Nanomedicine: Patuletin-conjugated with zinc oxide exhibit potent effects against Gram-negative and Gram-positive bacterial pathogens.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Kluwer Academic Publishers Country of Publication: Netherlands NLM ID: 9208478 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1572-8773 (Electronic) Linking ISSN: 09660844 NLM ISO Abbreviation: Biometals Subsets: MEDLINE
    • Publication Information:
      Publication: 1999- : Dordrecht : Kluwer Academic Publishers
      Original Publication: Oxford, OX : Rapid Communications of Oxford, c1992-
    • Subject Terms:
    • Abstract:
      With the emergence of drug-resistance, there is a need for novel anti-bacterials or to enhance the efficacy of existing drugs. In this study, Patuletin (PA), a flavanoid was loaded onto Gallic acid modified Zinc oxide nanoparticles (PA-GA-ZnO), and evaluated for antibacterial properties against Gram-positive (Bacillus cereus and Streptococcus pneumoniae) and Gram-negative (Samonella enterica and Escherichia coli) bacteria. Characterization of PA, GA-ZnO and PA-GA-ZnO' nanoparticles was accomplished utilizing fourier-transform infrared spectroscopy, efficiency of drug entrapment, polydispersity index, zeta potential, size, and surface morphology analysis through atomic force microscopy. Using bactericidal assays, the results revealed that ZnO conjugation displayed remarkable effects and enhanced Patuletin's effects against both Gram-positive and Gram-negative bacteria, with the minimum inhibitory concentration observed at micromolar concentrations. Cytopathogenicity assays exhibited that the drug-nanoconjugates reduced bacterial-mediated human cell death with minimal side effects to human cells. When tested alone, drug-nanoconjugates tested in this study showed limited toxic effects against human cells in vitro. These are promising findings, but future work is needed to understand the molecular mechanisms of effects of drug-nanoconjugates against bacterial pathogens, in addition to in vivo testing to determine their translational value. This study suggests that Patuletin-loaded nano-formulation (PA-GA-ZnO) may be implicated in a multi-target mechanism that affects both Gram-positive and Gram-negative pathogen cell structures, however this needs to be ascertained in future work.
      (© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
    • References:
      Akbar N, Siddiqui R, Iqbal M, Sagathevan K, Khan NA (2018) Gut bacteria of cockroaches are a potential source of antibacterial compound(s). Lett Appl Microbiol 66(5):416–426. https://doi.org/10.1111/lam.128676.
      Akbar N, Siddiqui R, Iqbal M, Khan NA (2020) Antibacterial activities of selected pure compounds isolated from gut bacteria of animals living in polluted Environments Antibiotics 9(4):190–10.
      Alcalde-Rico M, Hernando-Amado S, Blanco P, Martínez JL (2016) Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Front Microbiol 7:1483. (PMID: 27708632503025210.3389/fmicb.2016.01483)
      Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL, Chang G (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science (New York, NY) 323(5922):1718–1722. (PMID: 10.1126/science.1168750)
      Almeida SD, Susnik M, Drasler E, Taladriz-Blanco B, Petri-Fink P, Rothen-Rutishauser B (2021) Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev 50(9):5397–5434. (PMID: 10.1039/D0CS01127D)
      Al Zahrani NA, El-Shishtawy RM, Asiri AM (2020) Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: a review. Eur J Med Chem 204:112609. https://doi.org/10.1016/j.ejmech.2020.112609. (PMID: 10.1016/j.ejmech.2020.11260932731188)
      Ateeq M, Shah MR, Ain NU, Bano S, Anis I, Lubna F, S., Bertino, M. F., & Sohaila Naz, S. (2015) Green synthesis and molecular recognition ability of patuletin coated gold nanoparticles. Biosens Bioelectron 63:499–505. (PMID: 2512951310.1016/j.bios.2014.07.076)
      Akbar N, Aslam Z, Siddiqui R, Shah MR, Khan NA (2021) Zinc oxide nanoparticles conjugated with clinically-approved medicines as potential antibacterial molecules. AMB Express 11(1):104. (PMID: 34245385827277810.1186/s13568-021-01261-1)
      Akbar N, Kawish M, Khan NA, Shah MR, Alharbi AM, Alfahemi H, Siddiqui R (2022) Hesperidin-, curcumin-, and amphotericin B-based nano-formulations as potential antibacterials. Antibiotics 11(5):696. (PMID: 35625340913773110.3390/antibiotics11050696)
      Breijyeh Z, Jubeh B, Karaman R (2020) Resistance of Gram-Negative bacteria to current antibacterial agents and approaches to resolve it. Molecules (basel, Switzerland) 25(6):1340. (PMID: 3218798610.3390/molecules25061340)
      Cama J, Henney AM, Winterhalter M (2019) Breaching the barrier: quantifying antibiotic permeability across Gram-negative bacterial membranes. J Mol Biol 431(18):3531–3546. (PMID: 3095905210.1016/j.jmb.2019.03.031)
      Du D, Wang-Kan X, Neuberger A, van Veen HW, Pos KM, Piddock LJV, Luisi BF (2018) Multidrug efflux pumps: structure, function and regulation. Nat Rev Microbiol 16(9):523–539. (PMID: 3000250510.1038/s41579-018-0048-6)
      Emami-Karvani Z, Chehrazi P (2011) Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria. Afr J Microbiol Res 5(12):1368–1373.
      Faizi S, Fayyaz S, Bano S, Yawar Iqbal E, Siddiqi H, Naz A (2011) Isolation of nematicidal compounds from Tagetes patula L. yellow flowers: structure–activity relationship studies against cyst nematode Heterodera zeae infective stage larvae. Journal of Agricultural and Food Chemistry 59(17):9080–9093. (PMID: 2178073810.1021/jf201611b)
      Fiedot-Toboła M, Dmochowska A, Potaniec B, Czajkowska J, Jędrzejewski R, Wilk-Kozubek M, Carolak E, Cybińska J (2021) Gallic acid based black tea extract as a stabilizing agent in ZnO particles green synthesis. Nanomaterials (basel, Switzerland) 11(7):1816. (PMID: 3436120710.3390/nano11071816)
      Hassani A, Azarian MMS, Ibrahim WN, Hussain SA (2020) Preparation, characterization and therapeutic properties of gum arabic-stabilized gallic acid nanoparticles. Sci Rep 10(1):17808. https://doi.org/10.1038/s41598-020-71175-8. (PMID: 10.1038/s41598-020-71175-8330824157576211)
      Jabeen A, Mesaik MA, Simjee SU, Bano S, Faizi S (2016) Anti-TNF-α and anti-arthritic effect of patuletin: a rare flavonoid from Tagetes patula. Int Immunopharmacol 36:232–240. (PMID: 2717708210.1016/j.intimp.2016.04.034)
      Jin Q, Zhu W, Jiang D, Zhang R, Kutyreff CJ, Engle JW, Huang P, Cai W, Liu Z, Cheng L (2017) Ultra-small iron-gallic acid coordination polymer nanoparticles for chelator-free labeling of 64Cu and multimodal imaging-guided photothermal therapy. Nanoscale 9(34):12609–12617. (PMID: 28825066559793910.1039/C7NR03086J)
      Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1):71–76. (PMID: 1808184310.1111/j.1574-6968.2007.01012.x)
      Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R, Bishayee A (2019) Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran J Basic Med Sci 22(3):225–237. https://doi.org/10.22038/ijbms.2019.32806.7897. (PMID: 10.22038/ijbms.2019.32806.7897311567816528712)
      Kawish M, Elhissi A, Jabri T, Muhammad Iqbal K, Zahid H, Shah MR (2020) Enhancement in oral absorption of ceftriaxone by highly functionalized magnetic iron oxide nanoparticles. Pharmaceutics 12(6):492. (PMID: 32481715735596410.3390/pharmaceutics12060492)
      Kawish M, Jabri T, Elhissi A, Zahid H, Muhammad Iqbal K, Rao K, Gul J, Abdullah M, Shah MR (2021) Galactosylated iron oxide nanoparticles for enhancing oral bioavailability of ceftriaxone. Pharm Dev Technol 26(3):291–301. (PMID: 3347503410.1080/10837450.2020.1866602)
      Keyvani-Ghamsari S, Rahimi M, Khorsandi K (2023) An update on the potential mechanism of gallic acid as an antibacterial and anticancer agent. Food Sci Nutr 11(10):5856–5872. (PMID: 378231551056369710.1002/fsn3.3615)
      Kotrange H, Najda A, Bains A, Gruszecki R, Chawla P, Tosif MM (2021) Metal and metal oxide nanoparticle as a novel antibiotic carrier for the direct delivery of antibiotics. Int J Mol Sci 22(17):9596. (PMID: 34502504843112810.3390/ijms22179596)
      Lee J, Choi KH, Min J, Kim HJ, Jee JP, Park BJ (2017) Functionalized ZnO nanoparticles with gallic acid for antioxidant and antibacterial activity against methicillin-resistant S. aureus. Nanomaterials (Basel, Switzerland) 7(11):365. (PMID: 2909906410.3390/nano7110365)
      Lee NY, Ko WC, Hsueh PR (2019) Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front Pharmacol 10:1153. (PMID: 31636564678783610.3389/fphar.2019.01153)
      Lu R, Zhou Y, Ma J, Wang Y, Miao X (2022) Strategies and mechanism in reversing intestinal drug efflux in oral drug delivery. Pharmaceutics 14(6):1131. (PMID: 35745704922885710.3390/pharmaceutics14061131)
      Martin-Loeches I, Dale GE, Torres A (2018) Murepavadin: a new antibiotic class in the pipeline. Expert Rev Anti Infect Ther 16(4):259–268. (PMID: 2945104310.1080/14787210.2018.1441024)
      Masri A, Anwar A, Khan NA, Shahbaz MS, Khan KM, Shahabuddin S, and Siddiqui R (2019) Antibacterial effects of quinazolin-4 (3 H)-one functionalized-conjugated silver nanoparticles. Antibiotics 8(4):179.
      Malanovic N, Lohner K (2016) Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals (basel, Switzerland) 9(3):59. (PMID: 2765709210.3390/ph9030059)
      Mendes CR, Dilarri G, Forsan CF, Sapata VMR, Lopes PRM, de Moraes PB, Montagnolli RN, Ferreira H, Bidoia ED (2022) Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Sci Rep 12(1):2658. (PMID: 35173244885048810.1038/s41598-022-06657-y)
      Metwaly AM, Abdel-Raoof AM, Alattar AM, El-Zomrawy AA, Ashmawy AM, Metwally MG, Abu-Saied MA, Lotfy AM, Alsfouk BA, Elkaeed EB, Eissa IH (2023) Preparation and characterization of patuletin-loaded chitosan nanoparticles with improved selectivity and safety profiles for anticancer applications. J Chem. https://doi.org/10.1155/2023/6684015. (PMID: 10.1155/2023/6684015)
      Morris S, Cerceo E (2020) Trends, epidemiology, and management of multi-drug resistant gram-negative bacterial infections in the hospitalized setting. Antibiot 9(4):196. (PMID: 10.3390/antibiotics9040196)
      Muzammil S, Hayat S, Fakhar, E.a.M., Aslam, B., Siddique, M. H., Nisar, M. A., et al (2018) Nanoantibiotics: future nanotechnologies to combat antibiotic resistance. Front Biosci (elite Ed) 10:352–374. (PMID: 2929346310.2741/e827)
      Mba IE, Nweze EI (2021) Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World J Microbiol Biotechnol 37(6):108. (PMID: 34046779815965910.1007/s11274-021-03070-x)
      Natan M, Banin E (2017) From nano to micro: using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiol Rev 41:302–322. (PMID: 2841924010.1093/femsre/fux003)
      Nemčeková K, Svitková V, Sochr J, Gemeiner P, Labuda J (2022) Gallic acid-coated silver nanoparticles as perspective drug nanocarriers: bioanalytical study. Anal Bioanal Chem 414(18):5493–5505. (PMID: 35294597892396310.1007/s00216-022-03955-2)
      Nishino K, Yamasaki S, Nakashima R, Zwama M, Hayashi-Nishino M (2021) Function and inhibitory mechanisms of multidrug efflux pumps. Front Microbiol 12:737288. (PMID: 34925258867852210.3389/fmicb.2021.737288)
      Ozdal M, Gurkok S (2022) Recent advances in nanoparticles as antibacterial agent. ADMET & DMPK 10(2):115–129.
      Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z (2019) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 37(1):177–192. (PMID: 3050035310.1016/j.biotechadv.2018.11.013)
      Pachori P, Gothalwal R, Gandhi P (2019) Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes & Diseases 6(2):109–119. (PMID: 10.1016/j.gendis.2019.04.001)
      Park J, Cha S-H, Cho S, Park Y (2016) Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction. J Nanopart Res 18:1–13. (PMID: 10.1007/s11051-016-3466-2)
      Piddock LJ (2006) Multidrug-resistance efflux pumps - not just for resistance. Nat Rev Microbiol 4(8):629–636. (PMID: 1684543310.1038/nrmicro1464)
      Rahman PM, Mujeeb VM, Muraleedharan K (2017) Flexible chitosan-nano ZnO antimicrobial pouches as a new material for extending the shelf life of raw meat. Int J Biol Macromol 97:382–391. (PMID: 2810436710.1016/j.ijbiomac.2017.01.052)
      Rattanata N, Klaynongsruang S, Leelayuwat C, Limpaiboon T, Lulitanond A, Boonsiri P, Chio-Srichan S, Soontaranon S, Rugmai S, Daduang J (2016) Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens. Int J Nanomed 11:3347–3356. (PMID: 10.2147/IJN.S109795)
      Razzak ZA, Afzal ST, Najumuddin Saifullah, S., Maharjan, R., Bano, S., Simjee, S. U. (2023) Patuletin from tagetes patula: an inhibitor of MMP-2 and MMP-9 in collagen-induced arthritis rat model and virtual screening analysis. Revista Brasileira de Farmacognosia 33:1207–1222. (PMID: 10.1007/s43450-023-00446-y)
      Sadaf F, Saleem R, Khan RA, Ahmad U, Lubna Bano, S., & Faizi, S. (2023) Antihypertensive effect of patulitrin and other constituents from Tagetes patula L (French marigold) in acute L-NAME induced hypertensive rats. Nat Prod Res 17:1–7. https://doi.org/10.1080/14786419.2023.2233673. (PMID: 10.1080/14786419.2023.2233673)
      Saifullah S, Kanwal T, Ullah S, Kawish M, Habib SM, Ali I, Munir A, Imran M, Shah MR (2021) Design and development of lipid modified chitosan containing muco-adhesive self-emulsifying drug delivery systems for cefixime oral delivery. Chem Phys Lipid 235:105052. (PMID: 10.1016/j.chemphyslip.2021.105052)
      Selvaraj S, Amaral JM, Murty VR (2022) Kinetics and antimicrobial activity of gallic acid by novel bacterial co-culture system using Taguchi’s method and submerged fermentation. Arch Microbiol 204(9):584. https://doi.org/10.1007/s00203-022-03168-2. (PMID: 10.1007/s00203-022-03168-2360482779436867)
      Sharifi-Rad J, Seidel V, Izabela M, Monserrat-Mequida M, Sureda A, Ormazabal V, Zuniga FA, Mangalpady SS, Pezzani R, Ydyrys A, Tussupbekova G, Martorell M, Calina D, Cho WC (2023) Phenolic compounds as Nrf2 inhibitors: potential applications in cancer therapy. Cell Commun Signal 21(1):89. (PMID: 371276511015259310.1186/s12964-023-01109-0)
      Siddiqi KS, Ur Rahman A, Tajuddin, Husen A (2018) Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett 13(1):141. (PMID: 29740719594097010.1186/s11671-018-2532-3)
      Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett 7(3):219–242. (PMID: 30464967)
      Souza RCD, Haberbeck LU, Riella HG, Ribeiro DH, Carciofi BA (2019) Antibacterial activity of zinc oxide nanoparticles synthesized by solochemical process. Braz J Chem Eng 36(2):885–893. (PMID: 10.1590/0104-6632.20190362s20180027)
      Souza VGL, Rodrigues C, Valente S, Pimenta C, Pires JRA, Alves MM, Santos CF, Coelhoso IM, Fernando AL (2020) Eco-friendly ZnO/Chitosan bionanocomposites films for packaging of fresh poultry meat. Coatings 10(2):110. (PMID: 10.3390/coatings10020110)
      Sharma A, Gupta VK, Pathania R (2019) Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian J Med Res 149(2):129–145. (PMID: 31219077656373610.4103/ijmr.IJMR_2079_17)
      Van Duin D, Paterson DL (2020) Multidrug-resistant bacteria in the community: an update. Infect Dis Clin North Am 34(4):709–722. (PMID: 33011046871307110.1016/j.idc.2020.08.002)
      Verma VA, Wang L, Labadie SS, Liang J, Sellers BD, Wang J, Dong L, Wang Q, Zhang S, Xu Z, Zhang Y, Niu Y, Wang X, Wai J, Koehler MFT, Hu H, Alexander MK, Nishiyama M, Miu A, Xu Y, Koth CM (2022) Discovery of inhibitors of the lipopolysaccharide transporter MsbA: from a screening hit to potent wild-type gram-negative activity. J Med Chem 65(5):4085–4120. (PMID: 3518455410.1021/acs.jmedchem.1c01909)
      Wang Y, Yuan L, Yao C, Ding L, Li C, Fang J, Sui K, Liu Y, Wu M (2015) A combined toxicity study of zinc oxide nanoparticles and vitamin C in food additives. Nanoscale 6:15333–15342. (PMID: 10.1039/C4NR05480F)
      World Health Organization https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (World Health Organisation, 2017).
      Yeh YC, Huang TH, Yang SC, Chen CC, Fang JY (2020) Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: a review of recent advances. Front Chem 8:286. (PMID: 32391321719305310.3389/fchem.2020.00286)
      Zanet V, Vidic J, Auger S, Vizzini P, Lippe G, Iacumin L, Comi G, Manzano M (2019) Activity evaluation of pure and doped zinc oxide nanoparticles against bacterial pathogens and Saccharomyces cerevisiae. J Appl Microbiol 127(5):1391–1402. (PMID: 3138678510.1111/jam.14407)
      Zhang H, Hortal M, Jordá-Beneyto M, Rosa E, Lara-Lledo M, Lorente I (2017) ZnO-PLA nanocomposite coated paper for antimicrobial packaging application. LWT - Food Sci Technol 78:250–257. (PMID: 10.1016/j.lwt.2016.12.024)
      Zhao S, Adamiak JW, Bonifay V, Mehla J, Zgurskaya HI, Tan DS (2020) Defining new chemical space for drug penetration into Gram-negative bacteria. Nat Chem Biol 16(12):1293–1302. (PMID: 33199906789744110.1038/s41589-020-00674-6)
    • Contributed Indexing:
      Keywords: Bacteria; Drug resistance; Human brain endothelial cells; Infectious diseases; Pathogens
    • Accession Number:
      0 (Anti-Bacterial Agents)
      SOI2LOH54Z (Zinc Oxide)
      0 (Umbelliferones)
    • Publication Date:
      Date Created: 20240505 Date Completed: 20241014 Latest Revision: 20241014
    • Publication Date:
      20241014
    • Accession Number:
      10.1007/s10534-024-00595-0
    • Accession Number:
      38705945