Development and evaluation of a lyophilization protocol for colorimetric RT-LAMP diagnostic assay for COVID-19.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      Molecular diagnostics involving nucleic acids (DNA and RNA) are regarded as extremely functional tools. During the 2020 global health crisis, efforts intensified to optimize the production and delivery of molecular diagnostic kits for detecting SARS-CoV-2. During this period, RT-LAMP emerged as a significant focus. However, the thermolability of the reagents used in this technique necessitates special low-temperature infrastructure for transport, storage, and conservation. These requirements limit distribution capacity and necessitate cost-increasing adaptations. Consequently, this report details the development of a lyophilization protocol for reagents in a colorimetric RT-LAMP diagnostic kit to detect SARS-CoV-2, facilitating room-temperature transport and storage. We conducted tests to identify the ideal excipients that maintain the molecular integrity of the reagents and ensure their stability during room-temperature storage and transport. The optimal condition identified involved adding 5% PEG 8000 and 75 mM trehalose to the RT-LAMP reaction, which enabled stability at room temperature for up to 28 days and yielded an analytical and diagnostic sensitivity and specificity of 83.33% and 90%, respectively, for detecting SARS-CoV-2. This study presents the results of a lyophilized colorimetric RT-LAMP COVID-19 detection assay with diagnostic sensitivity and specificity comparable to RT-qPCR, particularly in samples with high viral load.
      (© 2024. The Author(s).)
    • References:
      Hedde, P. N. et al. A modular microarray imaging system for highly specific COVID-19 antibody testing. Lab. Chip. 20, 3302–3309 (2020). (PMID: 10.1039/D0LC00547A327436228462184)
      Baldanti, F. et al. Choice of SARS-CoV-2 diagnostic test: challenges and key considerations for the future. Crit. Rev. Clin. Lab. Sci. 59, 445–459 (2022). (PMID: 10.1080/10408363.2022.204525035289222)
      de Campos-Stairiker, K. et al. Validation of microchip RT-PCR COVID-19 detection system. J. Biosci. Med. 09, 8–24 (2021).
      Thompson, D. & Lei, Y. Mini review: Recent progress in RT-LAMP enabled COVID-19 detection. Sens. Actuators Rep. 2, 100017 (2020). (PMID: 10.1016/j.snr.2020.100017350478287428436)
      Zhang, Y. et al. Enhancing colorimetric loop-mediated isothermal amplification speed and sensitivity with guanidine chloride. Biotechniques 69, 178–185 (2020). (PMID: 10.2144/btn-2020-007832635743)
      Prado, N. O., Lalli, L. A., Blanes, L., Zanette, D. L. & Aoki, M. N. Lyophilization of molecular biology reactions: A review. Mini-Rev. Med. Chem. 23, 480–496 (2023). (PMID: 10.2174/138955752266622080214405735927908)
      Nail, S. L. & Akers, M. J. Development and Manufacture of Protein Pharmaceuticals (Springer, 2002). (PMID: 10.1007/978-1-4615-0549-5)
      Diaz-Dussan, D. et al. Trehalose-based polyethers for cryopreservation and three-dimensional cell scaffolds. Biomacromolecules 21, 1264–1273 (2020). (PMID: 10.1021/acs.biomac.0c0001831913606)
      Balakrishna, K., Sreerohini, S. & Parida, M. Ready-to-use single tube quadruplex PCR for differential identification of mutton, chicken, pork and beef in processed meat samples. Food Addit. Contam. Part A 36, 1435–1444 (2019). (PMID: 10.1080/19440049.2019.1633477)
      Özay, B. & McCalla, S. E. A review of reaction enhancement strategies for isothermal nucleic acid amplification reactions. Sens. Actuators Rep. 3, 100033 (2021). (PMID: 10.1016/j.snr.2021.100033)
      Arakawa, T., Tsumoto, K., Kita, Y., Chang, B. & Ejima, D. Biotechnology applications of amino acids in protein purification and formulations. Amino Acids 33, 587–605 (2007). (PMID: 10.1007/s00726-007-0506-317357829)
      Matejtschuk, P. Lyophilization of Proteins. In Cryopreservation and Freeze-Drying Protocols (eds Day, J. G. & Stacey, G. N.) (Humana Press, 2007).
      Xu, J. et al. Room-temperature-storable PCR mixes for SARS-CoV-2 detection. Clin. Biochem. 84, 73–78 (2020). (PMID: 10.1016/j.clinbiochem.2020.06.013325927247313492)
      Griebenow, K. & Klibanov, A. M. Lyophilization-induced reversible changes in the secondary structure of proteins. Proc. Natl. Acad. Sci. 92, 10969–10976 (1995). (PMID: 10.1073/pnas.92.24.10969747992040552)
      Ó’Fágáin, C. & Colliton, K. Storage and Lyophilization of pure proteins. In Protein Chromatography. Methods in Molecular Biology, 2699 (eds Loughran, S. T. & Milne, J. J.) 421–475 (Humana, New York, NY, 2023). https://doi.org/10.1007/978-1-0716-3362-5_19 . (PMID: 10.1007/978-1-0716-3362-5_19)
      Goldring, J.P.D. Methods to concentrate proteins for protein isolation, proteomic, and peptidomic evaluation. In Detection of Blotted Proteins. Methods in Molecular Biology, 1314 (eds Kurien, B. & Scofield, R.) 5–18 (Humana Press, New York, NY, 2015). https://doi.org/10.1007/978-1-4939-2718-0_2 . (PMID: 10.1007/978-1-4939-2718-0_2)
      Liu, B. & Zhou, X. Freeze-drying of proteins. In Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology, 2180 (eds Wolkers, W.F. & Oldenhof, H.) 683–702 (Humana, New York, NY, 2021). https://doi.org/10.1007/978-1-0716-0783-1_37. (PMID: 10.1007/978-1-0716-0783-1_37)
      Klatser, P. R., Kuijper, S., van Ingen, C. W. & Kolk, A. H. J. Stabilized, freeze-dried pcr mix for detection of mycobacteria. J. Clin. Microbiol. 36, 1798–1800 (1998). (PMID: 10.1128/JCM.36.6.1798-1800.19989620427104927)
      Arunrut, N., Kiatpathomchai, W. & Ananchaipattana, C. Multiplex PCR assay and lyophilization for detection of Salmonella spp., Staphylococcus aureus and Bacillus cereus in pork products. Food Sci. Biotechnol. 27, 867–875 (2018). (PMID: 10.1007/s10068-017-0286-9302638136049695)
      Edouard, S. & Raoult, D. Lyophilization to improve the sensitivity of qPCR for bacterial DNA detection in serum: the Q fever paradigm. J. Med. Microbiol. 65, 462–467 (2016). (PMID: 10.1099/jmm.0.00025327008653)
      Xu, J. et al. Transferable, easy-to-use and room-temperature-storable PCR mixes for microfluidic molecular diagnostics. Talanta 235, 122797 (2021). (PMID: 10.1016/j.talanta.2021.122797345176558353973)
      Molnar, A. et al. Lyophilization and homogenization of biological samples improves reproducibility and reduces standard deviation in molecular biology techniques. Amino. Acids 53, 917–928 (2021). (PMID: 10.1007/s00726-021-02994-w340022788128086)
      Toppings, N. B. et al. A rapid near-patient detection system for SARS-CoV-2 using saliva. Sci. Rep. 11, 13378 (2021). (PMID: 10.1038/s41598-021-92677-z341837208238998)
      de Oliveira Coelho, B. et al. Essential properties and pitfalls of colorimetric Reverse Transcription Loop-mediated Isothermal Amplification as a point-of-care test for SARS-CoV-2 diagnosis. Mol. Med. 27, 30 (2021). (PMID: 10.1186/s10020-021-00289-0337710977996115)
      Aoki, M. N. et al. Colorimetric RT-LAMP SARS-CoV-2 diagnostic sensitivity relies on color interpretation and viral load. Sci. Rep. https://doi.org/10.1038/s41598-021-88506-y (2021). (PMID: 10.1038/s41598-021-88506-y348874688660893)
      Colbert, A. J. et al. PD-LAMP smartphone detection of SARS-CoV-2 on chip. Anal. Chim. Acta 1203, 339702 (2022). (PMID: 10.1016/j.aca.2022.339702353614348905050)
      Song, X. et al. A lyophilized colorimetric RT-LAMP test kit for rapid, low-cost, at-home molecular testing of SARS-CoV-2 and other pathogens. Sci. Rep. 12, 7043 (2022). (PMID: 10.1038/s41598-022-11144-5354879699052177)
      Patapoff, T. W., Overcashier, D. E. & Patapoff, O. Importance of freezing on lyophilization development. Biopharm 15(16), 21 (2002).
      Choi, J. R. et al. An integrated lateral flow assay for effective DNA amplification and detection at the point of care. Analyst 141, 2930–2939 (2016). (PMID: 10.1039/C5AN02532J27010033)
      Choi, J. R. et al. Polydimethylsiloxane-paper hybrid lateral flow assay for highly sensitive point-of-care nucleic acid testing. Anal. Chem. 88, 6254–6264 (2016). (PMID: 10.1021/acs.analchem.6b0019527012657)
      Connelly, J. T., Rolland, J. P. & Whitesides, G. M. ‘Paper machine’ for molecular diagnostics. Anal. Chem. 87, 7595–7601 (2015). (PMID: 10.1021/acs.analchem.5b0041126104869)
      Seok, Y. et al. A paper-based device for performing loop-mediated isothermal amplification with real-time simultaneous detection of multiple DNA targets. Theranostics 7, 2220–2230 (2017). (PMID: 10.7150/thno.18675287405465505055)
      Witkowska McConnell, W. et al. Paper microfluidic implementation of loop mediated isothermal amplification for early diagnosis of hepatitis C virus. Nat. Commun. 12, 6994 (2021). (PMID: 10.1038/s41467-021-27076-z348487058632961)
      Kaarj, K., Akarapipad, P. & Yoon, J.-Y. Simpler, faster, and sensitive zika virus assay using smartphone detection of loop-mediated isothermal amplification on paper microfluidic chips. Sci. Rep. 8, 12438 (2018). (PMID: 10.1038/s41598-018-30797-9301275036102244)
      Jiang, X., Loeb, J. C., Manzanas, C., Lednicky, J. A. & Fan, Z. H. Valve-enabled sample preparation and RNA amplification in a coffee mug for zika virus detection. Angew. Chem. Int. Ed. Engl. 57, 17211–17214 (2018). (PMID: 10.1002/anie.20180999330358036)
      Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045 (2020). (PMID: 10.2807/1560-7917.ES.2020.25.3.2000045332433537693167)
    • Contributed Indexing:
      Keywords: COVID-19; Colorimetric kit; Lyophilization; RT-LAMP
    • Accession Number:
      0 (RNA, Viral)
      0 (Reagent Kits, Diagnostic)
    • Subject Terms:
      LAMP assay
    • Publication Date:
      Date Created: 20240508 Date Completed: 20240508 Latest Revision: 20240512
    • Publication Date:
      20240513
    • Accession Number:
      PMC11078981
    • Accession Number:
      10.1038/s41598-024-61163-7
    • Accession Number:
      38719936