Boswellic Acid and Betulinic Acid Pre-treatments Can Prevent the Nephrotoxicity Caused by Cyclophosphamide Induction.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Berköz M;Berköz M; Çiftçi O; Çiftçi O
  • Source:
    Doklady. Biochemistry and biophysics [Dokl Biochem Biophys] 2024 Aug; Vol. 517 (1), pp. 115-126. Date of Electronic Publication: 2024 May 14.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Pleiades Publishing Country of Publication: United States NLM ID: 101126895 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1608-3091 (Electronic) Linking ISSN: 16076729 NLM ISO Abbreviation: Dokl Biochem Biophys Subsets: MEDLINE
    • Publication Information:
      Publication: New York, NY : Pleiades Publishing
      Original Publication: Moscow, Russia : [Dordrecht] : International Academic Pub. Co. "Nauka/Interperiodica" ; Distributed worldwide by Kluwer Academic/Plenum Publishers, c2001-
    • Subject Terms:
    • Abstract:
      Cyclophosphamide (CYP) is a chemotherapeutic drug used to treat various cancers. However, its clinical use is limited due to severe organ damage, particularly to the kidneys. While several phytochemicals have been identified as potential therapeutic targets for CYP nephrotoxicity, the nephroprotective effects of boswellic acid (BOSW) and betulinic acid (BET) have not yet been investigated. Our study used 42 rats divided into six equal groups. The study included six groups: control, CYP (200 mg/kg), CYP+BOSW20 (20 mg/kg), CYP+BOSW40 (40 mg/kg), CYP+BET20 (20 mg/kg), and CYP+BET40 (40 mg/kg). The pre-treatments with BOSW and BET lasted for 14 days, while the application of cyclophosphamide was performed intraperitoneally only on the 4th day of the study. After the experimental protocol, the animals were sacrificed, and their kidney tissues were isolated. Renal function parameters, histological examination, oxidative stress, and inflammation parameters were assessed both biochemically and at the molecular level in kidney tissue. The results showed that oxidative stress and inflammatory response were increased in the kidney tissue of rats treated with CYP, leading to impaired renal histology and function parameters (p < 0.05). Oral administration of both doses of BET and especially high doses of BOSW improved biochemical, oxidative, and inflammatory parameters significantly (p < 0.05). Histological studies also showed the restoration of normal kidney tissue architecture. BOSW and BET have promising biological activity against CYP-induced nephrotoxicity by attenuating inflammation and oxidative stress and enhancing antioxidant status.
      (© 2024. Pleiades Publishing, Ltd.)
    • References:
      Akyol, S., Gulec, M.A., Erdemli, H.K., and Akyol, O., Can propolis and caffeic acid phenethyl ester be promising agents against cyclophosphamide toxicity, J. Intercult. Ethnopharmacol., 2016, vol. 5, pp. 105–107. (PMID: 27069732480514110.5455/jice.20160127024542)
      Sarici, F., Babacan, T., Altundag, K., Balakan, O., and Gullu, I., Successful treatment of benign metastasizing leiomyoma with oral alternated chemotherapeutic agents, J. BUON., 2013, vol. 18, p. 799. (PMID: 24065503)
      Dezern, A.E., Styler, M.J., Drachman, D.B., Hummers, L.K., Jones, R.J., and Brodsky, R.A., Repeated treatment with high dose cyclophosphamide for severe autoimmune diseases, Am. J. Blood Res., 2013, vol. 3, pp. 84–90. (PMID: 233587153555191)
      Talib, W.H., Alsayed, A.R., Barakat, M., Abu-Taha, M.I., and Mahmod, A.I., Targeting drug chemo-resistance in cancer using natural products, Biomedicines, 2021, vol. 9, p. 1353. (PMID: 34680470853318610.3390/biomedicines9101353)
      Desideri, E., Ciccarone, F., and Ciriolo, M.R., Targeting glutathione metabolism: partner in crime in anticancer therapy, Nutrients, 2019, vol. 11, p. 1926. (PMID: 31426306672422510.3390/nu11081926)
      Mollaei, M., Hassan, Z.M., Khorshidi, F., and Langroudi, L., Chemotherapeutic drugs: cell death- and resistance-related signaling pathways. Are they really as smart as the tumor cells, Transl. Oncol., 2021, vol. 14, p. 101056. (PMID: 33684837793825610.1016/j.tranon.2021.101056)
      Karakoç, M.D., and Sekkin, S., Effects of oleuropein on epirubicin and cyclophosphamide combination treatment in rats, Turk. J. Pharm. Sci., 2021, vol. 18, pp. 420–429. (PMID: 34496482843040710.4274/tjps.galenos.2020.69008)
      Merwid-Ląd, A., Ziółkowski, P., Szandruk-Bender, M., Matuszewska, A., Szeląg, A., and Trocha, M., Effect of a low dose of carvedilol on cyclophosphamide-induced urinary toxicity in rats—a comparison with mesna, Pharmaceuticals (Basel), 2021, vol. 14, p. 1237. (PMID: 34959638870800910.3390/ph14121237)
      Ayza, M.A., Zewdie, K.A., Yigzaw, E.F., Ayele, S.G., Tesfaye, B.A., Tafere, G.G., and Abrha, M.G., Potential protective effects of antioxidants against cyclophosphamide-induced nephrotoxicity, Int. J. Nephrol., 2022, vol. 2022, p. 5096825. (PMID: 35469319903496310.1155/2022/5096825)
      Santos, M.L.C., de Brito, B.B., da Silva, F.A.F., Botelho, A.C.D.S., and de Melo, F.F., Nephrotoxicity in cancer treatment: an overview, World. J. Clin. Oncol., 2020, vol. 11, pp. 190–204. (PMID: 32355641718623410.5306/wjco.v11.i4.190)
      Verzicco, I., Regolisti, G., Quaini, F., Bocchi, P., Brusasco, I., et al., Electrolyte disorders induced by antineoplastic drugs, Front. Oncol., 2020, vol. 10, p. 779. (PMID: 32509580724836810.3389/fonc.2020.00779)
      Hałka, J., Spaleniak, S., Kade, G., Antosiewicz, S., and Sigorski, D., The nephrotoxicity of drugs used in causal oncological therapies, Curr. Oncol., 2022, vol. 29, pp. 9681–9694. (PMID: 36547174977693810.3390/curroncol29120760)
      Sahu, K., Langeh, U., Singh, C., and Singh, A., Crosstalk between anticancer drugs and mitochondrial functions, Curr. Res. Pharmacol. Drug Discovery, 2021, vol. 2, p. 100047. (PMID: 10.1016/j.crphar.2021.100047)
      Ranasinghe, R., Mathai, M., and Zulli, A., Cytoprotective remedies for ameliorating nephrotoxicity induced by renal oxidative stress, Life. Sci., 2023, vol. 318, p. 121466. (PMID: 3677369310.1016/j.lfs.2023.121466)
      Poeckel, D., and Werz, O., Boswellic acids: biological actions and molecular targets, Curr. Med. Chem., 2006, vol. 13, pp. 3359–3369. https://doi.org/10.2174/092986706779010333. (PMID: 10.2174/09298670677901033317168710)
      Du, Z., Liu, Z., Ning, Z., Liu, Y., Song, Z., Wang, C., and Lu, A., Prospects of boswellic acids as potential pharmaceutics, Planta Med., 2015, vol. 81, pp. 259–271. (PMID: 2571472810.1055/s-0034-1396313)
      Roy, N.K., Parama, D., Banik, K., Bordoloi, D., Devi, A.K., et al., An update on pharmacological potential of boswellic acids against chronic diseases. Int. J. Mol. Sci., 2019, vol. 20, p. 4101. (PMID: 31443458674746610.3390/ijms20174101)
      Grymel, M., Zawojak, M., and Adamek, J., Triphenylphosphonium analogues of betulin and betulinic acid with biological activity: a comprehensive review, J. Nat. Prod., 2019, vol. 82, pp. 1719–1730. (PMID: 3114136110.1021/acs.jnatprod.8b00830)
      Lou, H., Li, H., Zhang, S., Lu, H., and Chen, Q., A review on preparation of betulinic acid and its biological activities, Molecules, 2021, vol. 26, p. 5583. (PMID: 34577056846826310.3390/molecules26185583)
      Shang, P., Liu, W., Liu, T., Zhang, Y., Mu, F., et al., Acetyl-11-keto-β-boswellic acid attenuates prooxidant and profibrotic mechanisms involving transforming growth factor-β1, and improves vascular remodeling in spontaneously hypertensive rats, Sci. Rep., 2016, vol. 6, p. 39809. (PMID: 28009003518022410.1038/srep39809)
      Ahangarpour, A., Oroojan, A.A., Khorsandi, L., Shabani, R., and Mojaddami, S., Preventive effects of betulinic acid on streptozotocinnicotinamide induced diabetic nephropathy in male mouse, J. Nephropathol., 2016, vol. 5, pp. 128–133. (PMID: 27921024512505910.15171/jnp.2016.24)
      Todorova, V., Vanderpool, D., Blossom, S., Nwokedi, E., Hennings, L., Mrak, R., and Klimberg, V.S., Oral glutamine protects against cyclophosphamide-induced cardiotoxicity in experimental rats through increase of cardiac glutathione, Nutrition, 2009, vol. 25, pp. 812–817. (PMID: 1925139410.1016/j.nut.2009.01.004)
      Berköz, M., Ünal, S., Karayakar, F., Yunusoğlu, O., Özkan-Yılmaz, F., Özlüer-Hunt, A., and Aslan, A., Prophylactic effect of myricetin and apigenin against lipopolysaccharide-induced acute liver injury, Mol. Biol. Rep., 2021, vol. 48, pp. 6363–6373. (PMID: 3440198510.1007/s11033-021-06637-x)
      Ohkawa, H., Ohishi, N., and Yagi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem., 1979, vol. 95, pp. 351–358. https://doi.org/10.1016/0003-2697(79)90738-3. (PMID: 10.1016/0003-2697(79)90738-336810)
      Aebi, H., Catalase in vitro, Methods Enzymol., 1984, vol. 105, pp. 121–126. (PMID: 672766010.1016/S0076-6879(84)05016-3)
      Sun, Y., Oberley, L.W., and Li, Y., A simple method for clinical assay of superoxide dismutase, Clin. Chem., 1988, vol. 34, pp. 497–500. (PMID: 334959910.1093/clinchem/34.3.497)
      Beutler, E., Duron, O., and Kelly, B.M., Improved method for the determination of blood glutathione, J. Lab. Clin. Med., 1963, vol. 61, pp. 882–888. (PMID: 13967893)
      Miranda, K.M., Espey, M.G., and Wink, D.A., A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite, Nitric Oxide, 2001, vol. 5, pp. 62–71. (PMID: 1117893810.1006/niox.2000.0319)
      Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the folin phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275. (PMID: 1490771310.1016/S0021-9258(19)52451-6)
      Lee, J., Choi, J.W., Sohng, J.K., Pandey, R.P., and Park, Y.I., The immunostimulating activity of quercetin 3-O-xyloside in murine macrophages via activation of the ASK1/MAPK/NF-κB signaling pathway, Int. Immunopharmacol., 2016, vol. 31, pp. 88–97. (PMID: 2670907410.1016/j.intimp.2015.12.008)
      Cha, M.H., Nam, T.S., Kwak, Y., Lee, H., and Lee, B.H., Changes in cytokine expression after electroacupuncture in neuropathic rats, Evidence-Based Complementary Altern. Med., 2012, vol. 2012, pp. 1–6. (PMID: 10.1155/2012/792765)
      Natarajan, K., Abraham, P., Kota, R., and Isaac, B., NF-κB-iNOS-COX2-TNF α inflammatory signaling pathway plays an important role in methotrexate induced small intestinal injury in rats, Food. Chem. Toxicol., 2018, vol. 118, pp. 766–783. (PMID: 2993524310.1016/j.fct.2018.06.040)
      Kumar, M., Dahiya, V., Kasala, E.R., Bodduluru, L.N., and Lahkar, M., The renoprotective activity of hesperetin in cisplatin induced nephrotoxicity in rats: Molecular and biochemical evidence, Biomed. Pharmacother., 2017, vol. 89, pp. 1207–1215. (PMID: 2832008710.1016/j.biopha.2017.03.008)
      Haghi-Aminjan, H., Farhood, B., Rahimifard, M., Didari, T., Baeeri, M., Hassani, S., Hosseini, R., and Abdollahi, M., The protective role of melatonin in chemotherapy-induced nephrotoxicity: a systematic review of non-clinical studies, Expert. Opin. Drug. Metab. Toxicol., 2018, vol. 14, pp. 937–950. (PMID: 3011864610.1080/17425255.2018.1513492)
      Zhu, L., Luo, C., Ma, C., Kong, L., Huang, Y., Yang, W., Huang, C., Jiang, W., and Yi, J., Inhibition of the NF-κB pathway and ERK-mediated mitochondrial apoptotic pathway takes part in the mitigative effect of betulinic acid on inflammation and oxidative stress in cyclophosphamide-triggered renal damage of mice, Ecotoxicol. Environ. Saf., 2022, vol. 246, p. 114150. (PMID: 3621588310.1016/j.ecoenv.2022.114150)
      Ijaz, M.U., Mustafa, S., Batool, R., Naz, H., Ahmed, H., and Anwar, H., Ameliorative effect of herbacetin against cyclophosphamide-induced nephrotoxicity in rats via attenuation of oxidative stress, inflammation, apoptosis and mitochondrial dysfunction, Hum. Exp. Toxicol., 2022, vol. 41, p. 9603271221132140. (PMID: 3619856610.1177/09603271221132140)
      Baharmi, S., Kalantari, H., Kalantar, M., Goudarzi, M., Mansouri, E., and Kalantar, H., Pretreatment with gallic acid mitigates cyclophosphamide induced inflammation and oxidative stress in mice, Curr. Mol. Pharmacol., 2022, vol. 15, p. 204–212. (PMID: 34061011)
      Alshahrani, S., Ali Thubab, H.M., Ali Zaeri, A.M., Anwer, T., Ahmed, R.A., et al., The protective effects of sesamin against cyclophosphamide-induced nephrotoxicity through modulation of oxidative stress, inflammatory-cytokines and apoptosis in rats, Int. J. Mol. Sci., 2022, vol. 23, p. 11615. (PMID: 36232918956953410.3390/ijms231911615)
      Lin, X., Yang, F., Huang, J., Jiang, S., Tang, Y., and Li, J., Ameliorate effect of pyrroloquinoline quinone against cyclophosphamide-induced nephrotoxicity by activating the Nrf2 pathway and inhibiting the NLRP3 pathway, Life Sci., 2020, vol. 256, p. 117901. (PMID: 3250475910.1016/j.lfs.2020.117901)
      Vaidya, V.S., Ferguson, M.A., and Bonventre, J.V., Biomarkers of acute kidney injury, Annu. Rev. Pharmacol. Toxicol., 2008, vol. 48, pp. 463–493. (PMID: 17937594274248010.1146/annurev.pharmtox.48.113006.094615)
      Jana, S., Mitra, P., and Roy, S., Proficient novel biomarkers guide early detection of acute kidney injury: a review, Diseases, 2022, vol. 11, p. 8. (PMID: 36648873984448110.3390/diseases11010008)
      Shin, J.Y., Han, J.H., Ko, J.W., Park, S.H., Shin, N.R., et al., Diallyl disulfide attenuates acetaminophen-induced renal injury in rats, Lab. Anim. Res., 2016, vol. 32, pp. 200–207. (PMID: 28053613520622610.5625/lar.2016.32.4.200)
      Ali, H.H., Ahmed, Z.A., and Aziz, T.A., Effect of telmisartan and quercetin in 5 fluorouracil-induced renal toxicity in rats, J. Inflamm. Res., 2022, vol. 15, pp. 6113–6124. (PMID: 36386583965105910.2147/JIR.S389017)
      Al-Johani, N.S., Al-Zharani, M., Aljarba, N.H., Alhoshani, N.M., Alkeraishan, N., and Alkahtani, S., Antioxidant and anti-inflammatory activities of coenzyme-Q10 and piperine against cyclophosphamide-induced cytotoxicity in HuH-7 cells, Biomed. Res. Int., 2022, vol. 2022, p. 8495159. (PMID: 35872848930032910.1155/2022/8495159)
      Iqubal, A., Wasim, M., Ashraf, M., Najmi, A.K., Syed, M.A., Ali, J., and Haque, S.E., Natural bioactive as a potential therapeutic approach for the management of cyclophosphamide-induced cardiotoxicity, Curr. Top. Med. Chem., 2021, vol. 21, pp. 2647–2670. (PMID: 3439282110.2174/1568026621666210813112935)
      Abarikwu, S.O., Otuechere, C.A., Ekor, M., Monwuba, K., and Osobu, D., Rutin ameliorates cyclophosphamide-induced reproductive toxicity in male rats, Toxicol. Int., 2012, vol. 19, pp. 207–214. (PMID: 22778522338876810.4103/0971-6580.97224)
      Tohamy, A.F., Hussein, S., Moussa, I.M., Rizk, H., Daghash, S., et al., Lucrative antioxidant effect of metformin against cyclophosphamide induced nephrotoxicity, Saudi J. Biol. Sci., 2021, vol. 28, pp. 2755–2761. (PMID: 34025161811724410.1016/j.sjbs.2021.03.039)
      Takeuchi, K., Komatsu, Y., Nakamori, Y., and Kotani, T., A rat model of ischemic enteritis: pathogenic importance of Enterobacteria, iNOS/NO, and COX-2/PGE 2 , Curr. Pharm. Des., 2017, vol. 23, pp. 4048–4056. (PMID: 2822807110.2174/1381612823666170220154815)
      Burtenshaw, D., Hakimjavadi, R., Redmond, E.M., and Cahill, P.A., Nox, reactive oxygen species and regulation of vascular cell fate, Antioxidants (Basel)., 2017, vol. 6, p. 90. (PMID: 29135921574550010.3390/antiox6040090)
      Kany, S., Vollrath, J.T., and Relja, B., Cytokines in inflammatory disease, Int. J. Mol. Sci., 2019, vol. 20, p. 6008. (PMID: 31795299692921110.3390/ijms20236008)
      Checa, J., and Aran, J.M., Reactive oxygen species: drivers of physiological and pathological processes, J. Inflamm. Res., 2020, vol. 13, pp. 1057–1073. https://doi.org/10.2147/jir.s27559. (PMID: 10.2147/jir.s27559332938497719303)
      Wang, W., Luo, D., Chen, J., Chen, J., Xia, Y., Chen, W., and Wang, Y., Amelioration of cyclophosphamide-induced myelosuppression during treatment to rats with breast cancer through low-intensity pulsed ultrasound, Biosci. Rep., 2020, vol. 40, p. BSR20201350. (PMID: 32936241751753710.1042/BSR20201350)
      Imig, J.D., Ryan, M.J., Immune and inflammatory role in renal disease, Compr. Physiol., 2013, vol. 3, pp. 957–976. (PMID: 23720336380316210.1002/cphy.c120028)
      Torchinsky, A., Shepshelovich, J., Orenstein, H., Zaslavsky, Z., Savion, S., Carp, H., Fain, A., and Toder, V., TNF-alpha protects embryos exposed to developmental toxicants, Am. J. Reprod. Immunol., 2003, vol. 49, pp. 159–168. (PMID: 1279752210.1034/j.1600-0897.2003.01174.x)
      Zhang, Y., Chang, J., Gao, H., Qu, X., Zhai, J., Tao, L., Sun, J., and Song, Y., Huaiqihuang (HQH) granule alleviates cyclophosphamide-induced nephrotoxicity via suppressing the MAPK/NF-κB pathway and NLRP3 inflammasome activation, Pharm. Biol., 2021, vol. 59, pp. 1425–1431. (PMID: 3469387610.1080/13880209.2021.1990356)
      Estakhri, R., Hajipour, B., Majidi, H., and Soleimani, H., Vitamin E ameliorates cyclophosphamide induced nephrotoxicity, Life. Sci. J., 2013, vol. 10, pp. 308–313.
    • Contributed Indexing:
      Keywords: betulinic acid; boswellic acid; cyclophosphamide; inflammation; nephrotoxicity; oxidative stress
    • Accession Number:
      4G6A18707N (Betulinic Acid)
      8N3DW7272P (Cyclophosphamide)
      0 (Triterpenes)
      0 (Pentacyclic Triterpenes)
      631-69-6 (boswellic acid)
      0 (Antioxidants)
    • Publication Date:
      Date Created: 20240514 Date Completed: 20240722 Latest Revision: 20240722
    • Publication Date:
      20240722
    • Accession Number:
      10.1134/S1607672924600234
    • Accession Number:
      38744737