Simultaneous sequencing of 102 Y-STRs on Ion Torrent ™ GeneStudio ™ S5 System.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Elsevier Country of Publication: Netherlands NLM ID: 101317016 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1878-0326 (Electronic) Linking ISSN: 18724973 NLM ISO Abbreviation: Forensic Sci Int Genet Subsets: MEDLINE
    • Publication Information:
      Original Publication: Amsterdam : Elsevier
    • Subject Terms:
    • Abstract:
      The Precision ID NGS System from Thermo Fisher Scientific is a mainstream next-generation sequencing (NGS) platform used in forensic laboratories to detect almost all commonly used forensic markers, except for Y-chromosomal short tandem repeats (Y-STRs). This study aimed to: 1) develop a Y-STR panel compatible with the automatic workflow of the NGS system using Ion AmpliSeq Technology, 2) evaluate the panel performance following the SWGDAM guidelines, and 3) explore the possibility of using a combination workflow to detect autosomal STRs and Y-STRs (AY-STR NGS workflow). The GrandFiler Y-STR Panel was successfully designed using the 'separating' and 'merging' strategies, including 102 Y-STRs and Amelogenin with an average amplicon length of 133 bp. It is a mega Y-STR multiplex system in which up to 16 samples can be sequenced simultaneously on an Ion 530 ™ Chip. Developmental validation studies of the performance of the NGS platform, species specificity, reproducibility, concordance, sensitivity, degraded samples, case-type samples, and mixtures were conducted to unequivocally determine whether the GrandFiler Y-STR Panel is suitable for real scenarios. The newly developed Y-STR panel showed compelling run metrics and NGS performance, including 92.47% bases with ≥ Q20, 91.80% effective reads, 2106 × depth of coverage (DoC), and 97.09% inter-locus balance. Additionally, it showed high specificity for human males and 99.40% methodological and bioinformatical concordance, generated complete profiles at ≥ 0.1 ng input DNA, and recovered more genetic information from severely degraded and diverse case samples. Although the outcome when used on mixtures was not as expected, more genetic information was obtained compared to that from capillary electrophoresis (CE) methods. The AY-STR NGS workflow was established by combining the GrandFiler Y-STR Panel with the Precision ID GlobalFiler ™ NGS STR Panel v2 at a 2:1 concentration ratio. The combination workflow on NGS performance, reproducibility, concordance, and sensitivity was as stable as the single Y-STR NGS workflow, providing more options for forensic scientists when dealing with different case scenarios. Overall, the GrandFiler Y-STR Panel was confirmed as the first to effectively detect a large number of Y-STR markers on the Precision ID NGS System, which is compatible with 51 Y-STRs in commercial CE kits and 51 Y-STRs in commercial NGS kits and the STRBase. The panel is as robust, reliable, and sensitive as current CE/NGS kits, and is suitable for solving real cases, especially for severely degraded samples (degradation index > 10).
      Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
      (Copyright © 2024 Elsevier B.V. All rights reserved.)
    • Contributed Indexing:
      Keywords: ForeNGS Analysis Software; GrandFiler Y-STR Panel; Ion Torrent ™ GeneStudio ™ S5 System; Next-generation sequencing; Y-chromosomal short tandem repeat
    • Accession Number:
      0 (Amelogenin)
    • Publication Date:
      Date Created: 20240515 Date Completed: 20240616 Latest Revision: 20240616
    • Publication Date:
      20240617
    • Accession Number:
      10.1016/j.fsigen.2024.103059
    • Accession Number:
      38749212