2012) Iron overload, measured as serum ferritin, increases brain damage induced by focal ischemia and early reperfusion. Neurochem Int 61(8):1364–1369. (PMID: 2303636110.1016/j.neuint.2012.09.014)
      Park J, Lee DG, Kim B, Park SJ, Kim JH, Lee SR et al (2015) Iron overload triggers mitochondrial fragmentation via calcineurin-sensitive signals in HT-22 hippocampal neuron cells. Toxicology 337:39–46. (PMID: 2631828510.1016/j.tox.2015.08.009)
      Wang J, Zhang D, Fu X, Yu L, Lu Z, Gao Y et al (2018) Carbon monoxide-releasing molecule-3 protects against ischemic stroke by suppressing neuroinflammation and alleviating blood-brain barrier disruption. J Neuroinflammation 15(1):188. (PMID: 29929562601400410.1186/s12974-018-1226-1)
      Basuroy S, Leffler CW, Parfenova H (2013) CORM-A1 prevents blood-brain barrier dysfunction caused by ionotropic glutamate receptor-mediated endothelial oxidative stress and apoptosis. Am J Phys Cell Phys 304(11):C1105–C1115.
      Xing L, Wang B, Li J, Guo X, Lu X, Chen X et al (2022) A fluorogenic ONOO - -triggered carbon monoxide donor for mitigating brain ischemic damage. J Am Chem Soc 144(5):2114–2119. (PMID: 3508038110.1021/jacs.2c00094)
      Zhang J, Liu L, Dong Z, Lu X, Hong W, Liu J et al (2023) An ischemic area-targeting, peroxynitrite-responsive, biomimetic carbon monoxide nanogenerator for preventing myocardial ischemia-reperfusion injury. Bioact Mater 28:480–494. (PMID: 3740879610318466)
      Parween S, Alawathugoda TT, Prabakaran AD, Dheen ST, Morse RH, Emerald BS et al (2022) Nutrient sensitive protein O-GlcNAcylation modulates the transcriptome through epigenetic mechanisms during embryonic neurogenesis. Life Sci Alliance 5(8):e202201385. (PMID: 35470239903934710.26508/lsa.202201385)
      Chen H, Guan B, Chen X, Chen X, Li C, Qiu J et al (2018) Baicalin attenuates blood-brain barrier disruption and hemorrhagic transformation and improves neurol ogical outcome in ischemic stroke rats with delayed t-PA treatment: involvement of ONOO - -MMP-9 pathway. Transl Stroke Res 9(5):515–529. (PMID: 2927550110.1007/s12975-017-0598-3)
      Liu Y, Xue X, Zhang H, Che X, Luo J, Wang P et al (2019) Neuronal-targeted TFEB rescues dysfunction of the autophagy-lysosomal pathway and alleviates ischemic injury in permanent cerebral ischemia. Autophagy 15(3):493–509. (PMID: 3030497710.1080/15548627.2018.1531196)
      Michel BW, Lippert AR, Chang CJ (2012) A reaction-based fluorescent probe for selective imaging of carbon monoxide in living cells using a palladium-mediated carbonylation. J Am Chem Soc 134(38):15668–15671. (PMID: 2297076510.1021/ja307017b)
      Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79(4):1431–1568. (PMID: 1050823810.1152/physrev.1999.79.4.1431)
      Naito MG, Xu D, Amin P, Lee J, Wang H, Li W et al (2020) Sequential activation of necroptosis and apoptosis cooperates to mediate vascular and neural pathology in stroke. P Natl Acad Sci USA 117(9):4959–4970. (PMID: 10.1073/pnas.1916427117)
      Miotto G, Rossetto M, Di Paolo ML, Orian L, Venerando R, Roveri A et al (2020) Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol 28:101328. (PMID: 3157446110.1016/j.redox.2019.101328)
      Celi LA, Citi L, Ghassemi M, Pollard TJ (2019) The plos one collection on machine learning in health and biomedicine: towards open code and open data. PLoS One 14(1):e0210232. (PMID: 30645625633333910.1371/journal.pone.0210232)
      Halm M (2019) The influence of appropriate staffing and healthy work environments on patient and nurse outcomes. Am J Crit Care 28(2):152–156. (PMID: 3082452110.4037/ajcc2019938)
      Kuo YC, Chen HH (2006) Effect of nanoparticulate polybutylcyanoacrylate and methylmethacrylate-sulfopropylmethacrylate on th e permeability of zidovudine and lamivudine across the in vitro blood-brain barrier. Int J Pharm 327(1-2):160–169. (PMID: 1693970410.1016/j.ijpharm.2006.07.044)
      Nation DA, Sweeney MD, Montagne A, Sagare AP, D'Orazio LM, Pachicano M et al (2019) Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med 25(2):270–276. (PMID: 30643288636705810.1038/s41591-018-0297-y)
      Rubin LL, Staddon JM (1999) The cell biology of the blood-brain barrier. Annu Rev Neurosci 22:11–28. (PMID: 1020253010.1146/annurev.neuro.22.1.11)
      Spronk E, Sykes G, Falcione S, Munsterman D, Joy T, Kamtchum-Tatuene J et al (2021) Hemorrhagic transformation in ischemic stroke and the role of inflammation. Front Neurol 12:661955. (PMID: 34054705816011210.3389/fneur.2021.661955)
      Ding R, Feng L, He L, Chen Y, Wen P, Fu Z et al (2015) Peroxynitrite decomposition catalyst prevents matrix metalloproteinase-9 activation and neurovascular injury after hemoglobin injection into the caudate nucleus of rats. Neuroscience. 297:182–193. (PMID: 2584961210.1016/j.neuroscience.2015.03.065)
      Basuroy S, Leffler CW, Parfenova H (2013) CORM-A1 prevents blood-brain barrier dysfunction caused by ionotropic glutamate receptor-mediated endothelial oxidative stress and apoptosis. Am J Physiol-Cell Ph 304(11):C1105–C1115. (PMID: 10.1152/ajpcell.00023.2013)
      Mao R, Zong N, Hu Y, Chen Y, Xu Y (2022) Neuronal death mechanisms and therapeutic strategy in ischemic stroke. Neurosci Bull 38(10):1229–1247. (PMID: 35513682955417510.1007/s12264-022-00859-0)
      Yuan J (2009) Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis. 14(4):469–477. (PMID: 19137430274533710.1007/s10495-008-0304-8)
      Kang YP, Mockabee-Macias A, Jiang C, Falzone A, Prieto-Farigua N, Stone E et al (2021) Non-canonical glutamate-cysteine ligase activity protects against ferroptosis. Cell Metab 33(1):174–189.e177. (PMID: 3335745510.1016/j.cmet.2020.12.007)
      Hoy AJ, Nagarajan SR, Butler LM (2021) Tumour fatty acid metabolism in the context of therapy resistance and obesity. Nat Rev Cancer 21(12):753–766. (PMID: 3441757110.1038/s41568-021-00388-4)
      Strzyz P (2020) Iron expulsion by exosomes drives ferroptosis resistance. Nat Rev Mol Cell Biol 21(1):4–5. (PMID: 3174871610.1038/s41580-019-0195-2)
      Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H et al (2021) DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 593(7860):586–590. (PMID: 33981038889568610.1038/s41586-021-03539-7)
      Jang S, Chapa-Dubocq XR, Tyurina YY, St Croix CM, Kapralov AA, Tyurin VA et al (2021) Elucidating the contribution of mitochondrial glutathione to ferroptosis in cardiomyocytes. Redox Biol 45:102021. (PMID: 34102574818723710.1016/j.redox.2021.102021)
      Gill D, Monori G, Tzoulaki I, Dehghan A (2018) Iron status and risk of stroke. Stroke 49(12):2815–2821. (PMID: 30571402625750710.1161/STROKEAHA.118.022701)
      Kaluza J, Wolk A, Larsson SC (2013) Heme iron intake and risk of stroke: a prospective study of men. Stroke 44(2):334–339. (PMID: 2330631910.1161/STROKEAHA.112.679662)
      García-Yébenes I, García-Culebras A, Peña-Martínez C, Fernández-López D, Díaz-Guzmán J, Negredo P et al (2018) Iron overload exacerbates the risk of hemorrhagic transformation after tPA (tissue-type plasminogen activator) administration in thromboembolic stroke mice. Stroke. 49(9):2163–2172. (PMID: 3001816010.1161/STROKEAHA.118.021540)
      Kawabata H (2019) Transferrin and transferrin receptors update. Free Radical Bio Med 133:46–54. (PMID: 10.1016/j.freeradbiomed.2018.06.037)
      Yanatori I, Kishi F (2019) DMT1 and iron transport. Free Radical Bio Med 133:55–63. (PMID: 10.1016/j.freeradbiomed.2018.07.020)
      Rishi G, Wallace DF, Subramaniam VN (2015) Hepcidin: regulation of the master iron regulator. Biosci Rep 35(3):e00192. (PMID: 26182354443830310.1042/BSR20150014)
      Rishi G, Secondes ES, Wallace DF, Subramaniam VN (2020) Evidence for dimerization of ferroportin in a human hepatic cell line using proximity ligation assays. Biosci Rep 40(5):BSR20191499. (PMID: 32301493720156510.1042/BSR20191499)
      Shi J, Yu W, Xu L, Yin N, Liu W, Zhang K et al (2020) Bioinspired nanosponge for salvaging ischemic stroke via free radical scavenging and self-adapted oxy gen regulating. Nano Lett 20(1):780–789. (PMID: 3183079010.1021/acs.nanolett.9b04974)
      Ren JX, Li C, Yan XL, Qu Y, Yang Y, Guo ZN (2021) Crosstalk between oxidative stress and ferroptosis/oxytosis in ischemic stroke: possible targets and molecular mechanisms. Oxidative Med Cell Longev 2021:6643382. (PMID: 10.1155/2021/6643382)
      Cheng J, Fan YQ, Liu BH, Zhou H, Wang JM, Chen QX (2020) ACSL4 suppresses glioma cells proliferation via activating ferroptosis. Oncol Rep 43(1):147–158. (PMID: 31789401)
      Chen J, Yang L, Geng L, He J, Chen L, Sun Q et al (2021) Inhibition of acyl-coa synthetase long-chain family member 4 facilitates neurological recovery after stroke by regulation ferroptosis. Front Cell Neurosci 15:632354. (PMID: 33889074805594510.3389/fncel.2021.632354)
      Guo J, Cheng M, Liu P, Cao D, Luo J, Wan Y et al (2022) A multi-target directed ligands strategy for the treatment of Alzheimer's disease: dimethyl fumarate plus tranilast modified dithiocarbate as AChE inhibitor and Nrf2 activator. Eur J Med Chem 242:114630. (PMID: 3598701810.1016/j.ejmech.2022.114630)
      Pereira de Ávila MA, Giusti-Paiva A, Giovani de Oliveira Nascimento C (2014) The peripheral antinociceptive effect induced by the heme oxygenase/carbon monoxide pathway is associated with ATP-sensitive K + channels. Eur J Pharmacol 726:41–48. (PMID: 2445712210.1016/j.ejphar.2014.01.012)
      Zhang LM, Zhang DX, Zheng WC, Hu JS, Fu L, Li Y et al (2021) CORM-3 exerts a neuroprotective effect in a rodent model of traumatic brain injury via the bidirectional gut-brain interactions. Exp Neurol 341:113683. (PMID: 3371132510.1016/j.expneurol.2021.113683)
      Soni HM, Jain MR, Mehta AA (2012) Mechanism(s) involved in carbon monoxide-releasing Molecule-2-mediated cardioprotection during ischaemia-reperfusion injury in isolated rat heart. Indian J Pharm Sci 74(4):281–291. (PMID: 23626383363072310.4103/0250-474X.107047)
      Lu K, Wu WJ, Zhang C, Zhu YL, Zhong JQ, Li J (2020) CORM-3 regulates microglia activity, prevents neuronal injury, and improves memory function during radiation-induced brain injury. Curr Neurovasc Res 17(4):464–470. (PMID: 3274874610.2174/1567202617999200730213259)
    • Grant Information:
      No. BK20211348 Natural Science Foundation of Jiangsu Province; KC21030 Xuzhou Basic Research Program; JBGS202203 Leadership program through open competition in Xuzhou Medical University; No. KYCX21_2722 Postgraduate Research & Practice Innovation Program of Jiangsu Province
    • Contributed Indexing:
      Keywords: Anti-lipid peroxidation; Carbon monoxide; Ferroptosis; Iron homeostasis; Ischemic/reperfusion injury
    • Accession Number:
      14691-52-2 (Peroxynitrous Acid)
      7U1EE4V452 (Carbon Monoxide)
      0 (Neuroprotective Agents)
    • Publication Date:
      Date Created: 20240520 Date Completed: 20241122 Latest Revision: 20241122
    • Publication Date:
      20241123
    • Accession Number:
      10.1007/s12035-024-04238-w
    • Accession Number:
      38767837