Macroevolution of the plant-hummingbird pollination system.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Cambridge University Press Country of Publication: England NLM ID: 0414576 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-185X (Electronic) Linking ISSN: 00063231 NLM ISO Abbreviation: Biol Rev Camb Philos Soc Subsets: MEDLINE
    • Publication Information:
      Original Publication: London, Cambridge University Press.
    • Subject Terms:
    • Abstract:
      Plant-hummingbird interactions are considered a classic example of coevolution, a process in which mutually dependent species influence each other's evolution. Plants depend on hummingbirds for pollination, whereas hummingbirds rely on nectar for food. As a step towards understanding coevolution, this review focuses on the macroevolutionary consequences of plant-hummingbird interactions, a relatively underexplored area in the current literature. We synthesize prior studies, illustrating the origins and dynamics of hummingbird pollination across different angiosperm clades previously pollinated by insects (mostly bees), bats, and passerine birds. In some cases, the crown age of hummingbirds pre-dates the plants they pollinate. In other cases, plant groups transitioned to hummingbird pollination early in the establishment of this bird group in the Americas, with the build-up of both diversities coinciding temporally, and hence suggesting co-diversification. Determining what triggers shifts to and away from hummingbird pollination remains a major open challenge. The impact of hummingbirds on plant diversification is complex, with many tropical plant lineages experiencing increased diversification after acquiring flowers that attract hummingbirds, and others experiencing no change or even a decrease in diversification rates. This mixed evidence suggests that other extrinsic or intrinsic factors, such as local climate and isolation, are important covariables driving the diversification of plants adapted to hummingbird pollination. To guide future studies, we discuss the mechanisms and contexts under which hummingbirds, as a clade and as individual species (e.g. traits, foraging behaviour, degree of specialization), could influence plant evolution. We conclude by commenting on how macroevolutionary signals of the mutualism could relate to coevolution, highlighting the unbalanced focus on the plant side of the interaction, and advocating for the use of species-level interaction data in macroevolutionary studies.
      (© 2024 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.)
    • References:
      Abrahamczyk, S. & Kessler, M. (2015). Morphological and behavioural adaptations to feed on nectar: how feeding ecology determines the diversity and composition of hummingbird assemblages. Journal of Ornithology 156, 333–347.
      Abrahamczyk, S., Poretschkin, C. & Renner, S. S. (2017). Evolutionary flexibility in five hummingbird/plant mutualistic systems: testing temporal and geographic matching. Journal of Biogeography 44, 1847–1855.
      Abrahamczyk, S. & Renner, S. S. (2015). The temporal build‐up of hummingbird/plant mutualisms in North America and temperate South America. BMC Evolutionary Biology 15, 104.
      Abrahamczyk, S., Souto‐Vilarós, D., McGuire, J. A. & Renner, S. S. (2015). Diversity and clade ages of West Indian hummingbirds and the largest plant clades dependent on them: a 5–9 Myr young mutualistic system: hummingbirds and their plants in the West Indies. Biological Journal of the Linnean Society 114, 848–859.
      Abrahamczyk, S., Souto‐Vilarós, D. & Renner, S. S. (2014). Escape from extreme specialization: passionflowers, bats and the sword‐billed hummingbird. Proceedings of the Royal Society B: Biological Sciences 281, 20140888.
      Abrahamczyk, S., Weigend, M., Becker, K., Dannenberg, L. S., Eberz, J., Atella‐Hödtke, N. & Steudel, B. (2022). Influence of plant reproductive systems on the evolution of hummingbird pollination. Ecology and Evolution 12, 1–9.
      Ackermann, M. & Weigend, M. (2006). Nectar, floral morphology and pollination syndrome in Loasaceae subfam. Loasoideae (Cornales). Annals of Botany 98, 503–514.
      Althoff, D. M., Segraves, K. A. & Johnson, M. T. J. (2014). Testing for coevolutionary diversification: linking pattern with process. Trends in Ecology & Evolution 29, 82–89.
      Altshuler, D. L. & Dudley, R. (2002). The ecological and evolutionary interface of hummingbird flight physiology. Journal of Experimental Biology 205, 2325–2336.
      Anderson, B. (2015). Coevolution in mutualisms. In Mutualism (ed. J. L. Bronstein), pp. 107–130. Oxford University Press, Oxford.
      Armbruster, W. S. & Baldwin, B. G. (1998). Switch from specialized to generalized pollination. Nature 394, 632.
      Armbruster, W. S. & Berg, E. E. (1994). Thermal ecology of male euglossine bees in a tropical wet forest: fragrance foraging in relation to operative temperature. Biotropica 26, 50–60.
      Armbruster, W. S. & Muchhala, N. (2009). Associations between floral specialization and species diversity: cause, effect, or correlation? Evolutionary Ecology 23, 159–179.
      Arroyo, M. T. K., Primack, R. & Armesto, J. J. (1982). Community studies in pollination ecology in the high temperate Andes of central Chile. I. Pollination mechanisms and altitudinal variation. American Journal of Botany 69, 82–97.
      Barreto, E., Lim, M. C. W., Rojas, D., Dávalos, L. M., Wüest, R. O., Machac, A. & Graham, C. H. (2023). Morphology and niche evolution influence hummingbird speciation rates. Proceedings of the Royal Society B: Biological Sciences 290, 20221793.
      Barrett, S. C. H. (2013). The evolution of plant reproductive systems: how often are transitions irreversible? Proceedings of the Royal Society B: Biological Sciences 280, 20130913.
      Bascompte, J. & Jordano, P. (2007). Plant‐animal mutualistic networks: the architecture of biodiversity. Annual Review of Ecology, Evolution, and Systematics 38, 567–593.
      Bastida, J. M., Alcántara, J. M., Rey, P. J., Vargas, P. & Herrera, C. M. (2010). Extended phylogeny of Aquilegia: the biogeographical and ecological patterns of two simultaneous but contrasting radiations. Plant Systematics and Evolution 284, 171–185.
      Beardsley, P. M., Yen, A. & Olmstead, R. G. (2003). AFPL phylogeny of Mimulus section erythranthe and the evolution of hummingbird pollination. Evolution 57, 1397–1410.
      Bergamo, P. J., Wolowski, M., Maruyama, P. K., Vizentin‐Bugoni, J., Carvalheiro, L. G. & Sazima, M. (2017). The potential indirect effects among plants via shared hummingbird pollinators are structured by phenotypic similarity. Ecology 98, 1849–1858.
      Bergamo, P. J., Wolowski, M., Telles, F. J., De Brito, V. L. G., Varassin, I. G. & Sazima, M. (2019). Bracts and long‐tube flowers of hummingbird‐pollinated plants are conspicuous to hummingbirds but not to bees. Biological Journal of the Linnean Society 126, 533–544.
      Berry, P. E., Hahn, W. J., Sytsma, K. J., Hall, J. C. & Mast, A. (2004). Phylogenetic relationships and biogeography of Fuchsia (Onagraceae) based on noncoding nuclear and chloroplast DNA data. American Journal of Botany 91, 601–614.
      Betts, M. G., Hadley, A. S. & Kress, W. J. (2015). Pollinator recognition by a keystone tropical plant. Proceedings of the National Academy of Sciences 112, 3433–3438.
      Blasco‐Costa, I., Hayward, A., Poulin, R. & Balbuena, J. A. (2021). Next‐generation cophylogeny: unravelling eco‐evolutionary processes. Trends in Ecology & Evolution 36, 907–918.
      Brown, J. H. & Kodric‐Brown, A. (1979). Convergence, competition, and mimicry in a temperate community of hummingbird‐pollinated flowers. Ecology 60, 1022–1035.
      Bruneau, A. (1997). Evolution and homology of bird pollination syndromes in Erythrina (Leguminosae). American Journal of Botany 84, 54–71.
      Burin, G., Guimarães, P. R. & Quental, T. B. (2021). Macroevolutionary stability predicts interaction patterns of species in seed dispersal networks. Science 372, 733–737.
      Bustos, A., Wüest, R. O., Graham, C. H. & Varassin, I. G. (2023). The effect of species role and trait‐matching on plant fitness in a plant‐hummingbird interaction network. Flora 305, 152348.
      Camargo, M. G. G., Lunau, K., Batalha, M. A., Brings, S., Brito, V. L. G. & Morellato, L. P. C. (2019). How flower colour signals allure bees and hummingbirds: a community‐level test of the bee avoidance hypothesis. New Phytologist 222, 1112–1122.
      Cardona, J., Lara, C. & Ornelas, J. F. (2020). Pollinator divergence and pollination isolation between hybrids with different floral color and morphology in two sympatric Penstemon species. Scientific Reports 10, 8126.
      Carmona, D., Fitzpatrick, C. R. & Johnson, M. T. J. (2015). Fifty years of co‐evolution and beyond: integrating co‐evolution from molecules to species. Molecular Ecology 24, 5315–5329.
      Castellanos, M. C., Wilson, P. & Thomson, J. D. (2003). Pollen transfer by hummingbirds and bumblebees, and the divergence of pollination modes in Penstemon. Evolution 57, 2742–2752.
      Chittka, L. & Waser, N. M. (1997). Why red flowers are not invisible to bees. Israel Journal of Plant Sciences 45, 169–183.
      Chomicki, G., Weber, M., Antonelli, A., Bascompte, J. & Kiers, E. T. (2019). The impact of mutualisms on species richness. Trends in Ecology & Evolution 34, 698–711.
      Claramunt, S., Derryberry, E. P., Remsen, J. V. & Brumfield, R. T. (2012). High dispersal ability inhibits speciation in a continental radiation of passerine birds. Proceedings of the Royal Society B: Biological Sciences 279, 1567–1574.
      Clark, J. L., Clavijo, L. & Muchhala, N. (2015). Convergence of anti‐bee pollination mechanisms in the Neotropical plant genus Drymonia (Gesneriaceae). Evolutionary Ecology 29, 355–377.
      Colwell, R. K. (1973). Competition and coexistence in a simple tropical community. The American Naturalist 107, 737–760.
      Colwell, R. K., Rangel, T. F., Fučíková, K., Sustaita, D., Yanega, M. G. & Rico‐Guevara, A. (2023). Repeated evolution of unorthodox feeding styles drives a negative correlation between foot size and bill length in hummingbirds. American Naturalist 202, 699–719.
      Cronk, Q. & Ojeda, I. (2008). Bird‐pollinated flowers in an evolutionary and molecular context. Journal of Experimental Botany 59, 715–727.
      Cruden, R. W. (1972). Pollinators in high‐elevation ecosystems: relative effectiveness of birds and bees. Science 176, 1439–1440.
      Dalsgaard, B., Martín González, A. M., Olesen, J. M., Ollerton, J., Timmermann, A., Andersen, L. H. & Tossas, A. G. (2009). Plant–hummingbird interactions in the West Indies: floral specialisation gradients associated with environment and hummingbird size. Oecologia 159, 757–766.
      Dalsgaard, B., Maruyama, P. K., Sonne, J., Hansen, K., Zanata, T. B., Abrahamczyk, S., Alarcón, R., Araujo, A. C., Araújo, F. P., Buzato, S., Chávez‐González, E., Coelho, A. G., Cotton, P. A., Díaz‐Valenzuela, R., Dufke, M. F., et al. (2021). The influence of biogeographical and evolutionary histories on morphological trait‐matching and resource specialization in mutualistic hummingbird–plant networks. Functional Ecology 35, 1120–1133.
      Darwin, C. (1862). On the Various Contrivances by which British and Foreign Orchids Are Fertilised by Insects, and on the Good Effects of Intercrossing. John Murray, London.
      de Andreazzi, C. S., Astegiano, J. & Guimarães, P. R. (2020). Coevolution by different functional mechanisms modulates the structure and dynamics of antagonistic and mutualistic networks. Oikos 129, 224–237.
      Dellinger, A. S. (2020). Pollination syndromes in the 21st century: where do we stand and where may we go? New Phytologist 228, 1193–1213.
      Dellinger, A. S., Chartier, M., Fernández‐Fernández, D., Penneys, D. S., Alvear, M., Almeda, F., Michelangeli, F. A., Staedler, Y., Armbruster, W. S. & Schönenberger, J. (2019a). Beyond buzz‐pollination – departures from an adaptive plateau lead to new pollination syndromes. New Phytologist 221, 1136–1149.
      Dellinger, A. S., Hamilton, A. M., Wessinger, C. A. & Smith, S. (2023). Opposing patterns of altitude‐driven pollinator turnover in the tropical and temperate Americas. The American Naturalist 202, 152–165.
      Dellinger, A. S., Paun, O., Baar, J., Temsch, E. M., Fernández‐Fernández, D. & Schönenberger, J. (2022). Population structure in Neotropical plants: integrating pollination biology, topography and climatic niches. Molecular Ecology 31, 2264–2280.
      Dellinger, A. S., Pérez‐Barrales, R., Michelangeli, F. A., Penneys, D. S., Fernández‐Fernández, D. M. & Schönenberger, J. (2021). Low bee visitation rates explain pollinator shifts to vertebrates in tropical mountains. New Phytologist 231, 864–877.
      Dellinger, A. S., Scheer, L. M., Artuso, S., Fernández‐Fernández, D., Sornoza, F., Penneys, D. S., Tenhaken, R., Dötterl, S. & Schönenberger, J. (2019b). Bimodal pollination systems in andean Melastomataceae involving birds, bats, and rodents. The American Naturalist 194, 104–116.
      Dorchin, A., Shafir, A., Neumann, F. H., Langgut, D., Vereecken, N. J. & Mayrose, I. (2021). Bee flowers drive macroevolutionary diversification in long‐horned bees. Proceedings of the Royal Society B: Biological Sciences 288, 20210533.
      Duchenne, F., Aubert, S., Barreto, E., Brenes, E., Maglianesi, M. A., Santander, T., Guevara, E. A. & Graham, C. H. (2023). When cheating turns into a stabilizing mechanism of plant–pollinator communities. PLoS Biology 21, e3002434.
      Ehrlich, P. R. & Raven, P. H. (1964). Butterflies and plants: a study in coevolution. Evolution 18, 586–608.
      Eklöf, A., Jacob, U., Kopp, J., Bosch, J., Castro‐Urgal, R., Chacoff, N. P., Dalsgaard, B., de Sassi, C., Galetti, M., Guimarães, P. R., Lomáscolo, S. B., Martín González, A. M., Pizo, M. A., Rader, R., Rodrigo, A., et al. (2013). The dimensionality of ecological networks. Ecology Letters 16, 577–583.
      *Ezcurra, C. (2002). Phylogeny, morphology, and biogeography of Chuquiraga, an Andean‐Patagonian genus of Asteraceae‐Barnadesioideae. The Botanical Review 68, 153–170.
      Feinsinger, P. & Colwell, R. K. (1978). Community organization among Neotropical nectar‐feeding birds. American Zoologist 18, 779–795.
      Fenster, C. B., Armbruster, W. S., Wilson, P., Dudash, M. R. & Thomson, J. D. (2004). Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution, and Systematics 35, 375–403.
      *Filipowicz, N. & Renner, S. S. (2012). Brunfelsia (Solanaceae): a genus evenly divided between South America and radiations on Cuba and other Antillean islands. Molecular Phylogenetics and Evolution 64, 1–11.
      Fleming, T. H. & Muchhala, N. (2008). Nectar‐feeding bird and bat niches in two worlds: pantropical comparisons of vertebrate pollination systems. Journal of Biogeography 35, 764–780.
      Fragoso‐Martínez, I., Martínez‐Gordillo, M., Salazar, G. A., Sazatornil, F., Jenks, A. A., García Peña, M. d. R., Barrera‐Aveleida, G., Benitez‐Vieyra, S., Magallón, S., Cornejo‐Tenorio, G. & Granados Mendoza, C. (2018). Phylogeny of the Neotropical sages (Salvia subg. Calosphace; Lamiaceae) and insights into pollinator and area shifts. Plant Systematics and Evolution 304, 43–55.
      Gamba, D. & Muchhala, N. (2020). Global patterns of population genetic differentiation in seed plants. Molecular Ecology 29, 3413–3428.
      Gamba, D. & Muchhala, N. (2023). Pollinator type strongly impacts gene flow within and among plant populations for six Neotropical species. Ecology 104, e3845.
      Garibaldi, L. A., Bartomeus, I., Bommarco, R., Klein, A. M., Cunningham, S. A., Aizen, M. A., Boreux, V., Garratt, M. P. D., Carvalheiro, L. G., Kremen, C., Morales, C. L., Schüepp, C., Chacoff, N. P., Freitas, B. M., Gagic, V., et al. (2015). Trait matching of flower visitors and crops predicts fruit set better than trait diversity. Journal of Applied Ecology 52, 1436–1444.
      Givnish, T. J., Barfuss, M. H. J., Ee, B. V., Riina, R., Schulte, K., Horres, R., Gonsiska, P. A., Jabaily, R. S., Crayn, D. M., Smith, J. A. C., Winter, K., Brown, G. K., Evans, T. M., Holst, B. K., Luther, H., et al. (2014). Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Molecular Phylogenetics and Evolution 71, 55–78.
      *Givnish, T. J., Evans, T. M., Zjhra, M. L., Patterson, T. B., Berry, P. E. & Sytsma, K. J. (2000). Molecular evolution, adaptive radiation, and geographic diversification in the amphiatlantic family Rapateaceae: evidence from ndhF sequences and morphology. Evolution 54, 1915–1937.
      Gómez, J. M. & Verdú, M. (2012). Mutualism with plants drives primate diversification. Systematic Biology 61, 567–577.
      Govaerts, R., Nic Lughadha, E., Black, N., Turner, R. & Paton, A. (2021). The world checklist of vascular plants, a continuously updated resource for exploring global plant diversity. Scientific Data 8, 215.
      Grant, K. A. & Grant, V. (1968). Hummingbirds and their Flowers. Columbia University Press, New York.
      Grant, V. (1949). Pollination systems as isolating mechanisms in angiosperms. Evolution 3, 82–97.
      Gu, H., Goodale, E. & Chen, J. (2015). Does the role that frugivorous bird species play in seed dispersal networks influence the speed of evolutionary divergence? Global Ecology and Conservation 3, 121–128.
      Guimarães, P. R. Jr., Jordano, P. & Thompson, J. N. (2011). Evolution and coevolution in mutualistic networks: evolution and coevolution in mutualistic networks. Ecology Letters 14, 877–885.
      Guimarães, P. R., Pires, M. M., Jordano, P., Bascompte, J. & Thompson, J. N. (2017). Indirect effects drive coevolution in mutualistic networks. Nature 550, 511–514.
      Hainsworth, F. R. (1981). Energy regulation in hummingbirds: the study of caloric costs and benefits indicates how hummingbirds control energy resources. American Scientist 69, 420–429.
      Hamilton, A. M. & Wessinger, C. A. (2022). Adaptation to lower latitudes and lower elevations precedes the evolution of hummingbird pollination in western North American Penstemon. American Journal of Botany 109, 1047–1055.
      Harmon, L. J., Andreazzi, C. S., Débarre, F., Drury, J., Goldberg, E. E., Martins, A. B., Melián, C. J., Narwani, A., Nuismer, S. L., Pennell, M. W., Rudman, S. M., Seehausen, O., Silvestro, D., Weber, M. & Matthews, B. (2019). Detecting the macroevolutionary signal of species interactions. Journal of Evolutionary Biology 32, 769–782.
      Harvey, M. G., Seeholzer, G. F., Smith, B. T., Rabosky, D. L., Cuervo, A. M. & Brumfield, R. T. (2017). Positive association between population genetic differentiation and speciation rates in New World birds. Proceedings of the National Academy of Sciences 114, 6328–6333.
      Hembry, D. H. & Weber, M. G. (2020). Ecological interactions and macroevolution: a new field with old roots. Annual Review of Ecology, Evolution, and Systematics 51, 215–243.
      Hembry, D. H., Yoder, J. B. & Goodman, K. R. (2014). Coevolution and the diversification of life. The American Naturalist 184, 425–438.
      Hernández‐Hernández, T. & Wiens, J. J. (2020). Why are there so many flowering plants? A multiscale analysis of plant diversification. The American Naturalist 195, 948–963.
      Holmquist, K. G., Mitchell, R. J. & Karron, J. D. (2012). Influence of pollinator grooming on pollen‐mediated gene dispersal in Mimulus ringens (Phrymaceae). Plant Species Biology 27, 77–85.
      Hutchinson, M. C., Cagua, E. F. & Stouffer, D. B. (2017). Cophylogenetic signal is detectable in pollination interactions across ecological scales. Ecology 98, 2640–2652.
      Ibañez, A. C., Moré, M., Salazar, G., Leiva, S., Barboza, G. E. & Cocucci, A. A. (2019). Crescendo, diminuendo and subito of the trumpets: winds of change in the concerted evolution between flowers and pollinators in Salpichroa (Solanaceae). Molecular Phylogenetics and Evolution 132, 90–99.
      Iles, W. J. D., Sass, C., Lagomarsino, L., Benson‐Martin, G., Driscoll, H. & Specht, C. D. (2017). The phylogeny of Heliconia (Heliconiaceae) and the evolution of floral presentation. Molecular Phylogenetics and Evolution 117, 150–167.
      Irwin, R. E., Bronstein, J. L., Manson, J. S. & Richardson, L. (2010). Nectar robbing: ecological and evolutionary perspectives. Annual Review of Ecology, Evolution, and Systematics 41, 271–292.
      Janzen, D. H. (1980). When is it coevolution? Evolution 34, 611–612.
      Jin, Y. & Qian, H. (2019). V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359.
      Jogesh, T., Overson, R. P., Raguso, R. A. & Skogen, K. A. (2017). Herbivory as an important selective force in the evolution of floral traits and pollinator shifts. AoB Plants 9, plw088.
      Johnson, S. D. (2010). The pollination niche and its role in the diversification and maintenance of the southern african flora. Philosophical Transactions: Biological Sciences 365, 499–516.
      *Joly, S., Lambert, F., Alexandre, H., Clavel, J., Léveillé‐Bourret, É. & Clark, J. L. (2018). Greater pollination generalization is not associated with reduced constraints on corolla shape in Antillean plants. Evolution 72, 244–260.
      Jordano, P., Bascompte, J. & Olesen, J. M. (2003). Invariant properties in coevolutionary networks of plant–animal interactions. Ecology Letters 6, 69–81.
      Kay, K. M. (2006). Reproductive isolation between two closely related hummingbird pollinated neotropical gingers. Evolution 60, 538–552.
      Kay, K. M. & Grossenbacher, D. L. (2022). Evolutionary convergence on hummingbird pollination in Neotropical Costus provides insight into the causes of pollinator shifts. New Phytologist 236, 1572–1583.
      *Kay, K. M., Reeves, P. A., Olmstead, R. G. & Schemske, D. W. (2005). Rapid speciation and the evolution of hummingbird pollination in neotropical Costus subgenus Costus (Costaceae): evidence from nrDNA ITS and ETS sequences. American Journal of Botany 92, 1899–1910.
      Kessler, M., Abrahamczyk, S. & Krömer, T. (2020). The role of hummingbirds in the evolution and diversification of Bromeliaceae: unsupported claims and untested hypotheses. Botanical Journal of the Linnean Society 192, 592–608.
      Kiester, A. R., Lande, R. & Schemske, D. W. (1984). Models of coevolution and speciation in plants and their pollinators. The American Naturalist 124, 220–243.
      Kissling, W. D., Baker, W. J., Balslev, H., Barfod, A. S., Borchsenius, F., Dransfield, J., Govaerts, R. & Svenning, J.‐C. (2012). Quaternary and pre‐quaternary historical legacies in the global distribution of a major tropical plant lineage: historical legacies in tropical biodiversity. Global Ecology and Biogeography 21, 909–921.
      Krauss, S. L., Phillips, R. D., Karron, J. D., Johnson, S. D., Roberts, D. G. & Hopper, S. D. (2017). Novel consequences of bird pollination for plant mating. Trends in Plant Science 22, 395–410.
      *Kriebel, R., Drew, B., González‐Gallegos, J. G., Celep, F., Heeg, L., Mahdjoub, M. M. & Sytsma, K. J. (2020). Pollinator shifts, contingent evolution, and evolutionary constraint drive floral disparity in Salvia (Lamiaceae): evidence from morphometrics and phylogenetic comparative methods. Evolution 74, 1335–1355.
      Kriebel, R., Drew, B. T., Drummond, C. P., González‐Gallegos, J. G., Celep, F., Mahdjoub, M. M., Rose, J. P., Xiang, C., Hu, G., Walker, J. B., Lemmon, E. M., Lemmon, A. R. & Sytsma, K. J. (2019). Tracking temporal shifts in area, biomes, and pollinators in the radiation of Salvia (sages) across continents: leveraging anchored hybrid enrichment and targeted sequence data. American Journal of Botany 106, 573–597.
      Kriebel, R., Rose, J. P., Bastide, P., Jolles, D., Reginato, M. & Sytsma, K. J. (2023a). The evolution of Ericaceae flowers and their pollination syndromes at a global scale. American Journal of Botany 110, e16220.
      Kriebel, R., Rose, J. P., Drew, B. T., González‐Gallegos, J. G., Celep, F., Heeg, L., Mahdjoub, M. M. & Sytsma, K. J. (2023b). Model selection, hummingbird natural history, and biological hypotheses: a response to Sazatornil et al. Evolution 77, 646–653.
      Lagomarsino, L. P., Condamine, F. L., Antonelli, A., Mulch, A. & Davis, C. C. (2016). The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytologist 210, 1430–1442.
      Lagomarsino, L. P., Forrestel, E. J., Muchhala, N. & Davis, C. C. (2017). Repeated evolution of vertebrate pollination syndromes in a recently diverged Andean plant clade. Evolution 71, 1970–1985.
      Lagomarsino, L. P. & Muchhala, N. (2019). A gradient of pollination specialization in three species of Bolivian Centropogon. American Journal of Botany 106, 633–642.
      Lara, C. & Ornelas, J. (2001). Preferential nectar robbing of flowers with long corollas: experimental studies of two hummingbird species visiting three plant species. Oecologia 128, 263–273.
      Lehmann, L. J., Maruyama, P. K., Joaquim Bergamo, P., Maglianesi, M. A., Rahbek, C. & Dalsgaard, B. (2019). Relative effectiveness of insects versus hummingbirds as pollinators of Rubiaceae plants across elevation in Dominica, Caribbean. Plant Biology 21, 738–744.
      Leimberger, K. G., Dalsgaard, B., Tobias, J. A., Wolf, C. & Betts, M. G. (2022). The evolution, ecology, and conservation of hummingbirds and their interactions with flowering plants. Biological Reviews 97, 923–959.
      Licona‐Vera, Y. & Ornelas, J. F. (2017). The conquering of North America: dated phylogenetic and biogeographic inference of migratory behavior in bee hummingbirds. BMC Evolutionary Biology 17, 126.
      Linhart, Y. B., Busby, W. H., Beach, J. H. & Feinsinger, P. (1987). Forager behavior, pollen dispersal, and inbreeding in two species of hummingbird‐pollinated plants. Evolution 41, 679–682.
      Lomáscolo, S. B., Giannini, N., Chacoff, N. P., Castro‐Urgal, R. & Vázquez, D. P. (2019). Inferring coevolution in a plant–pollinator network. Oikos 128, 775–789.
      Lopes, S. A., Bergamo, P. J., Najara Pinho Queiroz, S., Ollerton, J., Santos, T. & Rech, A. R. (2022). Heterospecific pollen deposition is positively associated with reproductive success in a diverse hummingbird‐pollinated plant community. Oikos 2022, oik.08714.
      López‐Segoviano, G., Arenas‐Navarro, M., Villa‐Galaviz, E., Díaz‐Infante, S. & Arizmendi, M. d. C. (2021). Hummingbird‐plant interactions along an altitudinal gradient in northwestern Mexico. Acta Oecologica 112, 103762.
      Lunau, K., Papiorek, S., Eltz, T. & Sazima, M. (2011). Avoidance of achromatic colours by bees provides a private niche for hummingbirds. Journal of Experimental Biology 214, 1607–1612.
      Mackin, C. R., Peña, J. F., Blanco, M. A., Balfour, N. J. & Castellanos, M. C. (2021). Rapid evolution of a floral trait following acquisition of novel pollinators. Journal of Ecology 109, 2234–2246.
      Maglianesi, M. A., Blüthgen, N., Böhning‐Gaese, K. & Schleuning, M. (2014). Morphological traits determine specialization and resource use in plant–hummingbird networks in the neotropics. Ecology 95, 3325–3334.
      Maglianesi, M. A., Varassin, I. G., Ávalos, G. & Jorge, L. R. (2024). A phylogenetic perspective on ecological specialisation reveals hummingbird and insect pollinators have generalist diets. Oikos 2024, e10208.
      Maguiña‐Conde, R., Zuñiga‐Rivas, D. & Kay, K. M. (2023). An elevational gradient in floral traits and pollinator assemblages in the Neotropical species Costus guanaiensis var. tarmicus in Peru. Ecology and Evolution 13, e10314.
      Maliet, O., Loeuille, N. & Morlon, H. (2020). An individual‐based model for the eco‐evolutionary emergence of bipartite interaction networks. Ecology Letters 23, 1623–1634.
      Manceau, M., Lambert, A. & Morlon, H. (2016). A unifying comparative phylogenetic framework including traits coevolving across interacting lineages. Systematic Biology 66, 551–568.
      Manning, J. C. & Goldblatt, P. (2005). Radiation of pollination systems in the cape genus Tritoniopsis (iridaceae: crocoideae) and the development of bimodal pollination strategies. International Journal of Plant Sciences 166, 459–474.
      Martén‐Rodríguez, S., Almarales‐Castro, A. & Fenster, C. B. (2009). Evaluation of pollination syndromes in Antillean Gesneriaceae: evidence for bat, hummingbird and generalized flowers. Journal of Ecology 97, 348–359.
      Martén‐Rodríguez, S., Fenster, C. B., Agnarsson, I., Skog, L. E. & Zimmer, E. A. (2010). Evolutionary breakdown of pollination specialization in a Caribbean plant radiation. New Phytologist 188, 403–417.
      Martín González, A. M., Dalsgaard, B., Nogués‐Bravo, D., Graham, C. H., Schleuning, M., Maruyama, P. K., Abrahamczyk, S., Alarcón, R., Araujo, A. C., Araújo, F. P., de Azevedo, S. M., Baquero, A. C., Cotton, P. A., Ingversen, T. T., Kohler, G., et al. (2015). The macroecology of phylogenetically structured hummingbird‐plant networks: macroecology of hummingbird‐plant networks. Global Ecology and Biogeography 24, 1212–1224.
      Mayr, G. (2003). A new Eocene swift‐like bird with a peculiar feathering. Ibis 145, 382–391.
      Mayr, G. (2004). Old world fossil record of modern‐type hummingbirds. Science 304, 861–864.
      McDade, L. A. (1985). Breeding systems of central american Aphelandra (Acanthaceae). American Journal of Botany 72, 1515–1521.
      McGuire, J. A., Witt, C. C., Remsen, J. V., Corl, A., Rabosky, D. L., Altshuler, D. L. & Dudley, R. (2014). Molecular phylogenetics and the diversification of hummingbirds. Current Biology 24, 910–916.
      McKenna, D. D. & Farrell, B. D. (2006). Tropical forests are both evolutionary cradles and museums of leaf beetle diversity. Proceedings of the National Academy of Sciences 103, 10947–10951.
      McKinney, A. M., CaraDonna, P. J., Inouye, D. W., Barr, B., Bertelsen, C. D. & Waser, N. M. (2012). Asynchronous changes in phenology of migrating Broad‐tailed Hummingbirds and their early‐season nectar resources. Ecology 93, 1987–1993.
      Montgomerie, R. D., Eadie, J. M. A. & Harder, L. D. (1984). What do foraging hummingbirds maximize? Oecologia 63, 357–363.
      Muchhala, N., Johnsen, S. & Smith, S. D. (2014). Competition for hummingbird pollination shapes flower color variation in andean Solanaceae. Evolution 68, 2275–2286.
      Muchhala, N. & Thomson, J. D. (2010). Fur versus feathers: pollen delivery by bats and hummingbirds and consequences for pollen production. The American Naturalist 175, 717–726.
      Murcia, C. & Feinsinger, P. (1996). Interspecific pollen loss by hummingbirds visiting flower mixtures: effects of floral architecture. Ecology 77, 550–560.
      Ne'eman, G., Jürgens, A., Newstrom‐Lloyd, L., Potts, S. G. & Dafni, A. (2010). A framework for comparing pollinator performance: effectiveness and efficiency. Biological Reviews 85, 435–451.
      *Nelson, T. C., Stathos, A. M., Vanderpool, D. D., Finseth, F. R., Yuan, Y. & Fishman, L. (2021). Ancient and recent introgression shape the evolutionary history of pollinator adaptation and speciation in a model monkeyflower radiation (Mimulus section Erythranthe). PLoS Genetics 17, e1009095.
      Neves, B., Ferreira, P. d. L., Prosdocimi, F., Kessous, I. M., Couto, D. R., Moura, R. L., Salgueiro, F., Costa, A. F., Bacon, C. D. & Antonelli, A. (2023). Repeated evolution of pollination syndromes in a highly diverse bromeliad lineage is correlated with shifts in life form and habitat. Botanical Journal of the Linnean Society 203, 111–122.
      Nuismer, S. L., Gomulkiewicz, R. & Ridenhour, B. J. (2010). When is correlation coevolution? The American Naturalist 175, 525–537.
      Ocampo‐Sandoval, M., Arizmendi‐Arriaga, M. d. C., Olson, M. E. & Sánchez‐González, L. A. (2021). Geographical variation in the bill–flower fit in a plant–pollinator interaction in western Mexico. Biotropica 53, 1203–1212.
      Ogutcen, E., Theriault, J., King, D. B. & Vamosi, J. C. (2017). Diversification rates in Antirrhineae (Plantaginaceae): the contribution of range shifts and pollination modes. Perspectives in Plant Ecology, Evolution and Systematics 26, 39–52.
      Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. (2007). The modularity of pollination networks. Proceedings of the National Academy of Sciences 104, 19891–19896.
      Ornelas, J. F., Ordano, M., De‐Nova, A. J., Quintero, M. E. & Garland, T. (2007). Phylogenetic analysis of interspecific variation in nectar of hummingbird‐visited plants: the evolution of nectar. Journal of Evolutionary Biology 20, 1904–1917.
      Ortega‐Jimenez, V. M., Badger, M., Wang, H. & Dudley, R. (2016). Into rude air: hummingbird flight performance in variable aerial environments. Philosophical Transactions of the Royal Society B: Biological Sciences 371, 20150387.
      *Pansarin, E. R. & Ferreira, A. W. C. (2022). Evolutionary disruption in the pollination system of vanilla (Orchidaceae). Plant Biology 24, 157–167.
      Pauw, A. (2019). A bird's‐eye view of pollination: biotic interactions as drivers of adaptation and community change. Annual Review of Ecology, Evolution, and Systematics 50, 477–502.
      Pauw, A., Stofberg, J. & Waterman, R. J. (2009). Flies and flowers in Darwin's race. Evolution 63, 268–279.
      *Pérez, F., Arroyo, M. T. K., Medel, R. & Hershkovitz, M. A. (2006). Ancestral reconstruction of flower morphology and pollination systems in Schizanthus (Solanaceae). American Journal of Botany 93, 1029–1038.
      Peris, D. & Condamine, F. L. (2024). The angiosperm radiation played a dual role in the diversification of insects and insect pollinators. Nature Communications 15, 552.
      Pigot, A. L., Sheard, C., Miller, E. T., Bregman, T. P., Freeman, B. G., Roll, U., Seddon, N., Trisos, C. H., Weeks, B. C. & Tobias, J. A. (2020). Macroevolutionary convergence connects morphological form to ecological function in birds. Nature Ecology & Evolution 4, 230–239.
      Pyke, G. H. & Waser, N. M. (1981). The production of dilute nectars by hummingbird and honeyeater flowers. Biotropica 13, 260–270.
      Rico‐Guevara, A., Hurme, K. J., Elting, R. & Russell, A. L. (2021). Bene‘fit’ assessment in pollination coevolution: mechanistic perspectives on hummingbird bill–flower matching. Integrative and Comparative Biology 61, 681–695.
      Rico‐Guevara, A., Rubega, M. A., Hurme, K. J. & Dudley, R. (2019). Shifting paradigms in the mechanics of nectar extraction and hummingbird bill morphology. Integrative Organismal Biology 1, oby006.
      Roalson, E. H. & Roberts, W. R. (2016). Distinct processes drive diversification in different clades of Gesneriaceae. Systematic Biology 65, 662–684.
      Rodríguez‐Flores, C. I., Ornelas, J. F., Wethington, S. & Arizmendi, M. d. C. (2019). Are hummingbirds generalists or specialists? Using network analysis to explore the mechanisms influencing their interaction with nectar resources. PLoS One 14, e0211855.
      *Roguz, K., Hill, L., Koethe, S., Lunau, K., Roguz, A. & Zych, M. (2021). Visibility and attractiveness of Fritillaria (Liliaceae) flowers to potential pollinators. Scientific Reports 11, 11006.
      Rojas, D., Vale, Á., Ferrero, V. & Navarro, L. (2012). The role of frugivory in the diversification of bats in the Neotropics: Frugivory and diversification of bats. Journal of Biogeography 39, 1948–1960.
      Rombaut, L. M. K., Capp, E. J. R., Hughes, E. C., Varley, Z. K., Beckerman, A. P., Cooper, N. & Thomas, G. H. (2022). The evolution of the traplining pollinator role in hummingbirds: specialization is not an evolutionary dead end. Proceedings of the Royal Society B: Biological Sciences 289, 20212484.
      *Salazar, G. A., Cabrera, L. I. & Figueroa, C. (2011). Molecular phylogenetics, floral convergence and systematics of Dichromanthus and Stenorrhynchos (Orchidaceae: Spiranthinae): DNA phylogenetics and floral convergence. Botanical Journal of the Linnean Society 167, 1–18.
      *Salzman, S., Driscoll, H. E., Renner, T., André, T., Shen, S. & Specht, C. D. (2015). Spiraling into history: a molecular phylogeny and investigation of biogeographic origins and floral evolution for the genus Costus. Systematic Botany 40, 104–115.
      Sargent, A. J., Groom, D. J. E. & Rico‐Guevara, A. (2021). Locomotion and energetics of divergent foraging strategies in hummingbirds: a review. Integrative and Comparative Biology 61, 736–748.
      Sauquet, H., Ramírez‐Barahona, S. & Magallón, S. (2022). What is the age of flowering plants? Journal of Experimental Botany 73, 3840–3853.
      Sazatornil, F., Fornoni, J., Fragoso‐Martínez, I., Pérez‐Ishiwara, R. & Benitez‐Vieyra, S. (2023). Did early shifts to bird pollination impose constraints on salvia flower evolution? Evolution 77, 636–645.
      Sazima, I., Buzato, S. & Sazima, M. (1996). An assemblage of hummingbird‐pollinated flowers in a montane forest in southeastern Brazil. Botanica Acta 109, 149–160.
      Schemske, D. W. & Bradshaw, H. D. (1999). Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proceedings of the National Academy of Sciences of the United States of America 96, 11910–11915.
      Schiestl, F. P. & Schlüter, P. M. (2009). Floral isolation, specialized pollination, and pollinator behavior in orchids. Annual Review of Entomology 54, 425–446.
      Schlindwein, C., Wittmann, D., Martins, C. F., Hamm, A., Siqueira, J. A., Schiffler, D. & Machado, I. C. (2005). Pollination of campanula rapunculus L. (Campanulaceae): how much pollen flows into pollination and into reproduction of oligolectic pollinators? Plant Systematics and Evolution 250, 147–156.
      Schmidt‐Lebuhn, A. N., Kessler, M. & Hensen, I. (2007). Hummingbirds as drivers of plant speciation? Trends in Plant Science 12, 329–331.
      Schmidt‐Lebuhn, A. N., Müller, M., Pozo Inofuentes, P., Encinas Viso, F. & Kessler, M. (2019). Pollen analogues are transported across greater distances in bee‐pollinated than in hummingbird‐pollinated species of Justicia (Acanthaceae). Biotropica 51, 99–103.
      Schuchmann, K.‐L. (1999). Family Trochilidae. In Handbook of the Birds of the World, Vol. 5. Barn‐owls to hummingbirds (eds. J. Del Hoyo, A. Elliott and J. Sargatal), pp. 468–680. Lynx Edictions, Barcelona.
      *Serrano‐Serrano, M. L., Perret, M., Guignard, M., Chautems, A., Silvestro, D. & Salamin, N. (2015). Decoupled evolution of floral traits and climatic preferences in a clade of Neotropical Gesneriaceae. BMC Evolutionary Biology 15, 247.
      Serrano‐Serrano, M. L., Rolland, J., Clark, J. L., Salamin, N. & Perret, M. (2017). Hummingbird pollination and the diversification of angiosperms: an old and successful association in Gesneriaceae. Proceedings of the Royal Society B: Biological Sciences 284, 20162816.
      Shrestha, M., Dyer, A. G., Boyd‐Gerny, S., Wong, B. B. M. & Burd, M. (2013). Shades of red: bird‐pollinated flowers target the specific colour discrimination abilities of avian vision. New Phytologist 198, 301–310.
      Siniscalchi, C. M., Ackerfield, J. R. & Folk, R. A. (2023). Diversification and biogeography of North American Thistles (Cirsium: Carduoideae: Compositae): drivers of a rapid continent‐wide radiation. International Journal of Plant Sciences 184, 322–341.
      Sletvold, N. (2019). The context dependence of pollinator‐mediated selection in natural populations. International Journal of Plant Sciences 180, 934–943.
      Smith, S. A. & Brown, J. W. (2018). Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany 105, 302–314.
      Smith, S. D. & Rausher, M. D. (2011). Gene loss and parallel evolution contribute to species difference in flower color. Molecular Biology and Evolution 28, 2799–2810.
      Snow, B. K. & Snow, D. W. (1972). Feeding niches of hummingbirds in a Trinidad valley. Journal of Animal Ecology 41, 471–485.
      Sonne, J., Vizentin‐Bugoni, J., Maruyama, P. K., Araujo, A. C., Chávez‐González, E., Coelho, A. G., Cotton, P. A., Marín‐Gómez, O. H., Lara, C., Lasprilla, L. R., Machado, C. G., Maglianesi, M. A., Malucelli, T. S., González, A. M. M., Oliveira, G. M., et al. (2020). Ecological mechanisms explaining interactions within plant–hummingbird networks: morphological matching increases towards lower latitudes. Proceedings of the Royal Society B: Biological Sciences 287, 20192873.
      Souza, I. M., Hughes, F. M., Funch, L. S. & Queiroz, L. P. D. (2021). Rethinking the pollination syndromes in Hymenaea (Leguminosae): the role of anthesis in the diversification. Anais da Academia Brasileira de Ciências 93, e20191446.
      *Specht, C. D., Yockteng, R., Almeida, A. M., Kirchoff, B. K. & Kress, W. J. (2012). Homoplasy, pollination, and emerging complexity during the evolution of floral development in the Tropical Gingers (Zingiberales). The Botanical Review 78, 440–462.
      Stebbins, G. L. (1970). Adaptive radiation of reproductive characteristics in angiosperms, I: pollination mechanisms. Annual Review of Ecology and Systematics 1, 307–326.
      Stephens, R. E., Gallagher, R. V., Dun, L., Cornwell, W. & Sauquet, H. (2023). Insect pollination for most of angiosperm evolutionary history. New Phytologist 240, 880–891.
      Stiles, F. G. (1975). Ecology, flowering phenology, and hummingbird pollination of some Costa Rican Heliconia species. Ecology 56, 285–301.
      Stiles, F. G. (1978). Ecological and evolutionary implications of bird pollination. American Zoologist 18, 715–727.
      Stiles, F. G. (1985). Seasonal patterns and coevolution in the hummingbird‐flower community of a Costa Rican Subtropical Forest. Ornithological Monographs 36, 757–787.
      Strauss, S. Y. & Irwin, R. E. (2004). Ecological and evolutionary consequences of multispecies plant‐animal interactions. Annual Review of Ecology, Evolution, and Systematics 35, 435–466.
      *Streisfeld, M. A. & Rausher, M. D. (2009). Genetic changes contributing to the parallel evolution of red floral pigmentation among Ipomoea species. New Phytologist 183, 751–763.
      *Strelin, M. M., Benitez‐Vieyra, S., Ackermann, M. & Cocucci, A. A. (2016). Flower reshaping in the transition to hummingbird pollination in Loasaceae subfam. Loasoideae despite absence of corolla tubes or spurs. Evolutionary Ecology 30, 401–417.
      Temeles, E. J., Koulouris, C. R., Sander, S. E. & Kress, W. J. (2009). Effect of flower shape and size on foraging performance and trade‐offs in a tropical hummingbird. Ecology 90, 1147–1161.
      Temeles, E. J. & Kress, W. J. (2003). Adaptation in a plant‐hummingbird association. Science 300, 630–633.
      Temeles, E. J. & Kress, W. J. (2010). Mate choice and mate competition by a tropical hummingbird at a floral resource. Proceedings of the Royal Society B: Biological Sciences 277, 1607–1613.
      Temeles, E. J., Liang, J., Levy, M. C. & Fan, Y.‐L. (2019). Floral isolation and pollination in two hummingbird‐pollinated plants: the roles of exploitation barriers and pollinator competition. Evolutionary Ecology 33, 481–497.
      Thompson, J. N. (1982). Interaction and Coevolution. University of Chicago Press, Chicago, IL.
      Thompson, J. N. (1994). The Coevolutionary Process. University of Chicago Press, Chicago, IL.
      Thompson, J. N. (1999). The raw material for coevolution. Oikos 84, 5–16.
      Thompson, J. N. (2005). The Geographic Mosaic of Coevolution. University of Chicago Press, Chicago.
      Thomson, J. D. & Wilson, P. (2008). Explaining evolutionary shifts between bee and hummingbird pollination: convergence, divergence, and directionality. International Journal of Plant Sciences 169, 23–38.
      Tinoco, B. A., Graham, C. H., Aguilar, J. M. & Schleuning, M. (2017). Effects of hummingbird morphology on specialization in pollination networks vary with resource availability. Oikos 126, 52–60.
      Tobias, J. A., Sheard, C., Pigot, A. L., Devenish, A. J. M., Yang, J., Sayol, F., Neate‐Clegg, M. H. C., Alioravainen, N., Weeks, T. L., Barber, R. A., Walkden, P. A., MacGregor, H. E. A., Jones, S. E. I., Vincent, C., Phillips, A. G., et al. (2022). AVONET: morphological, ecological and geographical data for all birds. Ecology Letters 25, 581–597.
      Torres‐Vanegas, F., Hadley, A. S., Kormann, U. G., Jones, F. A., Betts, M. G. & Wagner, H. H. (2019). The landscape genetic signature of pollination by trapliners: evidence from the tropical herb, Heliconia tortuosa. Frontiers in Genetics 10, 1206.
      Tripp, E. & McDade, L. (2013). Time‐calibrated phylogenies of hummingbirds and hummingbird‐pollinated plants reject a hypothesis of diffuse co‐evolution. Aliso 31, 89–103.
      Tripp, E. A. & Manos, P. S. (2008). Is floral specialization an evolutionary dead‐end? Pollination system transitions in Ruellia (Acanthaceae). Evolution 62, 1712–1737.
      Tripp, E. A. & Tsai, Y.‐H. E. (2017). Disentangling geographical, biotic, and abiotic drivers of plant diversity in neotropical Ruellia (Acanthaceae). PLoS One 12, e0176021.
      Vamosi, J. C. & Vamosi, S. M. (2011). Factors influencing diversification in angiosperms: At the crossroads of intrinsic and extrinsic traits. American Journal of Botany 98, 460–471.
      van der Niet, T. & Johnson, S. D. (2012). Phylogenetic evidence for pollinator‐driven diversification of angiosperms. Trends in Ecology & Evolution 27, 353–361.
      van der Niet, T., Peakall, R. & Johnson, S. D. (2014). Pollinator‐driven ecological speciation in plants: new evidence and future perspectives. Annals of Botany 113, 199–212.
      Vargas, O. M., Goldston, B., Grossenbacher, D. L. & Kay, K. M. (2020). Patterns of speciation are similar across mountainous and lowland regions for a Neotropical plant radiation (Costaceae: Costus). Evolution 74, 2644–2661.
      Vázquez, D. P. & Aizen, M. A. (2004). Asymmetric specialization: a pervasive feature of plant‐pollinator interactions. Ecology 85, 1251–1257.
      Warrick, D., Hedrick, T., Fernández, M. J., Tobalske, B. & Biewener, A. (2012). Hummingbird flight. Current Biology 22, R472–R477.
      Waser, N. M., CaraDonna, P. J. & Price, M. V. (2018). Atypical flowers can be as profitable as typical hummingbird flowers. The American Naturalist 192, 644–653.
      Wasserthal, L. T. (1997). The pollinators of the Malagasy Star Orchids Angraecum sesquipedale, A. sororium and A. compactum and the evolution of extremely long spurs by pollinator shift. Botanica Acta 110, 343–359.
      Weber, M. G., Wagner, C. E., Best, R. J., Harmon, L. J. & Matthews, B. (2017). Evolution in a community context: on integrating ecological interactions and macroevolution. Trends in Ecology & Evolution 32, 291–304.
      Week, B. & Nuismer, S. L. (2021). Coevolutionary arms races and the conditions for the maintenance of mutualism. The American Naturalist 198, 195–205.
      Weinstein, B. G. & Graham, C. H. (2017). Persistent bill and corolla matching despite shifting temporal resources in tropical hummingbird‐plant interactions. Ecology Letters 20, 326–335.
      Wessinger, C. A. (2021). From pollen dispersal to plant diversification: genetic consequences of pollination mode. New Phytologist 229, 3125–3132.
      Wessinger, C. A. (2024). How the switch to hummingbird pollination has greatly contributed to our understanding of evolutionary processes. New Phytologist 241, 59–64.
      *Wessinger, C. A., Freeman, C. C., Mort, M. E., Rausher, M. D. & Hileman, L. C. (2016). Multiplexed shotgun genotyping resolves species relationships within the North American genus Penstemon. American Journal of Botany 103, 912–922.
      Wessinger, C. A., Rausher, M. D. & Hileman, L. C. (2019). Adaptation to hummingbird pollination is associated with reduced diversification in Penstemon. Evolution Letters 3, 521–533.
      Whittall, J. B. & Hodges, S. A. (2007). Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447, 706–709.
      *Wilson, P., Castellanos, M. C., Wolfe, A. D. & Thomson, J. D. (2006). Shifts between bee and bird pollination in Penstemons. In Plant‐Pollinator Interactions: From Specialization to Generalization, pp. 47–68. The University of Chicago Press, Chicago.
      Wilson, P., Wolfe, A. D., Armbruster, W. S. & Thomson, J. D. (2007). Constrained lability in floral evolution: counting convergent origins of hummingbird pollination in Penstemon and Keckiella. New Phytologist 176, 883–890.
      Yoder, J. B., Clancey, E., Des Roches, S., Eastman, J. M., Gentry, L., Godsoe, W., Hagey, T. J., Jochimsen, D., Oswald, B. P., Robertson, J., Sarver, B. A. J., Schenk, J. J., Spear, S. F. & Harmon, L. J. (2010). Ecological opportunity and the origin of adaptive radiations: ecological opportunity and origin of adaptive radiations. Journal of Evolutionary Biology 23, 1581–1596.
      Yoder, J. B. & Nuismer, S. L. (2010). When does coevolution promote diversification? The American Naturalist 176, 802–817.
      Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.‐Y. (2017). ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution 8, 28–36.
      Zanata, T. B., Dalsgaard, B., Passos, F. C., Cotton, P. A., Roper, J. J., Maruyama, P. K., Fischer, E., Schleuning, M., Martín González, A. M., Vizentin‐Bugoni, J., Franklin, D. C., Abrahamczyk, S., Alárcon, R., Araujo, A. C., Araújo, F. P., et al. (2017). Global patterns of interaction specialization in bird‐flower networks. Journal of Biogeography 44, 1891–1910.
      Zhang, F., Hui, C. & Pauw, A. (2013). Adaptive divergence in Darwin's race: how coevolution can generate trait diversity in a pollination system. Evolution 67, 548–560.
      *Zufall, R. & Rausher, M. (2004). Genetic changes associated with floral adaptation restrict future evolutionary potential. Nature 428, 847–850.
      Zung, J. L., Forrest, J. R. K., Castellanos, M. C. & Thomson, J. D. (2015). Bee‐ to bird‐pollination shifts in Penstemon: effects of floral‐lip removal and corolla constriction on the preferences of free‐foraging bumble bees. Evolutionary Ecology 29, 341–354.
    • Grant Information:
      787638 H2020 European Research Council; SR200100005 Australian Research Council; A1-S-26134 Consejo Nacional de Ciencia y Tecnología; 312580/2020-7 Conselho Nacional de Desenvolvimento Científico e Tecnológico; 173342 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung; 310030_197201 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung; 31003A_175655 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung; IZSEZ0_202372 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
    • Contributed Indexing:
      Keywords: coevolution; foraging behaviour; mutualism; pollination syndrome; pollinator shifts; specialization; trait evolution; trait matching
    • Publication Date:
      Date Created: 20240505 Date Completed: 20240930 Latest Revision: 20240930
    • Publication Date:
      20240930
    • Accession Number:
      10.1111/brv.13094
    • Accession Number:
      38705863