Menu
×
Baxter-Patrick James Island
9 a.m. – 8 p.m.
Phone: (843) 795-6679
West Ashley Library
9 a.m. – 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. – 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. – 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. – 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. – 8 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. – 8 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. – 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
9 a.m. – 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. – 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. – 7 p.m.
Phone: (843) 722-7550
Main Library
9 a.m. – 8 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. – 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
Baxter-Patrick James Island
9 a.m. – 8 p.m.
Phone: (843) 795-6679
West Ashley Library
9 a.m. – 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. – 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. – 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. – 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. – 8 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. – 8 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. – 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
9 a.m. – 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. – 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. – 7 p.m.
Phone: (843) 722-7550
Main Library
9 a.m. – 8 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. – 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Generation of stable suspension producer cell lines for serum-free lentivirus production.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Klimpel M;Klimpel M; Terrao M; Terrao M; Bräuer M; Bräuer M; Dersch H; Dersch H; Biserni M; Biserni M; Melo Do Nascimento L; Melo Do Nascimento L; Schwingal S; Schwingal S; Vogel JE; Vogel JE; Ferlemann C; Ferlemann C; Brandt T; Brandt T; Lal NI; Lal NI; Bridgeman K; Bridgeman K; Petzke A; Petzke A; McDwyer E; McDwyer E; McDwyer E; Lim JL; Lim JL; Oh S; Oh S; Brumatti G; Brumatti G; Garcia Minambres A; Garcia Minambres A; Otte E; Otte E; Noll T; Noll T; Pirzas V; Pirzas V; Laux H; Laux H
- Source:
Biotechnology journal [Biotechnol J] 2024 May; Vol. 19 (5), pp. e2400090.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Wiley-VCH Verlag Country of Publication: Germany NLM ID: 101265833 Publication Model: Print Cited Medium: Internet ISSN: 1860-7314 (Electronic) Linking ISSN: 18606768 NLM ISO Abbreviation: Biotechnol J Subsets: MEDLINE
- Publication Information: Original Publication: Weinheim : Wiley-VCH Verlag, c2006-
- Subject Terms:
- Abstract: The production of lentiviral vectors (LVs) pseudotyped with the vesicular stomatitis virus envelope glycoprotein (VSV-G) is limited by the associated cytotoxicity of the envelope and by the production methods used, such as transient transfection of adherent cell lines. In this study, we established stable suspension producer cell lines for scalable and serum-free LV production derived from two stable, inducible packaging cell lines, named GPRG and GPRTG. The established polyclonal producer cell lines produce self-inactivating (SIN) LVs carrying a WAS-T2A-GFP construct at an average infectious titer of up to 4.64 × 10 7 TU mL -1 in a semi-perfusion process in a shake flask and can be generated in less than two months. The derived monoclonal cell lines are functionally stable in continuous culture and produce an average infectious titer of up to 9.38 × 10 7 TU mL -1 in a semi-perfusion shake flask process. The producer clones are able to maintain a productivity of >1 × 10 7 TU mL -1 day -1 for up to 29 consecutive days in a non-optimized 5 L stirred-tank bioreactor perfusion process, representing a major milestone in the field of LV manufacturing. As the producer cell lines are based on an inducible Tet-off expression system, the established process allows LV production in the absence of inducers such as antibiotics. The purified LVs efficiently transduce human CD34 + cells, reducing the LV quantities required for gene and cell therapy applications.
(© 2024 CSL Innovation GmbH and The Authors. Biotechnology Journal published by Wiley‐VCH GmbH.) - References: Kotterman, M. A., Chalberg, T. W., & Schaffer, D. V. (2015). Viral vectors for gene therapy: Translational and clinical outlook. Annual Review of Biomedical Engineering, 17(1), 63–89. https://doi.org/10.1146/annurev‐bioeng‐071813‐104938.
Tomás, H. A., Rodrigues, A. F., Alves, P. M., & Coroadinha, A. S. (2013). Lentiviral gene therapy vectors: Challenges and future directions. Gene Therapy—Tools and Potential Applications, https://doi.org/10.5772/52534.
Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L., & Gao, G. (2021). Viral vector platforms within the gene therapy landscape. Signal transduction and targeted therapy, 6(1), 53. https://doi.org/10.1038/s41392‐021‐00487‐6.
Martínez‐Molina, E., Chocarro‐Wrona, C., Martínez‐Moreno, D., Marchal, J. A., & Boulaiz, H. (2020). Large‐scale production of Lentiviral vectors: Current perspectives and challenges. Pharmaceutics, 12(11), 1051. https://doi.org/10.3390/pharmaceutics12111051.
Milone, M. C., & O'Doherty, U. (2018). Clinical use of lentiviral vectors. Leukemia, 32(7), 1529–1541. https://doi.org/10.1038/s41375‐018‐0106‐0.
Ferreira, M. V., Cabral, E. T., & Coroadinha, A. S. (2020). Progress and perspectives in the development of lentiviral vector producer cells. Biotechnology Journal, 16(1), 2000017. https://doi.org/10.1002/biot.202000017.
Segura, M. M., Mangion, M., Gaillet, B., & Garnier, A. (2013). New developments in lentiviral vector design, production and purification. Expert Opinion on Biological Therapy, 13(7), 987–1011. https://doi.org/10.1517/14712598.2013.779249.
Dull, T., Zufferey, R., Kelly, M., Mandel, R. J., Nguyen, M., Trono, D., & Naldini, L. (1998). A third‐generation lentivirus vector with a conditional packaging system. Journal of Virology, 72(11), 8463–8471. https://doi.org/10.1128/jvi.72.11.8463‐8471.1998.
Comisel, R.‐M., Kara, B., Fiesser, F. H., & Farid, S. S. (2021). Gene therapy process change evaluation framework: Transient transfection and stable producer cell line comparison. Biochemical Engineering Journal, 176, 108202. https://doi.org/10.1016/j.bej.2021.108202.
Comisel, R.‐M., Kara, B., Fiesser, F. H., & Farid, S. S. (2021). Lentiviral vector bioprocess economics for cell and gene therapy commercialization. Biochemical Engineering Journal, 167, 107868. https://doi.org/10.1016/j.bej.2020.107868.
Broussau, S., Lytvyn, V., Simoneau, M., Guilbault, C., Leclerc, M., Nazemi‐Moghaddam, N., Coulombe, N., Elahi, S. M., McComb, S., & Gilbert, R. (2023). Packaging cells for lentiviral vectors generated using the cumate and coumermycin gene induction systems and nanowell single‐cell cloning. Molecular Therapy—Methods & Clinical Development, 29, 40–57. https://doi.org/10.1016/j.omtm.2023.02.013.
Chen, Y., Pallant, C., Sampson, C., Boiti, A., Johnson, S., Brazauskas, P., Hardwicke, P., Marongiu, M., Marinova, V. M., Carmo, M., Sweeney, N. P., Richard, A., Shillings, A., Archibald, P. R. T., Puschmann, E., Mouzon, B., Grose, D., Mendez‐Tavio, M., Chen, M., & Warr, S. R. C. (2020). Rapid lentiviral vector producer cell line generation using a single DNA construct. Molecular Therapy. Methods & Clinical Development, 19, 47–57. https://doi.org/10.1016/j.omtm.2020.08.011.
Merten, O., Hebben, M., & Bovolenta, C. (2016). Production of lentiviral vectors. Molecular Therapy. Methods & Clinical Development, 3, 16017. https://doi.org/10.1038/mtm.2016.17.
Tomás, H. A., Rodrigues, A. F., Carrondo, M. J. T., & Coroadinha, A. S. (2018). LentiPro26: Novel stable cell lines for constitutive lentiviral vector production. Scientific Reports, 8(1), 5271. https://doi.org/10.1038/s41598‐018‐23593‐y.
Hoffmann, M., Wu, Y.‐J., Gerber, M., Berger‐Rentsch, M., Heimrich, B., Schwemmle, M., & Zimmer, G. (2010). Fusion‐active glycoprotein G mediates the cytotoxicity of vesicular stomatitis virus M mutants lacking host shut‐off activity. Journal of General Virology, 91(11), 2782–2793. https://doi.org/10.1099/vir.0.023978‐0.
Nie, Z., Phenix, B. N., Lum, J. J., Alam, A., Lynch, D. H., Beckett, B., Krammer, P. H., Sekaly, R. P., & Badley, A. D. (2002). HIV‐1 protease processes procaspase 8 to cause mitochondrial release of cytochrome C, caspase cleavage and nuclear fragmentation. Cell Death and Differentiation, 9(11), 1172–1184. https://doi.org/10.1038/sj.cdd.4401094.
Ikeda, Y., Takeuchi, Y., Martin, F., Cosset, F.‐L., Mitrophanous, K., & Collins, M. (2003). Continuous high‐titer HIV‐1 vector production. Nature Biotechnology, 21(5), 569–572. https://doi.org/10.1038/nbt815.
Marin, V., Stornaiuolo, A., Piovan, C., Corna, S., Bossi, S., Pema, M., Giuliani, E., Scavullo, C., Zucchelli, E., Bordignon, C., Rizzardi, G. P., & Bovolenta, C. (2016). RD‐MolPack technology for the constitutive production of self‐inactivating lentiviral vectors pseudotyped with the nontoxic RD114‐TR envelope. Molecular Therapy—Methods & Clinical Development, 3, 16033. https://doi.org/10.1038/mtm.2016.33.
Sanber, K. S., Knight, S. B., Stephen, S. L., Bailey, R., Escors, D., Minshull, J., Santilli, G., Thrasher, A. J., Collins, M. K., & Takeuchi, Y. (2015). Construction of stable packaging cell lines for clinical lentiviral vector production. Scientific Reports, 5(1), 9021. https://doi.org/10.1038/srep09021.
Stornaiuolo, A., Piovani, B. M., Bossi, S., Zucchelli, E., Corna, S., Salvatori, F., Mavilio, F., Bordignon, C., Rizzardi, G. P., & Bovolenta, C. (2013). RD2‐MolPack‐Chim3, a packaging cell line for stable production of lentiviral vectors for anti‐HIV gene therapy. Human Gene Therapy Methods, 24(4), 228–240. https://doi.org/10.1089/hgtb.2012.190.
Scherdin, U., Rhodes, K., & Breindl, M. (1990). Transcriptionally active genome regions are preferred targets for retrovirus integration. Journal of Virology, 64(2), 907–912. https://doi.org/10.1128/jvi.64.2.907‐912.1990.
Burns, J. C., Friedmann, T., Driever, W., Burrascano, M., & Yee, J. K. (1993). Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: Concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. The Proceedings of the National Academy of Sciences, 90(17), 8033–8037. https://doi.org/10.1073/pnas.90.17.8033.
Dautzenberg, I. J. C., Rabelink, M. J. W. E., & Hoeben, R. C. (2021). The stability of envelope‐pseudotyped lentiviral vectors. Gene Therapy, 28, 89–104. https://doi.org/10.1038/s41434‐020‐00193‐y.
Finkelshtein, D., Werman, A., Novick, D., Barak, S., & Rubinstein, M. (2013). LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. The Proceedings of the National Academy of Sciences, 110(18), 7306–7311. https://doi.org/10.1073/pnas.1214441110.
Gossen, M., & Bujard, H. (1992). Tight control of gene expression in mammalian cells by tetracycline‐responsive promoters. The Proceedings of the National Academy of Sciences, 89(12), 5547–5551. https://doi.org/10.1073/pnas.89.12.5547.
Gossen, M., Freundlieb, S., Bender, G., Müller, G., Hillen, W., & Bujard, H. (1995). Transcriptional activation by tetracyclines in mammalian cells. Science (New York, N.Y.), 268(5218), 1766–1769. https://doi.org/10.1126/science.7792603.
Bonner, M., Ma, Z., Zhou, S., Ren, A., Chandrasekaran, A., Gray, J. T., Sorrentino, B. P., & Throm, R. E. (2015). Development of a second generation stable Lentiviral packaging cell line in support of clinical gene transfer protocols. Molecular Therapy, 23, S35. https://doi.org/10.1016/S1525‐0016(16)33686‐3.
Powers, A. D., Drury, J. E., Hoehamer, C. F., Lockey, T. D., & Meagher, M. M. (2020). Lentiviral vector production from a stable packaging cell line using a packed bed bioreactor. Molecular Therapy—Methods & Clinical Development, 19, 1–13. https://doi.org/10.1016/j.omtm.2020.08.010.
Throm, R. E., Ouma, A. A., Zhou, S., Chandrasekaran, A., Lockey, T., Greene, M., De Ravin, S. S., Moayeri, M., Malech, H. L., Sorrentino, B. P., & Gray, J. T. (2009). Efficient construction of producer cell lines for a SIN lentiviral vector for SCID‐X1 gene therapy by concatemeric array transfection. Blood, 113(21), 5104–5110. https://doi.org/10.1182/blood‐2008‐11‐191049.
Choi, U., Theobald, N., Robert, T. E., Gray, J., Rawlings, D. J., Sorrentino, B. P., Malech, H., & De Ravin, S. S. (2015). High titer Lentivector from a stable lenti‐producer efficiently corrects CD34+ hematopoietic stem cells from patients with p47phox‐deficient chronic granulomatous disease. Blood, 126(23), 2036–2036. https://doi.org/10.1182/blood.v126.23.2036.2036.
Greene, M. R., Lockey, T., Mehta, P. K., Kim, Y.‐S., Eldridge, P. W., Gray, J. T., & Sorrentino, B. P. (2012). Transduction of human CD34+repopulating cells with a self‐inactivating lentiviral vector for SCID‐X1 produced at clinical scale by a stable cell line. Human Gene Therapy Methods, 23(5), 297–308. https://doi.org/10.1089/hgtb.2012.150.
Wielgosz, M., Kim, Y., Carney, G., Zhan, J., Reddivari, M., Coop, T., Heath, R. J., Brown, S. A., & Nienhuis, A. W. (2015). Generation of a lentiviral vector producer cell clone for human Wiskott‐Aldrich syndrome gene therapy. Molecular Therapy. Methods & Clinical Development, 2, 14063. https://doi.org/10.1038/mtm.2014.63.
De Ravin, S. S., Wu, X., Moir, S., Kardava, L., Anaya‐O'Brien, S., Kwatemaa, N., Littel, P., Theobald, N., Choi, U., Su, L., Marquesen, M., Hilligoss, D., Lee, J., Buckner, C. M., Zarember, K. A., O'Connor, G., McVicar, D., Kuhns, D., Throm, R. E., & Zhou, S. (2016). Lentiviral hematopoietic stem cell gene therapy for X‐linked severe combined immunodeficiency. Science Translational Medicine, 8(335), 335ra57–335ra57. https://doi.org/10.1126/scitranslmed.aad8856.
Karnieli, O., Friedner, O. M., Allickson, J. G., Zhang, N., Jung, S., Fiorentini, D., Abraham, E., Eaker, S. S., Yong, T. K., Chan, A., Griffiths, S., Wehn, A. K., Oh, S., & Karnieli, O. (2017). A consensus introduction to serum replacements and serum‐free media for cellular therapies. Cytotherapy, 19(2), 155–169. https://doi.org/10.1016/j.jcyt.2016.11.011.
van der Valk, J. (2022). Fetal bovine serum—A cell culture dilemma. Science (New York, N.Y.), 375(6577), 143–144. https://doi.org/10.1126/science.abm1317.
Broussau, S., Jabbour, N., Lachapelle, G., Durocher, Y., Tom, R., Transfiguracion, J., Gilbert, R., & Massie, B. (2008). Inducible packaging cells for large‐scale production of lentiviral vectors in serum‐free suspension culture. Molecular therapy: the journal of the American Society of Gene Therapy, 16(3), 500–507. https://doi.org/10.1038/sj.mt.6300383.
Manceur, A. P., Kim, H., Misic, V., Andreev, N., Dorion‐Thibaudeau, J., Lanthier, S., Bernier, A., Tremblay, S., Gélinas, A., Broussau, S., Gilbert, R., & Ansorge, S. (2017). Scalable Lentiviral vector production using stable HEK293SF producer cell lines. Human Gene Therapy Methods, 28(6), 330–339. https://doi.org/10.1089/hgtb.2017.086.
Tona, R. M., Shah, R., Middaugh, K., Steve, J., Marques, J., Roszell, B. R., & Jung, C. (2023). Process intensification for lentiviral vector manufacturing using tangential flow depth filtration. Molecular Therapy—Methods & Clinical Development, 29, 93–107. https://doi.org/10.1016/j.omtm.2023.02.017.
Tran, M. Y., & Kamen, A. A. (2022). Production of Lentiviral vectors using a HEK‐293 producer cell line and advanced perfusion processing. Frontiers in Bioengineering and Biotechnology, 10, 887716. https://doi.org/10.3389/fbioe.2022.887716.
Klimpel, M., Terrao, M., Ching, N., Climenti, V., Noll, T., Pirzas, V., & Laux, H. (2023). Development of a perfusion process for continuous lentivirus production using stable suspension producer cell lines. Biotechnology and Bioengineering, 120(9), 2622–2638. https://doi.org/10.1002/bit.28413.
Aiuti, A., Biasco, L., Scaramuzza, S., Ferrua, F., Cicalese, M. P., Baricordi, C., Dionisio, F., Calabria, A., Giannelli, S., Castiello, M. C., Bosticardo, M., Evangelio, C., Assanelli, A., Casiraghi, M., Di Nunzio, S., Callegaro, L., Benati, C., Rizzardi, P., Pellin, D., & Di Serio, C. (2013). Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott‐Aldrich syndrome. Science (New York, N.Y.), 341(6148), 1233151. https://doi.org/10.1126/science.1233151.
Charrier, S., Dupré, L., Scaramuzza, S., Jeanson‐Leh, L., Blundell, M. P., Danos, O., Cattaneo, F., Aiuti, A., Eckenberg, R., Thrasher, A. J., Roncarolo, M. G., & Galy, A. (2007). Lentiviral vectors targeting WASp expression to hematopoietic cells, efficiently transduce and correct cells from WAS patients. Gene Therapy, 14(5), 415–428. https://doi.org/10.1038/sj.gt.3302863.
Dupré, L., Trifari, S., Follenzi, A., Marangoni, F., Lain de Lera, T., Bernad, A., Martino, S., Tsuchiya, S., Bordignon, C., Naldini, L., Aiuti, A., & Roncarolo, M.‐G. (2004). Lentiviral vector‐mediated gene transfer in T cells from Wiskott–Aldrich syndrome patients leads to functional correction. Molecular Therapy, 10(5), 903–915. https://doi.org/10.1016/j.ymthe.2004.08.008.
Ferrua, F., Cicalese, M. P., Galimberti, S., Giannelli, S., Dionisio, F., Barzaghi, F., Migliavacca, M., Bernardo, M. E., Calbi, V., Assanelli, A. A., Facchini, M., Fossati, C., Albertazzi, E., Scaramuzza, S., Brigida, I., Scala, S., Basso‐Ricci, L., Pajno, R., Casiraghi, M., & Canarutto, D. (2019). Lentiviral haemopoietic stem/progenitor cell gene therapy for treatment of Wiskott‐Aldrich syndrome: Interim results of a non‐randomised, open‐label, phase 1/2 clinical study. The Lancet. Haematology, 6(5), e239–e253. https://doi.org/10.1016/S2352‐3026(19)30021‐3.
Hacein‐Bey Abina, S., Gaspar, H. B., Blondeau, J., Caccavelli, L., Charrier, S., Buckland, K., Picard, C., Six, E., Himoudi, N., Gilmour, K., McNicol, A.‐M., Hara, H., Xu‐Bayford, J., Rivat, C., Touzot, F., Mavilio, F., Lim, A., Treluyer, J.‐M., Héritier, S., & Lefrère, F. (2015). Outcomes following gene therapy in patients with severe Wiskott‐Aldrich syndrome. THE Journal of the American Medical Association, 313(15), 1550–1563. https://doi.org/10.1001/jama.2015.3253.
Labrosse, R., Chu, J., Armant, M., van, Miggelbrink, A., Fong, J., Everett, J. K., Raymond, H. E., Kessler, L. R., Dansereau, C., MacKinnon, B., Koo, S., Morris, E. A., Wendy, L., Ahmet, Ö., Safa, B., Despotovic, J. M., Forbes, L. R., Akihiko, S., & Takayuki, T. (2023). Outcomes of hematopoietic stem cell gene therapy for Wiskott‐Aldrich syndrome. Blood, 142(15), 1281–1296. https://doi.org/10.1182/blood.2022019117.
Magnani, A., Semeraro, M., Adam, F., Booth, C., Dupré, L., Morris, E. C., Gabrion, A., Roudaut, C., Borgel, D., Toubert, A., Clave, E., Abdo, C., Gorochov, G., Petermann, R., Guiot, M., Miyara, M., Moshous, D., Magrin, E., Denis, A., & Suarez, F. (2022). Long‐term safety and efficacy of lentiviral hematopoietic stem/progenitor cell gene therapy for Wiskott–Aldrich syndrome. Nature Medicine, 28(1), 71–80. https://doi.org/10.1038/s41591‐021‐01641‐x.
Canté‐Barrett, K., Mendes, R. S., Smits, W. K., Yvette Pieters, R., & Meijerink, J. P. P. (2016). Lentiviral gene transfer into human and murine hematopoietic stem cells: Size matters. BMC Research Res Notes, 9(1), 312. https://doi.org/10.1186/s13104‐016‐2118‐z.
Kumar, M., Keller, B., Makalou, N., & Sutton, R. E. (2001). Systematic determination of the packaging limit of lentiviral vectors. Human Gene Therapy, 12(15), 1893–1905. https://doi.org/10.1089/104303401753153947.
Sweeney, N. P., & Vink, C. A. (2021). The impact of lentiviral vector genome size and producer cell genomic to gag‐pol mRNA ratios on packaging efficiency and titre. Molecular Therapy—Methods & Clinical Development, 21, 574–584. https://doi.org/10.1016/j.omtm.2021.04.007.
Hanawa, H., Yamamoto, M., Zhao, H., Shimada, T., & Persons, D. A. (2009). Optimized lentiviral vector design improves titer and transgene expression of vectors containing the chicken β‐globin locus HS4 insulator element. Molecular Therapy, 17(4), 667–674. https://doi.org/10.1038/mt.2009.1.
Zhang, B., Metharom, P., Jullie, H., Ellem, K. A., Cleghorn, G., West, M. J., & Wei, M. Q. (2004). The significance of controlled conditions in lentiviral vector titration and in the use of multiplicity of infection (MOI) for predicting gene transfer events. Genetic Vaccines and Therapy, 2(1), 6. https://doi.org/10.1186/1479‐0556‐2‐6.
Merten, O., Charrier, S., Laroudie, N., Fauchille, S., Dugué, C., Jenny, C., Audit, M., Zanta‐Boussif, M. A., Chautard, H., Radrizzani, M., Vallanti, G., Naldini, L., Noguiez‐Hellin, P., & Galy, A. (2011). Large‐scale manufacture and characterization of a lentiviral vector produced for clinical ex vivo gene therapy application. Human Gene Therapy, 22(3), 343–356. https://doi.org/10.1089/hum.2010.060.
Bauler, M., Roberts, J. K., Wu, C., Fan, B., Ferrara, F., Yip, B. H., Diao, S., Kim, Y., Moore, J., Zhou, S., Wielgosz, M. M., Ryu, B., & Throm, R. E. (2020). Production of Lentiviral vectors using suspension cells grown in serum‐free media. Molecular Therapy—Methods & Clinical Development, 17, 58–68. https://doi.org/10.1016/j.omtm.2019.11.011.
Caron, A. L., Picanço‐Castro, V., Ansorge, S., Covas, D. T., Kamen, A., & Swiech, K. (2015). Production of Lentiviral vectors encoding recombinant factor VIII expression in serum‐free suspension cultures. The Brazilian Archives of Biology and Technology, 58(6), 923–928. https://doi.org/10.1590/s1516‐89132015060367.
Segura, M. M., Garnier, A., Durocher, Y., Coelho, H., & Kamen, A. (2007). Production of lentiviral vectors by large‐scale transient transfection of suspension cultures and affinity chromatography purification. Biotechnology and Bioengineering, 98(4), 789–799. https://doi.org/10.1002/bit.21467.
Swiech, K., Kamen, A., Ansorge, S., Durocher, Y., Picanço‐Castro, V., Russo‐Carbolante, E., Neto, M. S., & Covas, D. T. (2011). Transient transfection of serum‐free suspension HEK 293 cell culture for efficient production of human rFVIII. BMC Biotechnology [Electronic Resource], 11(1), 114. https://doi.org/10.1186/1472‐6750‐11‐114.
Vaz, T. A., Rodrigues, A. F., & Coroadinha, A. S. (2023). Exploring nutrient supplementation and bioprocess optimization to improve the production of lentiviral vectors in serum‐free medium suspension cultures. Biotechnology Journal, 19(1), e2300212. https://doi.org/10.1002/biot.202300212.
van Lieshout, L. P., Rubin, M., Costa‐Grant, K., Ota, S., Golebiowski, D., Panico, T., Wiberg, E., Szymczak, K., Gilmore, R., Stanvick, M., Burnham, B., Gagnon, J., Iwuchukwu, I., Yang, G., Ghazi, I., Meola, A., Dickerson, R., Thiers, T., Mustich, L., & Kelly, T. (2023). A novel dual‐plasmid platform provides scalable transfection yielding improved productivity and packaging across multiple AAV serotypes and genomes. Molecular Therapy—Methods & Clinical Development, 29, 426–436. https://doi.org/10.1016/j.omtm.2023.05.004.
Ferrua, F., Marangoni, F., Aiuti, A., & Roncarolo, M. G. (2020). Gene therapy for Wiskott‐Aldrich syndrome: History, new vectors, future directions. Journal of Allergy and Clinical Immunology, 146(2), 262–265. https://doi.org/10.1016/j.jaci.2020.06.018.
Scaramuzza, S., Biasco, L., Ripamonti, A., Castiello, M. C., Loperfido, M., Draghici, E., Hernandez, R. J., Benedicenti, F., Radrizzani, M., Salomoni, M., Ranzani, M., Bartholomae, C. C., Vicenzi, E., Finocchi, A., Bredius, R., Bosticardo, M., Schmidt, M., von Kalle, C., Montini, E., … Aiuti, A. (2013). Preclinical safety and efficacy of human CD34+ cells transduced with lentiviral vector for the treatment of Wiskott‐Aldrich syndrome. Molecular Therapy, 21(1), 175–184. https://doi.org/10.1038/mt.2012.23.
Perry, C., Mujahid, N., Takeuchi, Y., & Rayat, A. C. M. E. (2023). Insights into product and process related challenges of lentiviral vector bioprocessing. Biotechnology and Bioengineering, 1–16. https://doi.org/10.1002/bit.28498.
Higashikawa, F., & Chang, L. (2001). Kinetic analyses of stability of simple and complex Retroviral vectors. Virology, 280(1), 124–131. https://doi.org/10.1006/viro.2000.0743.
Jiang, W., Hua, R., Wei, M., Li, C., Qiu, Z., Yang, X., & Zhang, C. (2015). An optimized method for high‐titer lentivirus preparations without ultracentrifugation. Scientific Reports, 5(1), 13875. https://doi.org/10.1038/srep13875.
Rahman, H., Taylor, J., Clack, B., Stewart, R. S., & Canterberry, S. C. (2013). Effects of storage conditions on the morphology and titer of lentiviral vectors. Faculty Publications, 94, https://scholarworks.sfasu.edu/biology/94.
Fischer, L. M., Wolff, M. W., & Reichl, U. (2018). Purification of cell culture‐derived influenza A virus via continuous anion exchange chromatography on monoliths. Vaccine, 36(22), 3153–3160. https://doi.org/10.1016/j.vaccine.2017.06.086.
Kilgore, R., Minzoni, A., Shastry, S., Smith, W., Barbieri, E., Wu, Y., LeBarre, J. P., Chu, W., O'Brien, J., & Menegatti, S. (2023). The downstream bioprocess toolbox for therapeutic viral vectors. Journal of Chromatography A, 1709, 464337. https://doi.org/10.1016/j.chroma.2023.464337.
Marchand, N., & Collins, M. (2023). Continuous depth filtration in perfusion cell culture. Journal of Membrane Science, 668, 121204–121204. https://doi.org/10.1016/j.memsci.2022.121204.
Moleirinho, M. G., Silva, R. J., Carrondo, M. J., Alves, P. M., & Peixoto, C. (2019). Exosome‐based therapeutics: Purification using semi‐continuous multi‐column chromatography. Separation and Purification Technology, 224, 515–523. https://doi.org/10.1016/j.seppur.2019.04.060.
Moreira, A. S., Cavaco, D. G., Faria, T. Q., Alves, P. M., Carrondo, M. J. T., & Peixoto, C. (2021). Advances in lentivirus purification. Biotechnology Journal, 16(1), 2000019. https://doi.org/10.1002/biot.202000019.
Lee, C. L., & Bartlett, J. S. (2018). U.S. Patent No. 10,138,495. Washington, DC: U.S. Patent and Trademark Office. - Grant Information: CSL Limited
- Contributed Indexing: Keywords: cell line development; gene and cell therapy; hematopoietic stem cells; lentiviral vector; lentiviral vector production; stable suspension producer cell line
- Accession Number: 0 (Culture Media, Serum-Free)
- Publication Date: Date Created: 20240508 Date Completed: 20240508 Latest Revision: 20240508
- Publication Date: 20240509
- Accession Number: 10.1002/biot.202400090
- Accession Number: 38719592
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.