Fate and preservation of the late pleistocene cave bears from Niedźwiedzia Cave in Poland, through taphonomy, pathology, and geochemistry.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      This comprehensive study examines fossil remains from Niedźwiedzia Cave in the Eastern Sudetes, offering detailed insights into the palaeobiology and adversities encountered by the Pleistocene cave bear Ursus spelaeus ingressus. Emphasising habitual cave use for hibernation and a primarily herbivorous diet, the findings attribute mortality to resource scarcity during hibernation and habitat fragmentation amid climate shifts. Taphonomic analysis indicates that the cave was extensively used by successive generations of bears, virtually unexposed to the impact of predators. The study also reveals that alkaline conditions developed in the cave during the post-depositional taphonomic processes. Mortality patterns, notably among juveniles, imply dwindling resources, indicative of environmental instability. Skeletal examination reveals a high incidence of forelimb fractures, indicating risks during activities like digging or confrontations. Palaeopathological evidence unveils vulnerabilities to tuberculosis, abscesses, rickets, and injuries, elucidating mobility challenges. The cave's silts exhibit a high zinc concentration, potentially derived from successive bear generations consuming zinc-rich plants. This study illuminates the lives of late cave bears, elucidating unique environmental hurdles faced near their species' end.
      (© 2024. The Author(s).)
    • References:
      Kasprzak, M. & Sobczyk, A. Searching for the void: improving cave detection accuracy by multi-faceted geophysical survey reconciled with LiDAR DTM. Z. Geomorphol. Suppl. Issues 61(2), 45–59. https://doi.org/10.1127/zfg_suppl/2017/0327 (2017). (PMID: 10.1127/zfg_suppl/2017/0327)
      Jastrzębski, M., Żelaźniewicz, A., Nowak, I., Murtezi, M. & Larionov, A. N. Protolith age and provenance of metasedimentary rocks in Variscan allochthon units: U-Pb SHRIMP zircon data from the Orlica-Snieznik Dome. West Sudetes. Geol. Mag. 147, 416–433. https://doi.org/10.1017/S0016756809990501 (2010). (PMID: 10.1017/S0016756809990501)
      Sobczyk, A., Sobel, E. R. & Georgieva, V. Meso-Cenozoic cooling and exhumation history of the Orlica-Śnieżnik Dome (Sudetes, NE Bohemian Massif, Central Europe): Insights from apatite fission-track thermochronometry. Terra Nova 32, 122–133. https://doi.org/10.1111/ter.12449 (2020). (PMID: 10.1111/ter.12449)
      Sobczyk, A. & Szczygieł, J. Paleostress reconstruction of faults recorded in the Niedźwiedzia Cave (Sudetes): insights into Alpine intraplate tectonic of NE Bohemian Massif. Int. J. Earth Sci. 110, 833–847. https://doi.org/10.1007/s00531-021-01994-1 (2021). (PMID: 10.1007/s00531-021-01994-1)
      Szczygieł, J., Sobczyk, A., Maciejewski, M. & Fernandez, O. Variscan vs. Alpine structural controls: Karstic proto-conduit development within Palaeozoic marble post-conditioned by Alpine faulting (the Niedźwiedzia Cave, NE Bohemian Massif). Geomorphology 415, 108423. https://doi.org/10.1016/j.geomorph.2022.108423 (2022). (PMID: 10.1016/j.geomorph.2022.108423)
      Szczygieł, J., Sobczyk, A., Hercman, H., Mendecki, M. J. & Gąsiorowski, M. Damaged speleothems and collapsed karst chambers indicate paleoseismicity of the NE Bohemian Massif (Niedźwiedzia Cave, Poland). Tectonics 40, e2020TC006459. https://doi.org/10.1029/2020TC006459 (2021). (PMID: 10.1029/2020TC006459)
      Sobczyk, A., Kasprzak, M., Marciszak, A. & Stefaniak, K. Zjawiska krasowe w skałach metamorficznych w Masywie Śnieżnika (Sudety Wschodnie): aktualny stan badań oraz znaczenie dla poznania ewolucji Sudetów w późnym kenozoiku. Przegląd Geol. 64, 709–718 (2016).
      Marciszak, A. et al. Taphonomic and paleoecological aspects of large mammals from Sudety Mts (Silesia, SW Poland), with particular interest to the carnivores. Quat. Int. 546, 42–63. https://doi.org/10.1016/j.quaint.2019.11.009 (2020). (PMID: 10.1016/j.quaint.2019.11.009)
      Bieroński, J., Stefaniak, K., Hercman, H., Socha, P. & Nadachowski, A. in Karst of the Częstochowa Upland and of the Eastern Sudetes: palaeoenvironments and protection. Studies of the Faculty of Earth Sciences, University of Silesia, No. 56 Vol. 56 (eds K Stefaniak, A Tyc, & P Socha) 401–422 (University of Silesia, 2009).
      Marciszak, A., Stefaniak, K. & Gornig, W. Fossil theriofauna from the Sudety Mts (SW Poland): The state of research. Cranium 33, 31–41 (2016).
      Wiszniowska, T. Wstępne wyniki badań fauny kopalnej w Jaskini Niedźwiedziej. Acta Univ. Wratislav. 127, 45–70 (1970).
      Rabeder, G., Hofreiter, M., Nagel, D. & Withalm, G. in Proceedings of the 9th International Cave Bear Conference, Cahiers scientifiques du Centre de Conservation et d'Etude des Collections, Hors Série No 2 Vol. 2 (eds M Philippe, A Argant, & J Argant) 49–68 (Muséum d'Histoire naturelle de Lyon, 2004).
      Mackiewicz, P. et al. in Morphology and systematics of fossil vertebrates (ed D. Nowakowski) 60–77 (DN Publisher, 2010).
      Wiszniowska, T. et al. in Morphology and systematics of fossil vertebrates (ed D. Nowakowski) 125–142 (DN Publisher, 2010).
      Baca, M. et al. Ancient DNA and dating of cave bear remains from Niedźwiedzia Cave suggest early appearance of Ursus ingressus in Sudetes. Quat. Int. 339, 217–223. https://doi.org/10.1016/j.quaint.2013.08.033 (2014). (PMID: 10.1016/j.quaint.2013.08.033)
      Baca, M. et al. Genetic analysis of cave bear specimens from Niedźwiedzia Cave, Sudetes, Poland. Palaeontol. Electron. 15, 21a. https://doi.org/10.26879/301 (2012). (PMID: 10.26879/301)
      Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. & Jouzel, J. Comparison of oxygen-isotope records from the Gisp2 and Grip greenland ice cores. Nature 366, 552–554. https://doi.org/10.1038/366552a0 (1993). (PMID: 10.1038/366552a0)
      Hemming, S. R. Heinrich events: Massive late pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 42, RG1005. https://doi.org/10.1029/2003rg000128 (2004). (PMID: 10.1029/2003rg000128)
      Labeyrie, L., Skinner, L. & Cortijo, E. in Encyclopedia of Quaternary Science (ed SA Elias) 1964–1974 (Elsevier, 2007).
      Baca, M. et al. Retreat and extinction of the Late Pleistocene cave bear (Ursus spelaeus sensu lato). Naturwissenschaften 103, 92. https://doi.org/10.1007/s00114-016-1414-8 (2016). (PMID: 10.1007/s00114-016-1414-8277302655059403)
      Lowe, J. J. et al. Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: A revised protocol recommended by the INTIMATE group. Quat. Sci. Rev. 27, 6–17. https://doi.org/10.1016/j.quascirev.2007.09.016 (2008). (PMID: 10.1016/j.quascirev.2007.09.016)
      Mackiewicz, P. et al. Estimating the extinction time of two cave bears. Acta Zool. Cracov. 60, 1–14. https://doi.org/10.3409/azc.60_2.01 (2017). (PMID: 10.3409/azc.60_2.01)
      Bocherens, H. Dental microwear of cave bears: The missing temperate/boreal vegetarian “carnivore”. Proc. Natl Acad. Sci. USA 106, E133. https://doi.org/10.1073/pnas.0910368106 (2009). (PMID: 10.1073/pnas.0910368106199234332787133)
      Krajcarz, M. et al. Isotopic variability of cave bears (δ15N, δ13C) across Europe during MIS 3. Quat. Sci. Rev. 131, 51–72. https://doi.org/10.1016/j.quascirev.2015.10.028 (2016). (PMID: 10.1016/j.quascirev.2015.10.028)
      Kurtén, B. The Cave Bear Story: Life and Death of a Vanished Animal (Columbia University Press, 1976).
      Pacher, M. & Stuart, A. J. Extinction chronology and palaeobiology of the cave bear (Ursus spelaeus). Boreas 38, 189–206. https://doi.org/10.1111/j.1502-3885.2008.00071.x (2009). (PMID: 10.1111/j.1502-3885.2008.00071.x)
      Kramar, C. H., Lagier, R. & Baud, C. A. Thoracic spinal hyperostosis in an early mediaeval skeleton. Scand. J. Rheumatol. 19, 163–166. https://doi.org/10.3109/03009749009102121 (1990). (PMID: 10.3109/030097490091021212186477)
      Nowakowski, D. & Stefaniak, K. Pathological changes of the cranium of a young female cave bear (Ursus spelaeus R.)-A case study (the Sudety Mts, Poland). Int. J. Osteoarchaeol. 25, 119–125. https://doi.org/10.1002/oa.2271 (2015). (PMID: 10.1002/oa.2271)
      DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809. https://doi.org/10.1038/317806a0 (1985). (PMID: 10.1038/317806a0)
      Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451. https://doi.org/10.1016/0305-4403(90)90007-R (1990). (PMID: 10.1016/0305-4403(90)90007-R)
      Marciszak, A. & Lipecki, G. The history of bears (Ursidae, Carnivora, Mammalia) from Silesia (southern Poland) and the neighbouring areas. Geol. Q. 64, 876–897. https://doi.org/10.7306/gq.1565 (2020). (PMID: 10.7306/gq.1565)
      Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052. https://doi.org/10.1126/sciadv.1500052 (2015). (PMID: 10.1126/sciadv.1500052266011544643828)
      Lino, A., Fonseca, C., Rojas, D., Fischer, E. & Pereira, M. J. R. A meta-analysis of the effects of habitat loss and fragmentation on genetic diversity in mammals. Mamm. Biol. 94, 69–76. https://doi.org/10.1016/j.mambio.2018.09.006 (2019). (PMID: 10.1016/j.mambio.2018.09.006)
      Mondanaro, A. et al. The role of habitat fragmentation in Pleistocene megafauna extinction in Eurasia. Ecography 44, 1619–1630. https://doi.org/10.1111/ecog.05939 (2021). (PMID: 10.1111/ecog.05939)
      Reumer, J. W. F. Habitat fragmentation and the extinction of mammoths (Mammuthus primigenius, Proboscidea, Mammalia): Arguments for a causal relationship. Cour. Forschungsinst. Senckenberg 259, 279–286 (2007).
      Waelbroeck, C. et al. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nat. Geosci. 2, 127–132. https://doi.org/10.1038/Ngeo411 (2009). (PMID: 10.1038/Ngeo411)
      Cooper, A. et al. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349, 602–606. https://doi.org/10.1126/science.aac4315 (2015). (PMID: 10.1126/science.aac431526250679)
      Stiller, M. et al. Withering away–25,000 years of genetic decline preceded cave bear extinction. Mol. Biol. Evol. 27, 975–978. https://doi.org/10.1093/molbev/msq083 (2010). (PMID: 10.1093/molbev/msq08320335279)
      Stuart, A. J. & Lister, A. M. Patterns of Late Quaternary megafaunal extinctions in Europe and northern Asia. Cour. Forschungsinst. Senckenberg 259, 287–297 (2007).
      Bocherens, H., Drucker, D. G., Billiou, D., Geneste, J. M. & van der Plicht, J. Bears and humans in Chauvet Cave (Vallon-Pont-d’Arc, Ardeche, France): insights from stable isotopes and radiocarbon dating of bone collagen. J. Hum. Evol. 50, 370–376. https://doi.org/10.1016/j.jhevol.2005.12.002 (2006). (PMID: 10.1016/j.jhevol.2005.12.00216442587)
      Bocherens, H. et al. Isotopic evidence for dietary ecology of cave lion (Panthera spelaea) in North-Western Europe: Prey choice, competition and implications for extinction. Quat. Int. 245, 249–261. https://doi.org/10.1016/j.quaint.2011.02.023 (2011). (PMID: 10.1016/j.quaint.2011.02.023)
      Bocherens, H. et al. Niche partitioning between two sympatric genetically distinct cave bears (Ursus spelaeus and Ursus ingressus) and brown bear (Ursus arctos) from Austria: Isotopic evidence from fossil bones. Quat. Int. 245, 238–248. https://doi.org/10.1016/j.quaint.2010.12.020 (2011). (PMID: 10.1016/j.quaint.2010.12.020)
      Diedrich, C. G. Palaeopopulations of late pleistocene top predators in Europe: Ice age spotted hyenas and steppe lions in battle and competition about prey. Paleontol. J. 1–34, 2014. https://doi.org/10.1155/2014/106203 (2014). (PMID: 10.1155/2014/106203)
      Münzel, S. C. & Conard, N. J. Cave bear hunting in Hohle Fels Cave in the Ach Valley of the Swabian Jura. Rev. de Paleobiologie 23, 877–885 (2004).
      Münzel, S. C. et al. Pleistocene bears in the Swabian Jura (Germany): Genetic replacement, ecological displacement, extinctions and survival. Quat. Int. 245, 225–237. https://doi.org/10.1016/j.quaint.2011.03.060 (2011). (PMID: 10.1016/j.quaint.2011.03.060)
      Fortes, G. G. et al. Ancient DNA reveals differences in behaviour and sociality between brown bears and extinct cave bears. Mol. Ecol. 25, 4907–4918. https://doi.org/10.1111/mec.13800 (2016). (PMID: 10.1111/mec.1380027506329)
      Turner, A. The evolution of the guild of large Carnivora of the British Isles during the Middle and Late Pleistocene. J. Quat. Sci. 24, 991–1005. https://doi.org/10.1002/jqs.1278 (2009). (PMID: 10.1002/jqs.1278)
      Diedrich, C. Famous Planet Earth Caves: Hermann's Cave (Germany). A Late Pleistocene cave bear den. 2. (Bentham Books, 2017).
      Nielsen-Marsh, C. M. & Hedges, R. E. M. Patterns of diagenesis in bone I: The effects of site environments. J. Archaeol. Sci. 27, 1139–1150. https://doi.org/10.1006/jasc.1999.0537 (2000). (PMID: 10.1006/jasc.1999.0537)
      López-González, F., Grandal-d’Anglade, A. & Vidal-Romaní, J. R. Deciphering bone depositional sequences in caves through the study of manganese coatings. J. Archaeol. Sci. 33, 707–717. https://doi.org/10.1016/j.jas.2005.10.006 (2006). (PMID: 10.1016/j.jas.2005.10.006)
      McAdams, C., Morley, M. W. & Roberts, R. G. The acid test: An experimental microarchaeological study of guano-driven diagenesis in tropical cave sediments. J. Archaeol. Sci. Rep. 37, 102947. https://doi.org/10.1016/j.jasrep.2021.102947 (2021). (PMID: 10.1016/j.jasrep.2021.102947)
      Pacher, M. Taphonomische Untersuchungen der Höhlenbärenfundstellen in der Schwabenreith-Höhle bei Lunz am See (Niederösterreich). Beitr. Paläont. 25, 11–85 (2000).
      Weinstock, J. Cave bears from Southern Germany: Sex ratios and age structure: A contribution towards a better understanding of the paleobiology of Ursus spelaeus. Archaeofauna 9, 165–182 (2000).
      Germonpre, M. & Sablin, M. The cave bear (Ursus spelaeus) from Goyet, Belgium: The bear den in Chamber B (bone horizon 4). Bull. Inst. R. Sci. Nat. Belg. Sci. Terre. 71, 209–233 (2001).
      Debeljak, I. in Cave Bear-Researches/Höhlen-Bären-Forschingen. Abhandlung zur Karst- und Hohlenkunde. Heft 34 (eds W Rosendahl, M Morgan, & M López Correa) 41–48 (2002).
      Debeljak, I. Fossil population structure of the cave bear from Potocka zijalka (Slovenia). Mitt. Kommi. Quart. Öster. Aka. Wissen. 13, 173–182 (2004).
      Debeljak, I. Fossil population structure and mortality of the cave bear from the Mokrica cave (North Slovenia). Acta Car. 36, 475–484 (2007).
      Pacher, M. & Quilès, J. in Life and death at Peştera cu Oase (eds E Trinkaus, S Constantin, & J Zilhão) 127–146 (Oxford University Press, 2013).
      Stiner, M. C. Mortality analysis of Pleistocene bears and its paleoanthropological relevance. J. Hum. Evol. 34, 303–326. https://doi.org/10.1006/jhev.1997.0198 (1998). (PMID: 10.1006/jhev.1997.01989547458)
      Rothschild, B. M. & Martin, L. D. Paleopathology Disease in the Fossil Record (CRC Press, 1993).
      Tasnádi Kubacska, A. Paläopathologie. Pathologie der vorzeitlichen Tiere. (Fischer, 1962).
      Steinbock, R. T. Paleopathological diagnosis and interpretation: bone diseases in ancient human populations (Thomas, 1976).
      Köhler, A. & Zimmer, E. A. Grenzen des normalen und anfänge des pathologischen im röntgenbild des skelets. 11. Auflage., (G. Thieme, 1967).
      Pickering, R. B. & Bachman, D. The use of Forensic Anthropology (CRC Press, 2009).
      Paluch, R. Ślady pobytu człowieka w Jaskini Niedźwiedziej. Acta Univ. Wratislav. 127, 71–77 (1970).
      Erdbrink, D. P. A review of fossil and recent bears of the old world: with remarks on their phylogeny, based upon their dentition. (Deventer: Jan de Lange, 1953).
      Vaisfield, M. & Chestin, I. Bears: Brown Bear, Polar Bear, Asian Black Bear: Distribution, Ecology, Use and Protection. (Nauka, 1993).
      Kirillova, I., Zelenkov, N. & Tesakov, A. Master and visitors of the cave Ostantsevaya (Sakhalin Island, Russian Far East). Acta Carsol. Slovaca 47, 57–66 (2009).
      Argant, A. & Argant, J. L. brèche à carnivores du Pléistocène moyen de Château (Saône-et-Loire, France). Quaternaire 29, 271–285. https://doi.org/10.4000/quaternaire.10390 (2018). (PMID: 10.4000/quaternaire.10390)
      Marciszak, A. et al. The Pleistocene lion Panthera spelaea (Goldfuss, 1810) from Poland-A review. Quat. Int. 605, 213–240. https://doi.org/10.1016/j.quaint.2020.12.018 (2021). (PMID: 10.1016/j.quaint.2020.12.018)
      Anyonge, W. Microwear on canines and killing behavior in large carnivores: Saber function in Smilodon fatalis. J. Mammal. 77, 1059–1067. https://doi.org/10.2307/1382786 (1996). (PMID: 10.2307/1382786)
      Marciszak, A., Schouwenburg, C. & Darga, R. Decreasing size process in the cave (Pleistocene) lion Panthera spelaea (Goldfuss, 1810) evolution: A review. Quat. Int. 339, 245–257. https://doi.org/10.1016/j.quaint.2013.10.008 (2014). (PMID: 10.1016/j.quaint.2013.10.008)
      Ciężkowski, W. in Jaskinia Niedźwiedzia w Kletnie. Badania i udostępnianie. (eds A Jahn, S Kozłowski, & T Wiszniowska) 137–146 (Ossolineum, 1989).
      Reimann, C. et al. Biogeochemical plant-soil interaction: Variable element composition in leaves of four plant species collected along a south-north transect at the southern tip of Norway. Sci. Total Environ. 506–507, 480–495. https://doi.org/10.1016/j.scitotenv.2014.10.079 (2015). (PMID: 10.1016/j.scitotenv.2014.10.07925437765)
      Fortescue, J. A. Environmental Geochemistry: A Holistic Approach (Springer, 2012).
      Paine, A. R. et al. The trace-element composition of a Polish stalagmite: Implications for the use of speleothems as a record of explosive volcanism. Chem. Geol. 570, 120157. https://doi.org/10.1016/j.chemgeo.2021.120157 (2021). (PMID: 10.1016/j.chemgeo.2021.120157)
      Bocherens, H. Isotopic insights on cave bear palaeodiet. Hist. Biol. 31, 410–421. https://doi.org/10.1080/08912963.2018.1465419 (2019). (PMID: 10.1080/08912963.2018.1465419)
      Richards, M. P. et al. Isotopic evidence for omnivory among European cave bears: Late Pleistocene Ursus spelaeus from the Pestera cu Oase. Romania. Proc. Natl Acad. Sci. USA 105, 600–604. https://doi.org/10.1073/pnas.0711063105 (2008). (PMID: 10.1073/pnas.071106310518187577)
      Robu, M. et al. The diverse dietary profiles of MIS 3 cave bears from the Romanian Carpathians: Insights from stable isotope (δ13C and δ15N) analysis. Palaeontology 61, 209–219. https://doi.org/10.1111/pala.12338 (2018). (PMID: 10.1111/pala.12338)
      Olsen, K. C. et al. Intraskeletal isotopic compositions (δ13C, δ15N) of bone collagen: Nonpathological and pathological variation. Am. J. Phys. Anthropol. 153, 598–604. https://doi.org/10.1002/ajpa.22459 (2014). (PMID: 10.1002/ajpa.2245924374993)
      Sabol, M., Döppes, D., Pacher, M., Rabeder, G. & Withalm, G. Cave Bears from the Medvedia jaskyna in the Slovensky raj Mountains (Slovakia): preliminary results. Stalactite 58, 74–77 (2008).
      Nowakowski, D. Frequency of appearance of transverse (Harris) lines reflects living conditions of the Pleistocene bear-Ursus ingressus-(Sudety Mts., Poland). Plos One 13, e0196342. https://doi.org/10.1371/journal.pone.0196342 (2018). (PMID: 10.1371/journal.pone.0196342296840865912778)
      Grayson, D. K. Minimum numbers and sample-size in vertebrate faunal analysis. Am. Antiquity 43, 53–65. https://doi.org/10.2307/279631 (1978). (PMID: 10.2307/279631)
      Lyman, R. L. Vertebrate taphonomy. (University Press, 1994).
      Koby, F.-E. Lésions pathologiques aux sinus frontaux d’un ours des cavernes. Eclogae Geol. Helv. 46, 295–297 (1953).
      Papageorgopoulou, C., Suter, S. K., Ruhli, F. J. & Siegmund, F. Harris lines revisited: Prevalence, comorbidities, and possible etiologies. Am. J. Hum. Biol. 23, 381–391. https://doi.org/10.1002/ajhb.21155 (2011). (PMID: 10.1002/ajhb.2115521387459)
      Bocherens, H., Fizet, M. & Mariotti, A. Diet, physiology and ecology of fossil mammals as inferred from stable carbon and nitrogen isotope biogeochemistry: Implications for Pleistocene bears. Palaeogeogr. Palaeoclimatol. Palaeoecol. 107, 213–225. https://doi.org/10.1016/0031-0182(94)90095-7 (1994). (PMID: 10.1016/0031-0182(94)90095-7)
      Eckrich, C. A., Albeke, S. E., Flaherty, E. A., Bowyer, R. T. & Ben-David, M. rKIN: Kernel-based method for estimating isotopic niche size and overlap. J. Anim. Ecol. 89, 757–771. https://doi.org/10.1111/1365-2656.13159 (2020). (PMID: 10.1111/1365-2656.1315931799690)
      R_Core_Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ . (2022).
      Deniro, M. J. & Weiner, S. Chemical, enzymatic and spectroscopic characterization of collagen and other organic fractions from prehistoric bones. Geochim. Cosmochim. Acta 52, 2197–2206. https://doi.org/10.1016/0016-7037(88)90122-6 (1988). (PMID: 10.1016/0016-7037(88)90122-6)
      Ramsey, C. B. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360. https://doi.org/10.1017/S0033822200033865 (2009). (PMID: 10.1017/S0033822200033865)
      Reimer, P. J. et al. The Intcal20 northern hemisphere radiocarbon age calibration curve (0–55 Cal Kbp). Radiocarbon 62, 725–757. https://doi.org/10.1017/Rdc.2020.41 (2020). (PMID: 10.1017/Rdc.2020.41)
      Hercman, H. U-series dating of collagen: A step toward direct U-series dating of fossil bone?. Quat. Int. 339–340, 4–10. https://doi.org/10.1016/j.quaint.2013.12.036 (2014). (PMID: 10.1016/j.quaint.2013.12.036)
      Cheng, H. et al. Improvements in Th dating, Th and U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 371–372, 82–91. https://doi.org/10.1016/j.epsl.2013.04.006 (2013). (PMID: 10.1016/j.epsl.2013.04.006)
      Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. Precision measurement of half-lives and specific activities of U-235 and U-238. Phys. Rev. C 4, 1889–1906. https://doi.org/10.1103/PhysRevC.4.1889 (1971). (PMID: 10.1103/PhysRevC.4.1889)
      Kostka, S. Map of the Niedźwiedzia cave in Kletno (Central Geological Database) https://jaskiniepolski.pgi.gov.pl/ , 2014).
      Kabata-Pendias, A. & Pendias, H. Biogeochemia pierwiastków śladowych. (Wydawnictwo naukowe PWN, 1999).
    • Grant Information:
      2012/07/B/NZ8/02845 Polish National Science Centre; 2016/23/N/NZ8/03995 Polish National Science Centre; DNRF173 Danish National Research Foundation; PAULMAZZARICATEN23 Fondo Ateneo 2023 MIUR; Arc-1408 Ministero degli Affari Esteri e della Cooperazione Internazionale
    • Publication Date:
      Date Created: 20240429 Date Completed: 20240429 Latest Revision: 20240502
    • Publication Date:
      20240503
    • Accession Number:
      PMC11059340
    • Accession Number:
      10.1038/s41598-024-60222-3
    • Accession Number:
      38684693