CircSSBP2 acts as a MiR-2400 sponge to promote intramuscular preadipocyte proliferation by regulating NDRG1.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 101093320 Publication Model: Electronic Cited Medium: Internet ISSN: 1617-4623 (Electronic) Linking ISSN: 16174623 NLM ISO Abbreviation: Mol Genet Genomics Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin : Springer-Verlag, c2001-
    • Subject Terms:
    • Abstract:
      Intramuscular fat (IMF) is a critical factor in beef quality. IMF is mainly distributed between muscle fibres and its accumulation can affect the marbling and meat quality of beef. IMF formation and deposition is a complex process and in recent years a group of non-coding RNAs (ncRNAs), known as circRNAs, have been discovered to play an important role in regulating intramuscular fat deposition. CircRNAs form a covalent loop structure after reverse splicing of precursor mRNAs. They can act by adsorbing miRNAs, thereby reducing their repressive effects on downstream target genes. Based on high-throughput sequencing of circRNAs in intramuscular fat of Qinchuan and Japanese black cattle, we identified a novel circSSBP2 that is differentially expressed between the two species and associated with adipogenesis. We show that circSSBP2 knockdown promotes bovine intramuscular preadipocyte proliferation, whereas overexpression inhibits bovine intramuscular preadipocyte proliferation. We also show that circSSBP2 can act as a molecular sponge for miR-2400 and that miR-2400 overexpression promotes bovine intramuscular preadipocyte proliferation. Furthermore, N-myc downstream-regulated gene 1 (NDRG1) was identified as a direct target gene of miR-2400, and NDRG1 interference promoted the proliferation of bovine intramuscular preadipocytes. In conclusion, our results suggest that circSSBP2 inhibits the proliferation of bovine intramuscular preadipocytes by regulating the miR-2400/NDRG1 axis.
      (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Aikemu B, Shao YF et al (2021) NDRG1 regulates Filopodia-induced Colorectal Cancer invasiveness via modulating CDC42 activity. Int J Biol Sci 17(7):1716–1730. https://doi.org/10.7150/ijbs.56694. (PMID: 10.7150/ijbs.56694339948568120473)
      Arcinas C, Tan W et al (2019) Adipose circular RNAs exhibit dynamic regulation in obesity and functional role in adipogenesis. Nat Metabolism 1(7):688–703. https://doi.org/10.1038/s42255-019-0078-z. (PMID: 10.1038/s42255-019-0078-z)
      Cai K, El-Merahbi R et al (2017) Ndrg1 promotes adipocyte differentiation and sustains their function. Sci Rep 7(1):7191. https://doi.org/10.1038/s41598-017-07497-x. (PMID: 10.1038/s41598-017-07497-x287752905543145)
      Cai H, Li M et al (2018) Global transcriptome analysis during adipogenic differentiation and involvement of Transthyretin Gene in Adipogenesis in cattle. Front Genet 9:463. https://doi.org/10.3389/fgene.2018.00463. (PMID: 10.3389/fgene.2018.00463304056876200853)
      Carnero A, Blanco-Aparicio C et al (2008) The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets 8(3):187–198. https://doi.org/10.2174/156800908784293659. (PMID: 10.2174/15680090878429365918473732)
      Chen N, Huang J et al (2018) Population structure and ancestry of Qinchuan cattle. Anim Genet 49(3):246–248. https://doi.org/10.1111/age.12658. (PMID: 10.1111/age.1265829624707)
      Chen XY, Raza SHA et al (2021) Bovine Pre-adipocyte Adipogenesis Is Regulated by bta-miR-150 Through mTOR Signaling (vol 12, 636550, 2021). Frontiers in Genetics 12: 636550. https://doi.org/10.3389/fgene.2021.688741.
      Chen R, Yang T et al (2023) CircTmeff1 promotes muscle atrophy by interacting with TDP-43 and Encoding A Novel TMEFF1-339aa protein. Advanced science (Weinheim, Baden-Wurttemberg. Germany) 10(17):e2206732. https://doi.org/10.1002/advs.202206732. (PMID: 10.1002/advs.202206732)
      Danan M, Schwartz S et al (2012) Transcriptome-wide discovery of circular RNAs in Archaea. Nucleic Acids Res 40(7):3131–3142. https://doi.org/10.1093/nar/gkr1009. (PMID: 10.1093/nar/gkr100922140119)
      Frank D, Joo ST et al (2016) Consumer Acceptability of Intramuscular Fat. Korean Journal for Food Science of Animal Resources 36(6): 699–708. https://doi.org/10.5851/kosfa.2016.36 .6.699.
      Guohua, Liu, et.al (2019) Circular RNA circ-FOXM1 facilitates cell progression as ceRNA to target PPDPF and MACC1 by sponging miR-1304-5p in non-small cell lung cancer. Biochemical and Biophysical Research Communications 513(1): 207–212. https://doi.org/10.1016/j.bbrc.2019.03.213.
      Huang YP, Chang XF et al (2011) Cigarette smoke induces promoter methylation of single-stranded DNA-binding protein 2 in human esophageal squamous cell carcinoma. Int J Cancer 128(10):2261–2273. https://doi.org/10.1002/ijc.25569. (PMID: 10.1002/ijc.25569206585323206631)
      Jiang R, Li H et al (2020) circRNA profiling reveals an abundant circFUT10 that promotes adipocyte proliferation and inhibits adipocyte differentiation via sponging let-7. Mol Therapy-Nucleic Acids 20:491–501. https://doi.org/10.1016/j.omtn.2020.03.011. (PMID: 10.1016/j.omtn.2020.03.011)
      Kang ZH, Zhang SH et al (2020) circFLT1 and lncCCPG1 sponges miR-93 to regulate the proliferation and differentiation of adipocytes by promoting lncSLC30A9 expression. Mol Therapy-Nucleic Acids 22:484–499. https://doi.org/10.1016/j.omtn.2020.09.011. (PMID: 10.1016/j.omtn.2020.09.011)
      Khan R, Raza SHA et al (2020) Bta-Mir-149-5p inhibits proliferation and differentiation of bovine adipocytes through targeting CRTCs at both transcriptional and posttranscriptional levels. J Cell Physiol 235(7–8):5796–5810. https://doi.org/10.1002/jcp.29513. (PMID: 10.1002/jcp.2951332003022)
      Kim VN, Nam JW (2006) Genomics of microRNA. Trends Genet 22(3):165–173. https://doi.org/10.1016/j.tig.2006.01.003. (PMID: 10.1016/j.tig.2006.01.00316446010)
      Kovacevic Z, Sivagurunathan S (2011) The metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), upregulates p21 via p53-independent mechanisms. Carcinogenesis 32(5): 732–740. doi 10.1093/carcin/bgr046 https://doi.org/10.1016/j.molcel.2017.02.017.
      Legnini I, Di Timoteo G et al (2017) Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis. Molecular Cell 66(1): 22–37.
      Li ZY, Huang C et al (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 24(2):194–194. https://doi.org/10.1038/nsmb0217-194a. (PMID: 10.1038/nsmb0217-194a)
      Li H, Yang JM et al (2018) CircFUT10 reduces proliferation and facilitates differentiation of myoblasts by sponging miR-133a. J Cell Physiol 233(6):4643–4651. https://doi.org/10.1002/jcp.26230. (PMID: 10.1002/jcp.2623029044517)
      Li XR, Zhang PY et al (2019) NDRG1 negatively regulates proliferation and milk bio-synthesis of bovine epithelial cells via the mTOR signaling pathway. Res Vet Sci 124:158–165. https://doi.org/10.1016/j.rvsc.2019.03.007. (PMID: 10.1016/j.rvsc.2019.03.00730901668)
      Liang H, Samanta S et al (2005) SSBP2, a candidate tumor suppressor gene, induces growth arrest and differentiation of myeloid leukemia cells. Oncogene 24(16):2625–2634. https://doi.org/10.1038/sj.onc.1208167. (PMID: 10.1038/sj.onc.120816715782145)
      Liu JW, Nagpal JK (2008) ssDNA-binding protein 2 is frequently hypermethylated and suppresses cell growth in human prostate cancer. Clinical Cancer Research 14(12): 3754–3760. doi 10.1158/1078 – 0432.Ccr-07-4763 https://doi.org/10.1186/s12943-022-01653-2.
      Liu P, Wang Z et al (2022) The FUS/circEZH2/KLF5/ feedback loop contributes to CXCR4-induced liver metastasis of breast cancer by enhancing epithelial-mesenchymal transition. Molecular cancer 21(1): 198.
      Liu YJ, Liu HT et al (2020) Circular RNA SAMD4A controls adipogenesis in obesity through the miR-138-5p/EZH2 axis. Theranostics 10(10): 4705–4719. https://doi.org/10.1021/acs.jafc.2c05697.
      Liu YK, Dou YQ (2022) CircSETBP1 Acts as a MiR-149-5p Sponge to Promote Intramuscular Fat Deposition by Regulating CRTCs. Journal of Agricultural and Food Chemistry 70(40): 12841–12851.
      Lu WJ, Chua MS et al (2015) NDRG1 promotes growth of hepatocellular carcinoma cells by directly interacting with GSK-3β and Nur77 to prevent β-catenin degradation. Oncotarget 6(30):29847–29859. https://doi.org/10.18632/oncotarget.4913. (PMID: 10.18632/oncotarget.4913263593534745767)
      Ma XY, Wei DW et al (2018) Bta-miR-130a/b regulates preadipocyte differentiation by targeting PPARG and CYP2U1 in beef cattle. Mol Cell Probes 42:10–17. https://doi.org/10.1016/j.mcp.2018.10.002. (PMID: 10.1016/j.mcp.2018.10.00230336279)
      Mi L, Chen YS et al (2015) MicroRNA-139-5p suppresses 3T3-L1 preadipocyte differentiation through notch and IRS1/PI3K/Akt insulin signaling pathways. J Cell Biochem 116(7):1195–1204. https://doi.org/10.1002/jcb.25065. (PMID: 10.1002/jcb.2506525536154)
      Miao Q, Zhong Z et al (2019) RNA-seq of circular RNAs identified circPTPN22 as a potential new activity indicator in systemic lupus erythematosus. Lupus 28(4):520–528. https://doi.org/10.1177/0961203319830493. (PMID: 10.1177/096120331983049330871426)
      Ni HE, Li WF et al (2019) Inhibition of circHIPK3 prevents angiotensin II-induced cardiac fibrosis by sponging miR-29b-3p. Int J Cardiol 292:188–196. https://doi.org/10.1016/j.ijcard.2019.04.006. (PMID: 10.1016/j.ijcard.2019.04.00630967276)
      Olena AF, Patton JG (2010) Genomic Organization of microRNAs. J Cell Physiol 222(3):540–545. https://doi.org/10.1002/jcp.21993. (PMID: 10.1002/jcp.21993200205074028663)
      Raza, S. H. A., Khan, R.,Zan, L. (2022). RNA-Seq reveals the potential molecular mechanisms of bovine KLF6 gene in the regulation of adipogenesis. International Journal of Biological Macromolecules, 195, 198–206. https://doi.org/10.1016/j.ijbiomac.2021.11.202.
      Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7(12):885–896. https://doi.org/10.1038/nrm2066. (PMID: 10.1038/nrm206617139329)
      Wang B, Li JL (2014) N-myc downstream regulated gene 1 acts as a tumor suppressor in ovarian cancer. Oncology Reports 31(5): 2279–2285. doi, doi 10.1016/j.gene.2020.144971.
      Wang X, Zhu X et al (2018) Increased circular RNA hsa_circ_0012673 acts as a sponge of miR-22 to promote lung adenocarcinoma proliferation. Biochem Biophys Res Commun 496(4):1069–1075. https://doi.org/10.1016/j.bbrc.2018.01.126. (PMID: 10.1016/j.bbrc.2018.01.12629366790)
      Wang Feng JF et al (2020) Circ_0123996 promotes cell proliferation and fibrosis in mouse mesangial cells through sponging miR-149-5p and inducing Bach1 expression. Gene 761: 144971.
      Wei Y, Cui YF et al (2016) MicroRNA-2400 promotes bovine preadipocyte proliferation. Biochem Biophys Res Commun 478(3):1054–1059. https://doi.org/10.1016/j.bbrc.2016.08.038. (PMID: 10.1016/j.bbrc.2016.08.03827514450)
      Wei XF, Li H et al (2017) Circular RNA profiling reveals an abundant circLMO7 that regulates myoblasts differentiation and survival by sponging miR-378a-3p. Cell Death Dis 8(10):e3153. https://doi.org/10.1038/cddis.2017.541. (PMID: 10.1038/cddis.2017.541290726985680912)
      Weigelt CM, Sehgal R et al (2020) An insulin-sensitive circular RNA that regulates lifespan in Drosophila. Mol Cell 79(2):268–279. https://doi.org/10.1016/j.molcel.2020.06.011. (PMID: 10.1016/j.molcel.2020.06.011325926827318944)
      Zhang Y, Zhang XO et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806. https://doi.org/10.1016/j.molcel.2013.08.017. (PMID: 10.1016/j.molcel.2013.08.01724035497)
      Zhang CL, Wu H et al (2015) Expression patterns of circular RNAs from primary kinase transcripts in the mammary glands of lactating rats. J Breast Cancer 18(3):235–241. https://doi.org/10.4048/jbc.2015.18.3.235. (PMID: 10.4048/jbc.2015.18.3.235264729734600687)
      Zhang WW, Tong HL et al (2015) Identification of miR-2400 gene as a novel regulator in skeletal muscle satellite cells proliferation by targeting MYOG gene. Biochem Biophys Res Commun 463(4):624–631. https://doi.org/10.1016/j.bbrc.2015.05.112. (PMID: 10.1016/j.bbrc.2015.05.11226047700)
      Zhang YF, Ma LH et al (2021) Bta-miR-2400 targets SUMO1 to Affect Yak preadipocytes proliferation and differentiation. Biology-Basel 10(10):949. https://doi.org/10.3390/biology10100949. (PMID: 10.3390/biology10100949346810488533534)
    • Grant Information:
      2019BEF02004 This study was funded by the National Beef and Yak Industrial Technology System Project (CARS-37), National Natural Science Foundation of China (31972994), Ningxia Hui Autonomous Region Key Research and Development Project (2019BEF02004), and Shaanxi Agric
    • Contributed Indexing:
      Keywords: Bovine; Intramuscular fat; NDRG1; Proliferation; circSSBP2; miR-2400
    • Accession Number:
      0 (MicroRNAs)
      0 (N-myc downstream-regulated gene 1 protein)
      0 (Intracellular Signaling Peptides and Proteins)
      0 (Cell Cycle Proteins)
      0 (RNA, Circular)
    • Publication Date:
      Date Created: 20240503 Date Completed: 20240503 Latest Revision: 20240523
    • Publication Date:
      20240523
    • Accession Number:
      10.1007/s00438-024-02138-1
    • Accession Number:
      38700639