Computational Design of Cyclic Peptide Inhibitors of a Bacterial Membrane Lipoprotein Peptidase.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: American Chemical Society Country of Publication: United States NLM ID: 101282906 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1554-8937 (Electronic) Linking ISSN: 15548929 NLM ISO Abbreviation: ACS Chem Biol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Washington, D.C. : American Chemical Society, c2006-
    • Subject Terms:
    • Abstract:
      There remains a critical need for new antibiotics against multi-drug-resistant Gram-negative bacteria, a major global threat that continues to impact mortality rates. Lipoprotein signal peptidase II is an essential enzyme in the lipoprotein biosynthetic pathway of Gram-negative bacteria, making it an attractive target for antibacterial drug discovery. Although natural inhibitors of LspA have been identified, such as the cyclic depsipeptide globomycin, poor stability and production difficulties limit their use in a clinical setting. We harness computational design to generate stable de novo cyclic peptide analogues of globomycin. Only 12 peptides needed to be synthesized and tested to yield potent inhibitors, avoiding costly preparation of large libraries and screening campaigns. The most potent analogues showed comparable or better antimicrobial activity than globomycin in microdilution assays against ESKAPE-E pathogens. This work highlights computational design as a general strategy to combat antibiotic resistance.
    • References:
      Front Microbiol. 2021 Dec 07;12:788445. (PMID: 34950121)
      Nat Rev Drug Discov. 2007 Jan;6(1):29-40. (PMID: 17159923)
      ACS Chem Biol. 2019 Dec 20;14(12):2887-2894. (PMID: 31675203)
      Science. 2017 Dec 15;358(6369):1461-1466. (PMID: 29242347)
      Infect Drug Resist. 2018 Oct 10;11:1645-1658. (PMID: 30349322)
      Biochim Biophys Acta. 2014 Aug;1843(8):1509-16. (PMID: 24780125)
      FEMS Microbiol Rev. 2015 Mar;39(2):246-61. (PMID: 25670733)
      Antibiotics (Basel). 2019 Sep 24;8(4):. (PMID: 31554212)
      Nat Commun. 2017 Jul 04;8:15952. (PMID: 28675161)
      Bioorg Med Chem. 2004 Jan 15;12(2):337-61. (PMID: 14723954)
      Int J Mol Sci. 2023 Apr 05;24(7):. (PMID: 37047760)
      Cell. 2022 Sep 15;185(19):3520-3532.e26. (PMID: 36041435)
      Biotechnol Lett. 2017 Jun;39(6):805-817. (PMID: 28275884)
      Proc Natl Acad Sci U S A. 2022 Sep 20;119(38):e2123117119. (PMID: 36099298)
      Cell Chem Biol. 2018 Mar 15;25(3):301-308.e12. (PMID: 29337186)
      Nat Rev Chem. 2021;5(10):726-749. (PMID: 34426795)
      Bioorg Med Chem Lett. 2020 Oct 15;30(20):127419. (PMID: 32768648)
      Science. 2016 Feb 19;351(6275):876-80. (PMID: 26912896)
      Antimicrob Agents Chemother. 2012 Apr;56(4):2014-21. (PMID: 22232277)
      J Antibiot (Tokyo). 1978 Nov;31(11):1203-5. (PMID: 721715)
      Nat Rev Drug Discov. 2015 Aug;14(8):529-42. (PMID: 26139286)
      Microbiologia. 1996 Mar;12(1):9-16. (PMID: 9019139)
      Bioorg Med Chem Lett. 2003 Jul 21;13(14):2315-8. (PMID: 12824025)
    • Accession Number:
      0 (signal peptidase II)
      0 (globomycin)
    • Publication Date:
      Date Created: 20240507 Date Completed: 20240517 Latest Revision: 20241207
    • Publication Date:
      20241209
    • Accession Number:
      PMC11106742
    • Accession Number:
      10.1021/acschembio.4c00076
    • Accession Number:
      38712757