Modelling Drug Delivery to the Small Airways: Optimization Using Response Surface Methodology.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Kluwer Academic/Plenum Publishers Country of Publication: United States NLM ID: 8406521 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-904X (Electronic) Linking ISSN: 07248741 NLM ISO Abbreviation: Pharm Res Subsets: MEDLINE
    • Publication Information:
      Publication: 1999- : New York, NY : Kluwer Academic/Plenum Publishers
      Original Publication: Stuttgart ; New York : Thieme, c1984-
    • Subject Terms:
    • Abstract:
      Aim: The aim of this in silico study was to investigate the effect of particle size, flow rate, and tidal volume on drug targeting to small airways in patients with mild COPD.
      Method: Design of Experiments (DoE) was used with an in silico whole lung particle deposition model for bolus administration to investigate whether controlling inhalation can improve drug delivery to the small conducting airways. The range of particle aerodynamic diameters studied was 0.4 - 10 µm for flow rates between 100 - 2000 mL/s (i.e., low to very high), and tidal volumes between 40 - 1500 mL.
      Results: The model accurately predicted the relationship between independent variables and lung deposition, as confirmed by comparison with published experimental data. It was found that large particles (~ 5 µm) require very low flow rate (~ 100 mL/s) and very small tidal volume (~ 110 mL) to target small conducting airways, whereas fine particles (~ 2 µm) achieve drug targeting in the region at a relatively higher flow rate (~ 500 mL/s) and similar tidal volume (~ 110 mL).
      Conclusion: The simulation results indicated that controlling tidal volume and flow rate can achieve targeted delivery to the small airways (i.e., > 50% of emitted dose was predicted to deposit in the small airways), and the optimal parameters depend on the particle size. It is hoped that this finding could provide a means of improving drug targeting to the small conducting airways and improve prognosis in COPD management.
      (© 2024. The Author(s).)
    • References:
      Macklem PT, Mead J. Resistance of central and peripheral airways measured by a retrograde catheter. J Appl Physiol. 1967;22(3):395–401. https://doi.org/10.1152/jappl.1967.22.3.395 . (PMID: 10.1152/jappl.1967.22.3.3954960137)
      Hogg JC, Macklem PT, Thurlbeck WM. Site and nature of airway obstruction in chronic obstructive lung disease. N Engl J Med. 1968;278(25):1355–60. https://doi.org/10.1056/NEJM196806202782501 . (PMID: 10.1056/NEJM1968062027825015650164)
      Stockley JA, Cooper BG, Stockley RA, Sapey E. Small airways disease: time for a revisit? Int J Chron Obstruct Pulmon Dis. 2017;7:2343–53. https://doi.org/10.2147/COPD.S138540 . (PMID: 10.2147/COPD.S138540)
      Yanai M, Sekizawa K, Ohrui T, Sasaki H, Takishima T. Site of airway obstruction in pulmonary disease: direct measurement of intrabronchial pressure. J Appl Physiol. 1992;72(3):1016–23. https://doi.org/10.1152/jappl.1992.72.3.1016 . (PMID: 10.1152/jappl.1992.72.3.10161568955)
      McDonough JE, et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med. 2011;365(17):1567–75. https://doi.org/10.1056/NEJMoa1106955 . (PMID: 10.1056/NEJMoa1106955220299783238466)
      Tgavalekos NT, et al. Identifying airways responsible for heterogeneous ventilation and mechanical dysfunction in asthma: an image functional modeling approach. J Appl Physiol. 2005;99(6):2388–97. (PMID: 10.1152/japplphysiol.00391.200516081622)
      Weibel ER, Cournand AF, Dickinson WR. Morphometry of the human lung. Berlin: Springer; 1963. (PMID: 10.1007/978-3-642-87553-3)
      Hogg JC, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(26):2645–53. https://doi.org/10.1056/NEJMoa032158 . (PMID: 10.1056/NEJMoa03215815215480)
      Burgel PR, et al. Update on the roles of distal airways in COPD. Eur Respir Rev. 2011;20(119):7–22. https://doi.org/10.1183/09059180.10010610 . (PMID: 10.1183/09059180.10010610213578889487728)
      Koo H-K, et al. Small airways disease in mild and moderate chronic obstructive pulmonary disease: a cross-sectional study. Lancet Respir Med. 2018;6(8):591–602. https://doi.org/10.1016/S2213-2600(18)30196-6 . (PMID: 10.1016/S2213-2600(18)30196-630072106)
      Walenga RL, Longest PW. Current inhalers deliver very small doses to the lower tracheobronchial airways: assessment of healthy and constricted lungs. J Pharm Sci. 2016;105(1):147–59. https://doi.org/10.1016/j.xphs.2015.11.027 . (PMID: 10.1016/j.xphs.2015.11.027268528504746502)
      Usmani OS, Biddiscombe MF, Barnes PJ. Regional lung deposition and bronchodilator response as a function of β2-agonist particle size. Am J Respir Crit Care Med. 2005;172(12):1497–504. https://doi.org/10.1164/rccm.200410-1414OC . (PMID: 10.1164/rccm.200410-1414OC16192448)
      De Boer AH, Gjaltema D, Hagedoorn P, Frijlink HW. Can ‘extrafine’dry powder aerosols improve lung deposition? Eur J Pharm Biopharm. 2015;96:143–51. https://doi.org/10.1016/j.ejpb.2015.07.016 . (PMID: 10.1016/j.ejpb.2015.07.01626220014)
      De Backer LA, et al. Functional imaging using computer methods to compare the effect of salbutamol and ipratropium bromide in patient-specific airway models of COPD. Int J Chron Obstruct Pulmon Dis. 2011;6:637–46. https://doi.org/10.2147/COPD.S21917 . (PMID: 10.2147/COPD.S21917221626493232170)
      Singh D, et al. Single inhaler triple therapy versus inhaled corticosteroid plus long-acting β2-agonist therapy for chronic obstructive pulmonary disease (TRILOGY): a double-blind, parallel group, randomised controlled trial. The Lancet. 2016;388(10048):963–73. https://doi.org/10.1016/S0140-6736(16)31354-X . (PMID: 10.1016/S0140-6736(16)31354-X)
      Mäkelä MJ, Backer V, Hedegaard M, Larsson K. Adherence to inhaled therapies, health outcomes and costs in patients with asthma and COPD. Respir Med. 2013;107(10):1481–90. https://doi.org/10.1016/j.rmed.2013.04.005 . (PMID: 10.1016/j.rmed.2013.04.00523643487)
      Santus P, et al. The relevance of targeting treatment to small airways in asthma and COPD. Respir Care. 2020;65(9):1392–412. https://doi.org/10.4187/respcare.07237 . (PMID: 10.4187/respcare.0723732209703)
      Martin AR. Regional deposition: targeting. J Aerosol Med Pulm Drug Deliv. 2021;34(1):1–10. (PMID: 10.1089/jamp.2021.29033.am33325789)
      Häussermann S, Sommerer K, Scheuch G. Regional lung deposition. In vivo data. J Aerosol Med Pulm Drug Deliv. 2020;33(6):291–9. https://doi.org/10.1089/jamp.2020.29032.sh . (PMID: 10.1089/jamp.2020.29032.sh33021414)
      Anderson M, Philipson K, Svartengren M, Camner P. Human deposition and clearance of 6-μm particles inhaled with an extremely low flow rate. Exp Lung Res. 1995;21(1):187–95. (PMID: 10.3109/019021495090317537729377)
      Moller W, et al. Deposition, retention, and translocation of ultrafine particles from the central airways and lung periphery. Am J Respir Crit Care Med. 2008;177(4):426–32. (PMID: 10.1164/rccm.200602-301OC17932382)
      Brand P, et al. Optimum peripheral drug deposition in patients with cystic fibrosis. J Aerosol Med. 2005;18(1):45–54. (PMID: 10.1089/jam.2005.18.4515741773)
      Heyder J, Gebhart J, Rudolf G, Schiller CF, Stahlhofen W. Deposition of particles in the human respiratory tract in the size range 0.005–15 μm. J Aerosol Sci. 1986;17(5):811–25. https://doi.org/10.1016/0021-8502(86)90035-2 . (PMID: 10.1016/0021-8502(86)90035-2)
      Stahlhofen W, Rudolf G, James AC. Intercomparison of experimental regional aerosol deposition data. J Aerosol Med. 1989;2(3):285–308. (PMID: 10.1089/jam.1989.2.285)
      Keane AJ. Wing optimization using design of experiment, response surface, and data fusion methods. J Aircr. 2003;40(4):741–50. https://doi.org/10.2514/2.3153 . (PMID: 10.2514/2.3153)
      Gooding OW. Process optimization using combinatorial design principles: parallel synthesis and design of experiment methods. Curr Opin Chem Biol. 2004;8(3):297–304. https://doi.org/10.1016/j.cbpa.2004.04.009 . (PMID: 10.1016/j.cbpa.2004.04.00915183328)
      Singh V, Haque S, Niwas R, Srivastava A, Pasupuleti M, Tripathi C. Strategies for fermentation medium optimization: an in-depth review. Front Microbiol. 2017;7:2087. https://doi.org/10.3389/fmicb.2016.02087 . (PMID: 10.3389/fmicb.2016.02087281115665216682)
      Gajera BY, Shah DA, Dave RH. Development of an amorphous nanosuspension by sonoprecipitation-formulation and process optimization using design of experiment methodology. Int J Pharm. 2019;559:348–59. https://doi.org/10.1016/j.ijpharm.2019.01.054 . (PMID: 10.1016/j.ijpharm.2019.01.05430721724)
      Asgharian B, Hofmann W, Bergmann R. Particle deposition in a multiple-path model of the human lung. Aerosol Sci Technol. 2001;34(4):332–9. https://doi.org/10.1080/02786820119122 . (PMID: 10.1080/02786820119122)
      Montesantos S, Katz I, Pichelin M, Caillibotte G. The creation and statistical evaluation of a deterministic model of the human bronchial tree from HRCT images. PLoS ONE. 2016;11(12):18–21. https://doi.org/10.1371/journal.pone.0168026 . (PMID: 10.1371/journal.pone.0168026)
      Montesantos S, et al. Airway morphology from high resolution computed tomography in healthy subjects and patients with moderate persistent asthma. Anat Rec. 2013;296(6):852–66. https://doi.org/10.1002/ar.22695 . (PMID: 10.1002/ar.22695)
      Raabe OG, Yeh H, Schum GM, Phalen RF. Tracheobronchial geometry: human, dog, rat, hamster - A compilation of selected data from the project respiratory tract deposition models. Report LF-53. Lovelace Foundation, Albuquerque, NM. 1976.
      Koblinger L. Analysis of human lung morphometric data for stochastic aerosol deposition calculations. Phys Med Biol, 1985;30(6):541. Accessed: Aug. 10, 2023. [Online]. Available: https://doi.org/10.1038/s41372-018-0302-9.
      Min HJ, Stride EP, Payne SJ. in silico investigation of the effect of particle diameter on deposition uniformity in pulmonary drug delivery. Aerosol Sci Technol. 2023;57:1–14. https://doi.org/10.1080/02786826.2023.2175640 . (PMID: 10.1080/02786826.2023.2175640)
      Anjilvel S, Asgharian B. A multiple-path model of particle deposition in the rat lung. Fundam Appl Toxicol. 1995;28(1):41–50. https://doi.org/10.1006/faat.1995.1144 . (PMID: 10.1006/faat.1995.11448566482)
      Yu CP. Exact analysis of aerosol deposition during steady breathing. Powder Technol. 1978;21(1):55–62. https://doi.org/10.1016/0032-5910(78)80107-7 . (PMID: 10.1016/0032-5910(78)80107-7)
      Golshahi L, Noga ML, Vehring R, Finlay WH. An in vitro study on the deposition of micrometer-sized particles in the extrathoracic airways of adults during tidal oral breathing. Ann Biomed Eng. 2013;41(5):979–89. https://doi.org/10.1007/s10439-013-0747-0 . (PMID: 10.1007/s10439-013-0747-023358802)
      Kuga K, Kizuka R, Khoa ND, Ito K. Effect of transient breathing cycle on the deposition of micro and nanoparticles on respiratory walls. Comput Methods Programs Biomed. 2023;236:107501. https://doi.org/10.1016/j.cmpb.2023.107501 . (PMID: 10.1016/j.cmpb.2023.10750137163889)
      Beeckmans JM. The deposition of aerosols in the respiratory tract: I. Mathematical analysis and comparison with experimental data. Can J Physiol Pharmacol. 1965;43(1):157–72. https://doi.org/10.1139/y65-015 . (PMID: 10.1139/y65-01514324225)
      Ingham DB. Diffusion of aerosols from a stream flowing through a cylindrical tube. J Aerosol Sci. 1975;6(2):125–32. https://doi.org/10.1016/0021-8502(75)90005-1 . (PMID: 10.1016/0021-8502(75)90005-1)
      Landahl HD. On the removal of air-borne droplets by the human respiratory tract: I. The lung. Bull Math Biophys. 1950;12(1):43–56. https://doi.org/10.1007/bf02477345 . (PMID: 10.1007/bf02477345)
      Hofmann W, Pawlak E, Sturm R. Semi-empirical stochastic model of aerosol bolus dispersion in the human lung. Inhal Toxicol. 2008;20(12):1059–73. https://doi.org/10.1080/08958370802115081 . (PMID: 10.1080/0895837080211508118821102)
      Borgstrom L, Bondesson E, Moren F, Trofast E, Newman SP. Lung deposition of budesonide inhaled via Turbuhaler: a comparison with terbutaline sulphate in normal subjects. Eur Respir J. 1994;7(1):69–73. https://doi.org/10.1183/09031936.94.07010069 . (PMID: 10.1183/09031936.94.070100698143834)
      Duddu SP, et al. Improved lung delivery from a passive dry powder inhaler using an engineered PulmoSphere® powder. Pharm Res. 2002;19(5):689–95. https://doi.org/10.1023/A:1015322616613 . (PMID: 10.1023/A:101532261661312069174)
      Newman SP, et al. Scintigraphic comparison of budesonide deposition from two dry powder inhalers. Eur Respir J. 2000;16(1):178–83. https://doi.org/10.1034/j.1399-3003.2000.16a29.x . (PMID: 10.1034/j.1399-3003.2000.16a29.x10933104)
      Mathews PG. Design of experiments with MINITAB. Milwaukee: ASQ Quality Press; 2005.
      Charbonnier J-P, et al. Airway wall thickening on CT: relation to smoking status and severity of COPD. Respir Med. 2019;146:36–41. https://doi.org/10.1016/j.rmed.2018.11.014 . (PMID: 10.1016/j.rmed.2018.11.01430665516)
      Brand P, et al. Lung deposition of radiolabeled tiotropium in healthy subjects and patients with chronic obstructive pulmonary disease. J Clin Pharmacol. 2007;47(10):1335–41. https://doi.org/10.1177/0091270006295788 . (PMID: 10.1177/009127000629578817625157)
      De Backer W, et al. Lung deposition of BDP/formoterol HFA pMDI in healthy volunteers, asthmatic, and COPD patients. J Aerosol Med Pulm Drug Deliv. 2010;23(3):137–48. https://doi.org/10.1089/jamp.2009.0772 . (PMID: 10.1089/jamp.2009.0772201091223123836)
      Derom E, Strandgården K, Schelfhout V, Borgström L, Pauwels R. Lung deposition and efficacy of inhaled formoterol in patients with moderate to severe COPD. Respir Med. 2007;101(9):1931–41. https://doi.org/10.1016/j.rmed.2007.04.013 . (PMID: 10.1016/j.rmed.2007.04.01317544264)
      Singh P, Raghav V, Padhmashali V, Paul G, Islam MS, Saha SC. Airflow and particle transport prediction through stenosis airways. Int J Environ Res Public Health. 2020;17(3):1119. https://doi.org/10.3390/ijerph17031119 . (PMID: 10.3390/ijerph17031119320505847037172)
      Usmani OS, et al. Seven pillars of small airways disease in asthma and COPD: supporting opportunities for novel therapies. Chest. 2021;160(1):114–34. https://doi.org/10.1016/j.chest.2021.03.047 . (PMID: 10.1016/j.chest.2021.03.04733819471)
      Cohen J, Douma WR, ten Hacken NHT, Vonk JM, Oudkerk M, Postma DS. Ciclesonide improves measures of small airway involvement in asthma. Eur Respir J. 2008;31(6):1213–20. https://doi.org/10.1183/09031936.00082407 . (PMID: 10.1183/09031936.0008240718287130)
      Fischer A, Stegemann J, Scheuch G, Siekmeier R. Novel devices for individualized controlled inhalation can optimize aerosol therapy in efficacy, patient care and power of clinical trials. Eur J Med Res. 2009;14(4):1–7. https://doi.org/10.1186/2047-783X-14-S4-71 . (PMID: 10.1186/2047-783X-14-S4-71)
      Stanojevic S, et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur Respir J. 2022;60(1):2101499. https://doi.org/10.1183/13993003.01499-2021 . (PMID: 10.1183/13993003.01499-202134949706)
      Weibel ER, Sapoval B, Filoche M. Design of peripheral airways for efficient gas exchange. Respir Physiol Neurobiol. 2005;148(1–2):3–21. https://doi.org/10.1016/j.resp.2005.03.005 . (PMID: 10.1016/j.resp.2005.03.00515921964)
      Buttini F, et al. Effect of flow rate on in vitro aerodynamic performance of NEXThaler® in comparison with Diskus® and Turbohaler® dry powder inhalers. J Aerosol Med Pulm Drug Deliv. 2016;29(2):167–78. (PMID: 10.1089/jamp.2015.1220263557434841907)
      Howe C, Hindle M, Bonasera S, Rani V, Longest PW. Initial development of an air-jet dry powder inhaler for rapid delivery of pharmaceutical aerosols to infants. J Aerosol Med Pulm Drug Deliv. 2021;34(1):57–70. (PMID: 10.1089/jamp.2020.1604327580268182481)
      Farkas D, Hindle M, Longest PW. Development of an inline dry powder inhaler that requires low air volume. J Aerosol Med Pulm Drug Deliv. 2018;31(4):255–65. (PMID: 10.1089/jamp.2017.1424292614546067687)
      Lareau SC, Yawn BP. Improving adherence with inhaler therapy in COPD. Int J Chron Obstruct Pulmon Dis. 2010;5:401–6. (PMID: 10.2147/COPD.S14715211914343008325)
      Blakey JD, Bender BG, Dima AL, Weinman J, Safioti G, Costello RW. Digital technologies and adherence in respiratory diseases: the road ahead. Eur Respir J. 2018;52(5):1801147. (PMID: 10.1183/13993003.01147-2018304098196364097)
    • Contributed Indexing:
      Keywords: design of experiment; particle deposition model; particle size; pulmonary drug delivery; small airway targeting
    • Accession Number:
      0 (Aerosols)
    • Publication Date:
      Date Created: 20240516 Date Completed: 20240624 Latest Revision: 20241102
    • Publication Date:
      20241102
    • Accession Number:
      PMC11525259
    • Accession Number:
      10.1007/s11095-024-03706-1
    • Accession Number:
      38755398