Menu
×
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 4 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 4 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Histochemical and ultrastructural localization of triterpene saponins in Medicago truncatula.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Zannino L;Zannino L; Carelli M; Carelli M; Milanesi G; Milanesi G; Croce AC; Croce AC; Biggiogera M; Biggiogera M; Confalonieri M; Confalonieri M
- Source:
Microscopy research and technique [Microsc Res Tech] 2024 Sep; Vol. 87 (9), pp. 2143-2153. Date of Electronic Publication: 2024 May 05.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 9203012 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0029 (Electronic) Linking ISSN: 1059910X NLM ISO Abbreviation: Microsc Res Tech Subsets: MEDLINE
- Publication Information: Original Publication: New York, NY : Wiley-Liss, c1992-
- Subject Terms: Medicago truncatula*/ultrastructure ; Medicago truncatula*/metabolism ; Medicago truncatula*/chemistry ; Saponins*/metabolism ; Microscopy, Electron, Transmission* ; Triterpenes*/metabolism ; Triterpenes*/chemistry ; Plant Roots*/chemistry ; Plant Roots*/ultrastructure ; Plant Leaves*/chemistry ; Plant Leaves*/ultrastructure; Plant Stems/chemistry ; Plant Stems/ultrastructure ; Phloem/ultrastructure ; Phloem/chemistry ; Phloem/metabolism ; Histocytochemistry ; Chloroplasts/ultrastructure ; Chloroplasts/metabolism ; Chloroplasts/chemistry
- Abstract: In the Medicago genus, saponins are complex mixtures of triterpene pentacyclic glycosides extensively studied for their different and economically relevant biological and pharmaceutical properties. This research is aimed at determining for the first time the tissue and cellular localization of triterpene saponins in vegetative organs of Medicago truncatula, a model plant species for legumes, by histochemistry and transmission electron microscopy. The results showed that saponins are present mainly in the palisade mesophyll layer of leaves, whereas in stems they are mostly located in the primary phloem and the subepidermal cells of cortical parenchyma. In root tissue, saponins occur in the secondary phloem region. Transmission electron microscopy revealed prominent saponin accumulation within the leaf and stem chloroplasts, while in the roots the saponins are found in the vesicular structures. Our results demonstrate the feasibility of using histochemistry and transmission electron microscopy to localize M. truncatula saponins at tissue and cellular levels and provide important information for further studies on biosynthesis and regulation of valuable bioactive saponins on agronomic relevant Medicago spp., such as alfalfa (Medicago sativa L.). RESEARCH HIGHLIGHTS: The Medicago genus represents a valuable rich source of saponins, one of the most interesting groups of secondary plant metabolites, which possess relevant biological and pharmacological properties. Plant tissue and cellular localization of saponins is of great importance to better understand their biological functions, biosynthetic pathway, and regulatory mechanisms. We elucidate the localization of saponins in Medicago truncatula with histochemical and transmission electron microscopy studies.
(© 2024 Wiley Periodicals LLC.) - References: Abdelrahman, M., Hirata, S., Ito, S.‐I., Yamauchi, N., & Shigyo, M. (2014). Compartmentation and localization of bioactive metabolites in different organs of Allium roylei. Bioscience, Biotechnology and Biochemistry, 78, 1112–1122.
Abraham, Z., Srivastava, S. K., & Bagchi, C. A. (1988). Cytoplasmic vesicles containing secondary metabolites in the root of C. forskohlii. Current Science, 57(24), 1337–1339.
Argentieri, M. P., DAddabbo, T., Tava, A., Agostinelli, A., Jurzysta, M., & Avato, P. (2008). Evaluation of nematicidal properties of saponins from Medicago spp. European Journal of Plant Pathology, 120, 189–197.
Augustin, J. M., Kuzina, V., Andersen, S. B., & Bak, S. (2011). Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry, 72, 435–457.
Avato, P., Bucci, R., Tava, A., Vitali, C., Rosato, A., Bialy, Z., & Jurzysta, M. (2006). Antimicrobial activity of saponins from Medicago spp.: structure–activity relationship. Phytotherapy Research, 20, 454–457.
Avato, P., Migoni, D., Argentieri, M., Fanizzi, F. P., & Tava, A. (2017). Activity of saponins from Medicago species against HeLa and MCF‐7 cell lines and their capacity to potentiate cisplatin effect. Anticancer Agents in Medicinal Chemistry, 17(11), 1508–1518.
Balestrazzi, A., Agoni, V., Tava, A., Avato, P., Biazzi, E., Raimondi, E., Macovei, A., & Carbonera, D. (2011). Cell death induction and nitric oxide biosynthesis in white poplar (Populus alba) suspension cultures exposed to alfalfa saponins. Physiologia Plantarum, 141, 227–238.
Biazzi, E., Carelli, M., Tava, A., Abbruscato, P., Losini, I., Avato, P., Scotti, C., & Calderini, O. (2015). CYP72A67 catalyzes a key oxidative step in Medicago truncatula hemolytic saponin biosynthesis. Molecular Plant, 8, 1493–1506.
Cai, X., Zheng, L., & Hu, Z. H. (2009). Ultracytochemical studies on the accumulation of saikosaponin during the root development in Bupleurum scorzonerifolium Willd. Journal of Chinese Electron Microscopy Society, 28, 414–419.
Carelli, M., Biazzi, E., Panara, F., Tava, A., Scaramelli, L., Porceddu, A., Graham, N., Odoardi, M., Piano, E., Arcioni, S., May, S., Scotti, C., & Calderini, O. (2011). Medicago truncatula CYP716A12 is a multifunctional oxidase involved in the biosynthesis of hemolytic saponins. The Plant Cell, 23, 3070–3081.
Carelli, M., Biazzi, E., Tava, A., Losini, I., Abbruscato, P., Depedro, C., & Scotti, C. (2015). Sapogenin content variation in Medicago inter‐specific hybrid derivatives highlights some aspects of saponin synthesis and control. New Phytologist, 206, 303–314.
Carelli, M., Confalonieri, M., Tava, A., Biazzi, E., Calderini, O., Abbruscato, P., Cammareri, M., & Scotti, C. (2020). Saponin synthesis in Medicago truncatula plants: CYP450‐mediated formation of sapogenins in the different plant organs. In F. J. de Bruijn (Ed.), The Model Legume Medicago truncatula (pp. 225–236). John Wiley & Sons.
Chen, X., Wang, Y., Zhao, H., Fu, X., & Fang, S. (2019). Localization and dynamic change of saponins in Cyclocarya paliurus (Batal.) Iljinskaja. PLoS One, 14(10), e0223421. https://doi.org/10.1371/journal.pone.0223421.
Confalonieri, M., Cammareri, M., Biazzi, E., Pecchia, P., Fevereiro, M. P., Balestrazzi, A., Tava, A., & Conicella, C. (2009). Enhanced triterpene saponin biosynthesis and root nodulation in transgenic barrel medic (Medicago truncatula Gaertn.) expressing a novel beta‐amyrin synthase (AsOXA1) gene. Plant Biotechnology Journal, 7, 172–182.
Confalonieri, M., Carelli, M., Gianoglio, S., Moglia, A., Biazzi, E., & Tava, A. (2021). CRISPR/Cas9‐mediated targeted mutagenesis of cyp93e2 modulates the triterpene saponin biosynthesis in Medicago truncatula. Frontiers in Plant Science, 12, 690231.
Da Silva Magedans, Y. Y., Phillip, M. A., & Fett‐Neto, A. G. (2020). Production of plant bioactive triterpenoid saponins: from metabolites to gene and back. Phytochemistry Reviews, 20, 461–482.
D'Addabbo, T., Argentieri, M. P., Żuchowski, J., Biazzi, E., Tava, A., Oleszek, W., & Avato, P. (2020). Activity of saponins from Medicago species against phytoparasitic nematodes. Plants, 9(4), 443.
Du, X. W., & Liu, M. (1992). Studies of histochemistry of saikosaponins. China Journal of Chinese Materia Medica, 17, 261–263.
Faizal, A., & Geelen, D. (2013). Saponins and their role in biological processes in plants. Phytochemistry Reviews, 12, 877–893.
Fang, Y., & Xiao, H. (2021). The transport of triterpenoids. Biotechnology Notes, 2, 11–17.
Fukushima, E. O., Seki, H., Ohyama, K., Ono, E., Umemoto, N., Mizutani, M., Saito, K., & Muranaka, T. (2011). CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis. Plant Cell Physiology, 52, 2050–2061.
Fukushima, E. O., Seki, H., Sawai, S., Suzuki, M., Ohyama, K., Saito, K., & Muranaka, T. (2013). Combinatorial biosynthesis of legume natural and rare triterpenoids in engineered yeast. Plant Cell Physiology, 54, 740–749.
Han, J. Y., In, J. G., Kwon, Y. S., & Choi, Y. E. (2010). Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng. Phytochemistry, 71, 36–46.
Haralampidisis, K., Trojanowska, M., & Osbourn, A. (2002). Biosynthesis of triterpenoid saponins in plants. In T. Scheper (Ed.), Advances in biochemical engineering/biotechnology (pp. 31–49). Springer.
Hostettmann, K., & Marston, A. (1995). Saponins (Chemistry and Pharmacology of Natural Products). Cambridge University Press.
Hu, Y., Yin, M., Bai, Y., Chu, S., Zhang, L., Yang, M., Zheng, X., Yang, Z., Liu, J., Li, L., Huang, L., & Peng, H. (2022). An evaluation of traits, nutritional, and medicinal component quality of Polygonatum cyrtonema hua and P. sibiricum red. Frontiers Plant Science, 13, 891775.
Khatun, S., Çakilcioğlu, U., & Chatterjee, N. C. (2011). Phytochemical constituents vis‐à‐vis histochemical localization of forskolin in a medicinal plant Coleus forskohlii Briq. Journal of Medicinal Plants Research, 5, 711–718.
Kim, Y. J., Lee, O. R., Oh, J. Y., Jang, M. G., & Yang, D. C. (2014). Functional analysis of 3‐hydroxy‐3‐methylglutaryl coenzyme a reductase encoding genes in triterpene saponin‐producing ginseng. Plant Physiology, 165, 373–387.
Lambert, E., Faizal, A., & Geelen, D. (2011). Modulation of triterpene saponin production: in vitro cultures, elicitation, and metabolic engineering. Applied Biochemistry and Biotechnology, 164, 220–237.
Lei, Z., Watson, B. S., Huhman, D., Yang, D. S., & Sumner, L. W. (2019). Large‐Scale Profiling of Saponins in Different Ecotypes of Medicago truncatula. Frontiers in Plant Science, 10, 850.
Li, J., & Hu, Z. (2009). Accumulation and dynamic trends of triterpenoid saponin in vegetative organs of Achyranthus bidentata. Journal of Integrative Plant Biology, 51(2), 122–129.
Maestrini, M., Tava, A., Mancini, S., Salari, F., & Perrucci, S. (2019). In vitro anthelmintic activity of saponins derived from Medicago spp. plants against donkey gastrointestinal nematodes. Veterinary Sciences, 6, 35.
Maestrini, M., Tava, A., Mancini, S., Tedesco, D., & Perrucci, S. (2020). In vitro anthelmintic activity of saponins from Medicago spp. against sheep gastrointestinal nematodes. Molecules, 25, 242.
Moses, T., Papadopoulou, K. K., & Osbourn, A. (2014). Metabolic and functional diversity of saponins, biosynthetic intermediates and semi‐synthetic derivatives. Critical Reviews in Biochemistry and Molecular Biology, 49, 439–462.
Naoumkina, M. A., Modolo, L. V., Huhman, D. V., UrbanczykWochniak, E., Tang, Y., Sumner, L. W., & Dixon, R. A. (2010). Genomic and coexpression analyses predict multiple genes involved in triterpene saponin biosynthesis in Medicago truncatula. Plant Cell, 22, 850–866.
Neves, L. O. (2000). Regeneration and transformation of barrel medic (Medicago truncatula Gaertn. cv. Jemalong). Dissertation. Faculdade de Ciências da Universidade de Lisboa.
Peng, H. S., Wang, J., Zhang, H. T., Duan, H.‐Y., Xie, X.‐M., Zhang, L., Cheng, M.‐E., & Peng, D.‐y. (2017). Rapid identification of growth years and profiling of bioactive ingredients in Astragalus membranaceus var. mongholicus (Huangqi) roots from Hunyuan, Shanxi. Chinese Medicine, 12(1), 14.
Podolak, I., Grabowska, K., Sobolewska, D., Wrobel‐Biedrawa, D., Makowska‐Was, J., & Galanty, A. (2022). Saponins as cytotoxic agents: an update (2010–2021). Part II‐Triterpene saponins. Phytochemistry Reviews, 22, 113–167.
Pollier, J., Morreel, K., Geelen, D., & Goossens, A. (2011). Metabolite profiling of triterpene saponins in Medicago truncatula hairy roots by liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry. Journal of Natural Products, 74, 1462–1476.
Ribeiro, B., Lacchini, E., Bicalho, K., Mertens, J., Arendt, P., Vanden Bossche, R., Calegario, G., Gryffroy, L., Ceulemans, E., Buitink, J., Goossens, A., & Pollier, J. (2020). A seed‐specific regulator of triterpene saponin biosynthesis in Medicago truncatula. The Plant Cell, 32(6), 2020–2042.
Sparg, S. G., Light, M. E., & van Staden, J. (2004). Biological activities and distribution of plant saponins. Journal of Ethnopharmacology, 94, 219–243.
Szakiel, A., & Janiszowska, W. (2002). The mechanism of oleanolic acid monoglycosides transport into vacuoles isolated from Calendula officinalis leaf protoplasts. Plant Physiology and Biochemistry, 40, 203–209.
Szakiel, A., Ruszkowski, D., & Janiszowska, W. (2005). Saponins in Calendula officinalis L.—Structure, biosynthesis transport and biological activity. Phytochemistry Reviews, 4, 151–158.
Tan, L. L., Cai, X., Hu, Z. H., & Ni, X. L. (2008). Localization and dynamic change of saikosaponin in root of Bupleurum chinense. Journal of Integrative Plant Biology, 50(8), 951–957.
Tava, A., & Avato, P. (2006). Chemical and biological activity of triterpene saponins from Medicago species. Natural Product Communications, 12, 1159–1180.
Tava, A., Scotti, C., & Avato, P. (2011). Biosynthesis of saponins in the genus Medicago. Phytochemistry Reviews, 10, 459–469.
Teng, H. M., Fang, M. F., Cai, X., & Hu, Z. H. (2009). Localization and dynamic change of saponin in vegetative organs of Polygala tenuifolia. Journal of Integrative Plant Biology, 51, 529–536.
Tzin, V., Snyder, J. H., Yang, D. S., Huhman, D. V., Watson, B. S., Allen, S. N., Tang, Y., Miettinen, K., Arendt, P., Pollier, J., Goossens, A., & Sumner, L. W. (2019). Integrated metabolomics identifies CYP72A67 and CYP72A68 oxidases in the biosynthesis of Medicago truncatula oleanate sapogenins. Metabolomics, 15, 85.
Wen, F., Chen, S., Wang, Y., Wu, Q., Yan, J., Pei, J., & Zhou, T. (2023). The synthesis of Paris saponin VII mainly occurs in leaves and is promoted by light intensity. Frontiers in Plant Science, 14, 1199215.
Yokota, S., Onohara, Y., & Shoyama, Y. (2011). Immunofluorescence and immunoelectron microscopic localization of medicinal substance, Rb1, in several plant parts of Panax ginseng. Current Drug Discovery Technologies, 8, 51–59.
Yokota, S., Onohara, Y., Uto, T., Tanaka, H., Morinaga, O., & Shoyama, Y. (2011). Localization of ginsenoside‐Rb1 in Panax ginseng revealed by immunofluorescence and immunoelectron microscopic techniques. Journal of Medicinal Plants Research, 5(14), 3176–3187.
Zhang, Y., Liu, Y., Wang, B., Fu, M., Liu, P., & Wei, J.‐h. (2023). Structure and histochemistry of the stem of Dracaena cambodiana Pierre ex Gagnep. Microscopy Research Technique, 86, 1333–1344.
Zhao, X., Zheng, L., Si, J., Miao, Y., Peng, Y., & Cai, X. (2013). Immunocytochemical localization of saikosaponin‐d in vegetative organs of Bupleurum scorzonerifolium Willd. Botanical Studies, 54(1), 32.
Zhou, X., Chen, X., Du, Z., Zhang, Y., Zhang, W., Kong, X., Thelen, J. J., Chen, C., & Chen, M. (2019). Terpenoid esters are the major constituents from leaf lipid droplets of Camellia sinensis. Frontiers in Plant Science, 10, 179. - Grant Information: Italian Ministry of Education, University and Research (MIUR)
- Contributed Indexing: Keywords: CYP93E2; Medicago truncatula; histochemistry; localization; transmission electron microscopy; triterpene saponins
- Accession Number: 0 (Saponins)
0 (Triterpenes) - Publication Date: Date Created: 20240505 Date Completed: 20240801 Latest Revision: 20240801
- Publication Date: 20240801
- Accession Number: 10.1002/jemt.24591
- Accession Number: 38706034
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.