Menu
×
West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 805-6888
Village Library
Closed (2024 - Christmas)
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed (2024 - Christmas)
Phone: (843) 889-3300
Otranto Road Library
Closed (2024 - Christmas)
Phone: (843) 572-4094
Mt. Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 849-6161
McClellanville Library
Closed (2024 - Christmas)
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed (2024 - Christmas)
Phone: (843) 744-2489
John's Island Library
Closed (2024 - Christmas)
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed (2024 - Christmas)
Phone: (843) 766-2546
Folly Beach Library
Closed (2024 - Christmas)
Phone: (843) 588-2001
Edisto Island Library
Closed (2024 - Christmas)
Phone: (843) 869-2355
Dorchester Road Library
Closed (2024 - Christmas)
Phone: (843) 552-6466
John L. Dart Library
Closed (2024 - Christmas)
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed (2024 - Christmas)
Phone: (843) 795-6679
Main Library
Closed (2024 - Christmas)
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed (2024 - Christmas)
Phone: (843) 883-3914
Mobile Library
Closed (2024 - Christmas)
Phone: (843) 805-6909
Today's Hours
West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 805-6888
Village Library
Closed (2024 - Christmas)
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed (2024 - Christmas)
Phone: (843) 889-3300
Otranto Road Library
Closed (2024 - Christmas)
Phone: (843) 572-4094
Mt. Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 849-6161
McClellanville Library
Closed (2024 - Christmas)
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed (2024 - Christmas)
Phone: (843) 744-2489
John's Island Library
Closed (2024 - Christmas)
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed (2024 - Christmas)
Phone: (843) 766-2546
Folly Beach Library
Closed (2024 - Christmas)
Phone: (843) 588-2001
Edisto Island Library
Closed (2024 - Christmas)
Phone: (843) 869-2355
Dorchester Road Library
Closed (2024 - Christmas)
Phone: (843) 552-6466
John L. Dart Library
Closed (2024 - Christmas)
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed (2024 - Christmas)
Phone: (843) 795-6679
Main Library
Closed (2024 - Christmas)
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed (2024 - Christmas)
Phone: (843) 883-3914
Mobile Library
Closed (2024 - Christmas)
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Targeting cardiomyocyte cell cycle regulation in heart failure.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Zhu C;Zhu C;Zhu C; Yuan T; Yuan T; Yuan T; Yuan T; Yuan T; Krishnan J; Krishnan J; Krishnan J; Krishnan J; Krishnan J
- Source:
Basic research in cardiology [Basic Res Cardiol] 2024 Jun; Vol. 119 (3), pp. 349-369. Date of Electronic Publication: 2024 Apr 29.- Publication Type:
Journal Article; Review; Research Support, Non-U.S. Gov't- Language:
English - Source:
- Additional Information
- Source: Publisher: Steinkopff Country of Publication: Germany NLM ID: 0360342 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1435-1803 (Electronic) Linking ISSN: 03008428 NLM ISO Abbreviation: Basic Res Cardiol Subsets: MEDLINE
- Publication Information: Original Publication: Darmstadt, Steinkopff.
- Subject Terms:
- Abstract: Heart failure continues to be a significant global health concern, causing substantial morbidity and mortality. The limited ability of the adult heart to regenerate has posed challenges in finding effective treatments for cardiac pathologies. While various medications and surgical interventions have been used to improve cardiac function, they are not able to address the extensive loss of functioning cardiomyocytes that occurs during cardiac injury. As a result, there is growing interest in understanding how the cell cycle is regulated and exploring the potential for stimulating cardiomyocyte proliferation as a means of promoting heart regeneration. This review aims to provide an overview of current knowledge on cell cycle regulation and mechanisms underlying cardiomyocyte proliferation in cases of heart failure, while also highlighting established and novel therapeutic strategies targeting this area for treatment purposes.
(© 2024. The Author(s).) - References: Abouleisa RRE, Salama ABM, Ou Q, Tang X-L, Solanki M, Guo Y, Nong Y, McNally L, Lorkiewicz PK, Kassem KM, Ahern BM, Choudhary K, Thomas R, Huang Y, Juhardeen HR, Siddique A, Ifthikar Z, Hammad SK, Elbaz AS, Ivey KN, Conklin DJ, Satin J, Hill BG, Srivastava D, Bolli R, Mohamed TMA (2022) Transient cell cycle induction in cardiomyocytes to treat subacute ischemic heart failure. Circulation 145:1339–1355. https://doi.org/10.1161/CIRCULATIONAHA.121.057641. (PMID: 10.1161/CIRCULATIONAHA.121.057641350615459038650)
Agah R, Kirshenbaum LA, Abdellatif M, Truong LD, Chakraborty S, Michael LH, Schneider MD (1997) Adenoviral delivery of E2F–1 directs cell cycle reentry and p53-independent apoptosis in postmitotic adult myocardium in vivo. J Clin Invest 100:2722–2728. https://doi.org/10.1172/JCI119817. (PMID: 10.1172/JCI1198179389735508475)
Aharonov A, Shakked A, Umansky KB, Savidor A, Genzelinakh A, Kain D, Lendengolts D, Revach O-Y, Morikawa Y, Dong J, Levin Y, Geiger B, Martin JF, Tzahor E (2020) ERBB2 drives YAP activation and EMT-like processes during cardiac regeneration. Nat Cell Biol 22:1346–1356. https://doi.org/10.1038/s41556-020-00588-4. (PMID: 10.1038/s41556-020-00588-433046882)
Ahuja P, Sdek P, MacLellan WR (2007) Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev 87:521–544. https://doi.org/10.1152/physrev.00032.2006. (PMID: 10.1152/physrev.00032.200617429040)
Alam P, Haile B, Arif M, Pandey R, Rokvic M, Nieman M, Maliken BD, Paul A, Wang Y, Sadayappan S, Ahmed RPH, Kanisicak O (2019) Inhibition of senescence-associated genes Rb1 and Meis2 in adult cardiomyocytes results in cell cycle reentry and cardiac repair post-myocardial infarction. JAHA 8:e012089. https://doi.org/10.1161/JAHA.119.012089. (PMID: 10.1161/JAHA.119.012089313154846761626)
Ali SR, Hippenmeyer S, Saadat LV, Luo L, Weissman IL, Ardehali R (2014) Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proc Natl Acad Sci USA 111:8850–8855. https://doi.org/10.1073/pnas.1408233111. (PMID: 10.1073/pnas.1408233111248762754066522)
Alkass K, Panula J, Westman M, Wu T-D, Guerquin-Kern J-L, Bergmann O (2015) No evidence for cardiomyocyte number expansion in preadolescent mice. Cell 163:1026–1036. https://doi.org/10.1016/j.cell.2015.10.035. (PMID: 10.1016/j.cell.2015.10.03526544945)
Alvarez R, Wang BJ, Quijada PJ, Avitabile D, Ho T, Shaitrit M, Chavarria M, Firouzi F, Ebeid D, Monsanto MM, Navarrete N, Moshref M, Siddiqi S, Broughton KM, Bailey BA, Gude NA, Sussman MA (2019) Cardiomyocyte cell cycle dynamics and proliferation revealed through cardiac-specific transgenesis of fluorescent ubiquitinated cell cycle indicator (FUCCI). J Mol Cell Cardiol 127:154–164. https://doi.org/10.1016/j.yjmcc.2018.12.007. (PMID: 10.1016/j.yjmcc.2018.12.00730571978)
Anatskaya OV, Vinogradov AE (2007) Genome multiplication as adaptation to tissue survival: evidence from gene expression in mammalian heart and liver. Genomics 89:70–80. https://doi.org/10.1016/j.ygeno.2006.08.014. (PMID: 10.1016/j.ygeno.2006.08.01417029690)
Auchampach J, Han L, Huang GN, Kühn B, Lough JW, O’Meara CC, Payumo AY, Rosenthal NA, Sucov HM, Yutzey KE, Patterson M (2022) Measuring cardiomyocyte cell-cycle activity and proliferation in the age of heart regeneration. Am J Physiol-Heart Circ Physiol 322:H579–H596. https://doi.org/10.1152/ajpheart.00666.2021. (PMID: 10.1152/ajpheart.00666.2021351799748934681)
Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN (2014) Macrophages are required for neonatal heart regeneration. J Clin Invest 124:1382–1392. https://doi.org/10.1172/JCI72181. (PMID: 10.1172/JCI72181245693803938260)
Bae J, Salamon RJ, Brandt EB, Paltzer WG, Zhang Z, Britt EC, Hacker TA, Fan J, Mahmoud AI (2021) Malonate promotes adult cardiomyocyte proliferation and heart regeneration. Circulation 143:1973–1986. https://doi.org/10.1161/CIRCULATIONAHA.120.049952. (PMID: 10.1161/CIRCULATIONAHA.120.04995233666092)
Baehr A, Umansky KB, Bassat E, Jurisch V, Klett K, Bozoglu T, Hornaschewitz N, Solyanik O, Kain D, Ferraro B, Cohen-Rabi R, Krane M, Cyran C, Soehnlein O, Laugwitz KL, Hinkel R, Kupatt C, Tzahor E (2020) Agrin promotes coordinated therapeutic processes leading to improved cardiac repair in pigs. Circulation 142:868–881. https://doi.org/10.1161/CIRCULATIONAHA.119.045116. (PMID: 10.1161/CIRCULATIONAHA.119.04511632508131)
Bailey LRJ, Bugg D, Reichardt IM, Ortaç CD, Gunaje J, Johnson R, MacCoss MJ, Sakamoto T, Kelly DP, Regnier M, Davis JM (2023) MBNL1 regulates programmed postnatal switching between regenerative and differentiated cardiac states. Cell Biol. https://doi.org/10.1161/CIRCULATIONAHA.123.066860. (PMID: 10.1161/CIRCULATIONAHA.123.066860)
Bassat E, Mutlak YE, Genzelinakh A, Shadrin IY, Baruch Umansky K, Yifa O, Kain D, Rajchman D, Leach J, Riabov Bassat D, Udi Y, Sarig R, Sagi I, Martin JF, Bursac N, Cohen S, Tzahor E (2017) The extracellular matrix protein agrin promotes heart regeneration in mice. Nature 547:179–184. https://doi.org/10.1038/nature22978. (PMID: 10.1038/nature22978285814975769930)
Beigi F, Schmeckpeper J, Pow-anpongkul P, Payne JA, Zhang L, Zhang Z, Huang J, Mirotsou M, Dzau VJ (2013) C3orf58, a novel paracrine protein, stimulates cardiomyocyte cell-cycle progression through the PI3K–AKT–CDK7 pathway. Circ Res 113:372–380. https://doi.org/10.1161/CIRCRESAHA.113.301075. (PMID: 10.1161/CIRCRESAHA.113.30107523784961)
Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102. https://doi.org/10.1126/science.1164680. (PMID: 10.1126/science.1164680193425902991140)
Berk BC, Fujiwara K, Lehoux S (2007) ECM remodeling in hypertensive heart disease. J Clin Invest 117:568–575. https://doi.org/10.1172/JCI31044. (PMID: 10.1172/JCI31044173328841804378)
Bersell K, Arab S, Haring B, Kühn B (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138:257–270. https://doi.org/10.1016/j.cell.2009.04.060. (PMID: 10.1016/j.cell.2009.04.06019632177)
Besson A, Dowdy SF, Roberts JM (2008) CDK inhibitors: cell cycle regulators and beyond. Dev Cell 14:159–169. https://doi.org/10.1016/j.devcel.2008.01.013. (PMID: 10.1016/j.devcel.2008.01.01318267085)
Bicknell KA, Coxon CH, Brooks G (2004) Forced expression of the cyclin B1–CDC2 complex induces proliferation in adult rat cardiomyocytes. Biochem J 382:411–416. https://doi.org/10.1042/BJ20031481. (PMID: 10.1042/BJ20031481152536911133796)
Blow JJ, Tanaka TU (2005) The chromosome cycle: coordinating replication and segregation: second in the cycles review series. EMBO Rep 6:1028–1034. https://doi.org/10.1038/sj.embor.7400557. (PMID: 10.1038/sj.embor.7400557162644271371039)
Brooks G (1998) Arresting developments in the cardiac myocyte cell cycle: role of cyclin-dependent kinase inhibitors. Cardiovasc Res 39:301–311. https://doi.org/10.1016/S0008-6363(98)00125-4. (PMID: 10.1016/S0008-6363(98)00125-49798515)
Broughton KM, Sussman MA (2019) Adult cardiomyocyte cell cycle detour: off-ramp to quiescent destinations. Trends Endocrinol Metab 30:557–567. https://doi.org/10.1016/j.tem.2019.05.006. (PMID: 10.1016/j.tem.2019.05.006312625456703820)
Cai B, Ma W, Wang X, Sukhareva N, Hua B, Zhang L, Xu J, Li X, Li S, Liu S, Yu M, Xu Y, Song R, Xu B, Yang F, Han Z, Ding F, Huang Q, Yu Y, Zhao Y, Wang J, Bamba D, Zagidullin N, Li F, Tian Y, Pan Z, Yang B (2020) Targeting LncDACH1 promotes cardiac repair and regeneration after myocardium infarction. Cell Death Differ 27:2158–2175. https://doi.org/10.1038/s41418-020-0492-5. (PMID: 10.1038/s41418-020-0492-5319696907308407)
Campa VM, Gutiérrez-Lanza R, Cerignoli F, Díaz-Trelles R, Nelson B, Tsuji T, Barcova M, Jiang W, Mercola M (2008) Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. J Cell Biol 183:129–141. https://doi.org/10.1083/jcb.200806104. (PMID: 10.1083/jcb.200806104188385552557048)
Cánepa ET, Scassa ME, Ceruti JM, Marazita MC, Carcagno AL, Sirkin PF, Ogara MF (2007) INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life 59:419–426. https://doi.org/10.1080/15216540701488358. (PMID: 10.1080/1521654070148835817654117)
Cao X, Wang J, Wang Z, Du J, Yuan X, Huang W, Meng J, Gu H, Nie Y, Ji B, Hu S, Zheng Z (2013) MicroRNA profiling during rat ventricular maturation: a role for miR-29a in regulating cardiomyocyte cell cycle re-entry. FEBS Lett 587:1548–1555. https://doi.org/10.1016/j.febslet.2013.01.075. (PMID: 10.1016/j.febslet.2013.01.07523587482)
Cardoso AC, Lam NT, Savla JJ, Nakada Y, Pereira AHM, Elnwasany A, Menendez-Montes I, Ensley EL, Bezan Petric U, Sharma G, Sherry AD, Malloy CR, Khemtong C, Kinter MT, Tan WLW, Anene-Nzelu CG, Foo RS-Y, Nguyen NUN, Li S, Ahmed MS, Elhelaly WM, Abdisalaam S, Asaithamby A, Xing C, Kanchwala M, Vale G, Eckert KM, Mitsche MA, McDonald JG, Hill JA, Huang L, Shaul PW, Szweda LI, Sadek HA (2020) Mitochondrial substrate utilization regulates cardiomyocyte cell-cycle progression. Nat Metab 2:167–178. https://doi.org/10.1038/s42255-020-0169-x. (PMID: 10.1038/s42255-020-0169-x326175177331943)
Cattaneo P, Hayes MGB, Baumgarten N, Hecker D, Peruzzo S, Aslan GS, Kunderfranco P, Larcher V, Zhang L, Contu R, Fonseca G, Spinozzi S, Chen J, Condorelli G, Dimmeler S, Schulz MH, Heinz S, Guimarães-Camboa N, Evans SM (2022) DOT1L regulates chamber-specific transcriptional networks during cardiogenesis and mediates postnatal cell cycle withdrawal. Nat Commun 13:7444. https://doi.org/10.1038/s41467-022-35070-2. (PMID: 10.1038/s41467-022-35070-2364606419718823)
Cech TR, Steitz JA (2014) The noncoding RNA revolution—trashing old rules to forge new ones. Cell 157:77–94. https://doi.org/10.1016/j.cell.2014.03.008. (PMID: 10.1016/j.cell.2014.03.00824679528)
Chaudhry HW, Dashoush NH, Tang H, Zhang L, Wang X, Wu EX, Wolgemuth DJ (2004) Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium. J Biol Chem 279:35858–35866. https://doi.org/10.1074/jbc.M404975200. (PMID: 10.1074/jbc.M40497520015159393)
Chen H, Shi S, Acosta L, Li W, Lu J, Bao S, Chen Z, Yang Z, Schneider MD, Chien KR, Conway SJ, Yoder MC, Haneline LS, Franco D, Shou W (2004) BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131:2219–2231. https://doi.org/10.1242/dev.01094. (PMID: 10.1242/dev.0109415073151)
Chen X-Z, Li X-M, Xu S-J, Hu S, Wang T, Li R-F, Liu C-Y, Xue J-Q, Zhou L-Y, Wang Y-H, Li P-F, Wang K (2023) TMEM11 regulates cardiomyocyte proliferation and cardiac repair via METTL1-mediated m7G methylation of ATF5 mRNA. Cell Death Differ 30:1786–1798. https://doi.org/10.1038/s41418-023-01179-0. (PMID: 10.1038/s41418-023-01179-03728674410307882)
Chen Y, Li X, Li B, Wang H, Li M, Huang S, Sun Y, Chen G, Si X, Huang C, Liao W, Liao Y, Bin J (2019) Long non-coding RNA ECRAR triggers post-natal myocardial regeneration by activating ERK1/2 signaling. Mol Ther 27:29–45. https://doi.org/10.1016/j.ymthe.2018.10.021. (PMID: 10.1016/j.ymthe.2018.10.02130528086)
Chen Z, Xie J, Hao H, Lin H, Wang L, Zhang Y, Chen L, Cao S, Huang X, Liao W, Bin J, Liao Y (2017) Ablation of periostin inhibits post-infarction myocardial regeneration in neonatal mice mediated by the phosphatidylinositol 3 kinase/glycogen synthase kinase 3β/cyclin D1 signalling pathway. Cardiovasc Res 113:620–632. https://doi.org/10.1093/cvr/cvx001. (PMID: 10.1093/cvr/cvx001284537295412017)
Cheng RK, Asai T, Tang H, Dashoush NH, Kara RJ, Costa KD, Naka Y, Wu EX, Wolgemuth DJ, Chaudhry HW (2007) Cyclin A2 induces cardiac regeneration after myocardial infarction and prevents heart failure. Circ Res 100:1741–1748. https://doi.org/10.1161/CIRCRESAHA.107.153544. (PMID: 10.1161/CIRCRESAHA.107.15354417495221)
Cho K-W, Andrade M, Bae S, Kim S, Eyun Kim J, Jang EY, Lee S, Husain A, Sutliff RL, Calvert JW, Park C, Yoon Y (2023) Polycomb group protein CBX7 represses cardiomyocyte proliferation through modulation of the TARDBP/RBM38 axis. Circulation 147:1823–1842. https://doi.org/10.1161/CIRCULATIONAHA.122.061131. (PMID: 10.1161/CIRCULATIONAHA.122.06113137158107)
Crippa S, Nemir M, Ounzain S, Ibberson M, Berthonneche C, Sarre A, Boisset G, Maison D, Harshman K, Xenarios I, Diviani D, Schorderet D, Pedrazzini T (2016) Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways. Cardiovasc Res 110:73–84. https://doi.org/10.1093/cvr/cvw031. (PMID: 10.1093/cvr/cvw031268574184798047)
Di Stefano V, Giacca M, Capogrossi MC, Crescenzi M, Martelli F (2011) Knockdown of cyclin-dependent kinase inhibitors induces cardiomyocyte re-entry in the cell cycle. J Biol Chem 286:8644–8654. https://doi.org/10.1074/jbc.M110.184549. (PMID: 10.1074/jbc.M110.184549212090823048746)
Diez-Cuñado M, Wei K, Bushway PJ, Maurya MR, Perera R, Subramaniam S, Ruiz-Lozano P, Mercola M (2018) miRNAs that induce human cardiomyocyte proliferation converge on the Hippo pathway. Cell Rep 23:2168–2174. https://doi.org/10.1016/j.celrep.2018.04.049. (PMID: 10.1016/j.celrep.2018.04.049297682136261450)
Dolejsi T, Delgobo M, Schuetz T, Tortola L, Heinze KG, Hofmann U, Frantz S, Bauer A, Ruschitzka F, Penninger JM, Campos Ramos G, Haubner BJ (2022) Adult T-cells impair neonatal cardiac regeneration. Eur Heart J 43:2698–2709. https://doi.org/10.1093/eurheartj/ehac153. (PMID: 10.1093/eurheartj/ehac153354175539300388)
Ebelt H, Zhang Y, Kampke A, Xu J, Schlitt A, Buerke M, Muller-Werdan U, Werdan K, Braun T (2008) E2F2 expression induces proliferation of terminally differentiated cardiomyocytes in vivo. Cardiovasc Res 80:219–226. https://doi.org/10.1093/cvr/cvn194. (PMID: 10.1093/cvr/cvn19418628254)
Engel FB, Schebesta M, Keating MT (2006) Anillin localization defect in cardiomyocyte binucleation. J Mol Cell Cardiol 41:601–612. https://doi.org/10.1016/j.yjmcc.2006.06.012. (PMID: 10.1016/j.yjmcc.2006.06.01216889791)
Eulalio A, Mano M, Ferro MD, Zentilin L, Sinagra G, Zacchigna S, Giacca M (2012) Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492:376–381. https://doi.org/10.1038/nature11739. (PMID: 10.1038/nature1173923222520)
Fan C, Joshi J, Li F, Xu B, Khan M, Yang J, Zhu W (2020) Nanoparticle-Mediated Drug Delivery for Treatment of Ischemic Heart Disease. Front Bioeng Biotechnol 8:687. https://doi.org/10.3389/fbioe.2020.00687. (PMID: 10.3389/fbioe.2020.00687326710497326780)
Feng J, Li Y, Li Y, Yin Q, Li H, Li J, Zhou B, Meng J, Lian H, Wu M, Li Y, Dou K, Song W, Lu B, Liu L, Hu S, Nie Y (2023) Versican promotes cardiomyocyte proliferation and cardiac repair. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.123.066298. (PMID: 10.1161/CIRCULATIONAHA.123.06629838079487)
Foster DA, Yellen P, Xu L, Saqcena M (2010) Regulation of G1 cell cycle progression: distinguishing the restriction point from a nutrient-sensing cell growth checkpoint(s). Genes Cancer 1:1124–1131. https://doi.org/10.1177/1947601910392989. (PMID: 10.1177/1947601910392989217794363092273)
Frangogiannis NG (2019) The extracellular matrix in ischemic and nonischemic heart failure. Circ Res 125:117–146. https://doi.org/10.1161/CIRCRESAHA.119.311148. (PMID: 10.1161/CIRCRESAHA.119.311148312197416588179)
French KM, Boopathy AV, DeQuach JA, Chingozha L, Lu H, Christman KL, Davis ME (2012) A naturally derived cardiac extracellular matrix enhances cardiac progenitor cell behavior in vitro. Acta Biomater 8:4357–4364. https://doi.org/10.1016/j.actbio.2012.07.033. (PMID: 10.1016/j.actbio.2012.07.033228420353488121)
Fu W, Liao Q, Li L, Shi Y, Zeng A, Zeng C, Wang WE (2020) An aurora kinase B-based mouse system to efficiently identify and analyze proliferating cardiomyocytes. Front Cell Dev Biol 8:570252. https://doi.org/10.3389/fcell.2020.570252. (PMID: 10.3389/fcell.2020.570252331178007575716)
Fu W, Ren H, Shou J, Liao Q, Li L, Shi Y, Jose PA, Zeng C, Wang WE (2022) Loss of NPPA-AS1 promotes heart regeneration by stabilizing SFPQ–NONO heteromer-induced DNA repair. Basic Res Cardiol 117:10. https://doi.org/10.1007/s00395-022-00921-y. (PMID: 10.1007/s00395-022-00921-y35247074)
Gabisonia K, Prosdocimo G, Aquaro GD, Carlucci L, Zentilin L, Secco I, Ali H, Braga L, Gorgodze N, Bernini F, Burchielli S, Collesi C, Zandonà L, Sinagra G, Piacenti M, Zacchigna S, Bussani R, Recchia FA, Giacca M (2019) MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature 569:418–422. https://doi.org/10.1038/s41586-019-1191-6. (PMID: 10.1038/s41586-019-1191-6310686986768803)
Gamba L, Harrison M, Lien C-L (2014) Cardiac regeneration in model organisms. Curr Treat Options Cardio Med 16:288. https://doi.org/10.1007/s11936-013-0288-8. (PMID: 10.1007/s11936-013-0288-8)
Gomez AH, Joshi S, Yang Y, Tune JD, Zhao M-T, Yang H (2021) Bioengineering systems for modulating notch signaling in cardiovascular development, disease, and regeneration. JCDD 8:125. https://doi.org/10.3390/jcdd8100125. (PMID: 10.3390/jcdd8100125346771948541010)
Gong R, Gao X, Liu Y, Shen Y, Jiang Z, Wang X, Zagidullin N, Ma W, Wang N, Cai B (2023) Cyclin L1 controls cardiomyocyte proliferation and heart repair after injury. Sig Transduct Target Ther 8:243. https://doi.org/10.1038/s41392-023-01444-1. (PMID: 10.1038/s41392-023-01444-1)
Gong R, Wang X, Li H, Liu S, Jiang Z, Zhao Y, Yu Y, Han Z, Yu Y, Dong C, Li S, Xu B, Zhang W, Wang N, Li X, Gao X, Yang F, Bamba D, Ma W, Liu Y, Cai B (2021) Loss of m6A methyltransferase METTL3 promotes heart regeneration and repair after myocardial injury. Pharmacol Res 174:105845. https://doi.org/10.1016/j.phrs.2021.105845. (PMID: 10.1016/j.phrs.2021.10584534428587)
Gonzalez A (2003) Cardiomyocyte apoptosis in hypertensive cardiomyopathy. Cardiovasc Res 59:549–562. https://doi.org/10.1016/S0008-6363(03)00498-X. (PMID: 10.1016/S0008-6363(03)00498-X14499856)
Grego-Bessa J, Luna-Zurita L, Del Monte G, Bolós V, Melgar P, Arandilla A, Garratt AN, Zang H, Mukouyama Y, Chen H, Shou W, Ballestar E, Esteller M, Rojas A, Pérez-Pomares JM, De La Pompa JL (2007) Notch signaling is essential for ventricular chamber development. Dev Cell 12:415–429. https://doi.org/10.1016/j.devcel.2006.12.011. (PMID: 10.1016/j.devcel.2006.12.011173369072746361)
Gude N, Muraski J, Rubio M, Kajstura J, Schaefer E, Anversa P, Sussman MA (2006) Akt promotes increased cardiomyocyte cycling and expansion of the cardiac progenitor cell population. Circ Res 99:381–388. https://doi.org/10.1161/01.RES.0000236754.21499.1c. (PMID: 10.1161/01.RES.0000236754.21499.1c16840722)
Haginiwa S, Sadahiro T, Kojima H, Isomi M, Tamura F, Kurotsu S, Tani H, Muraoka N, Miyake N, Miyake K, Fukuda K, Ieda M (2019) Tbx6 induces cardiomyocyte proliferation in postnatal and adult mouse hearts. Biochem Biophys Res Commun 513:1041–1047. https://doi.org/10.1016/j.bbrc.2019.04.087. (PMID: 10.1016/j.bbrc.2019.04.08731010673)
Halder G, Johnson RL (2011) Hippo signaling: growth control and beyond. Development 138:9–22. https://doi.org/10.1242/dev.045500. (PMID: 10.1242/dev.045500211389732998162)
Han L, Choudhury S, Mich-Basso JD, Ammanamanchi N, Ganapathy B, Suresh S, Khaladkar M, Singh J, Maehr R, Zuppo DA, Kim J, Eberwine JH, Wyman SK, Wu YL, Kühn B (2020) Lamin B2 levels regulate polyploidization of cardiomyocyte nuclei and myocardial regeneration. Dev Cell 53:42-59.e11. https://doi.org/10.1016/j.devcel.2020.01.030. (PMID: 10.1016/j.devcel.2020.01.030321093837346764)
Han Z, Wang X, Xu Z, Cao Y, Gong R, Yu Y, Yu Y, Guo X, Liu S, Yu M, Ma W, Zhao Y, Xu J, Li X, Li S, Xu Y, Song R, Xu B, Yang F, Bamba D, Sukhareva N, Lei H, Gao M, Zhang W, Zagidullin N, Zhang Y, Yang B, Pan Z, Cai B (2021) ALKBH5 regulates cardiomyocyte proliferation and heart regeneration by demethylating the mRNA of YTHDF1. Theranostics 11:3000–3016. https://doi.org/10.7150/thno.47354. (PMID: 10.7150/thno.47354334565857806463)
Harper JV, Brooks G (2004) The mammalian cell cycle: an overview. Cell cycle control. Humana Press, New Jersey, pp 113–154. (PMID: 10.1385/1-59259-857-9:113)
Hashimoto H, Olson EN, Bassel-Duby R (2018) Therapeutic approaches for cardiac regeneration and repair. Nat Rev Cardiol 15:585–600. https://doi.org/10.1038/s41569-018-0036-6. (PMID: 10.1038/s41569-018-0036-6298721656241533)
Hatzistergos KE, Williams AR, Dykxhoorn D, Bellio MA, Yu W, Hare JM (2019) Tumor suppressors RB1 and CDKN2a cooperatively regulate cell-cycle progression and differentiation during cardiomyocyte development and repair: implications for stimulating neomyogenesis with cell-based therapy. Circ Res 124:1184–1197. https://doi.org/10.1161/CIRCRESAHA.118.314063. (PMID: 10.1161/CIRCRESAHA.118.31406330744497)
Haubner BJ, Adamowicz-Brice M, Khadayate S, Tiefenthaler V, Metzler B, Aitman T, Penninger JM (2012) Complete cardiac regeneration in a mouse model of myocardial infarction. Aging 4:966–977. https://doi.org/10.18632/aging.100526. (PMID: 10.18632/aging.100526234258603615162)
Hauck L, Dadson K, Chauhan S, Grothe D, Billia F (2021) Inhibiting the Pkm2/b-catenin axis drives in vivo replication of adult cardiomyocytes following experimental MI. Cell Death Differ 28:1398–1417. https://doi.org/10.1038/s41418-020-00669-9. (PMID: 10.1038/s41418-020-00669-933288902)
Heallen T, Morikawa Y, Leach J, Tao G, Willerson JT, Johnson RL, Martin JF (2013) Hippo signaling impedes adult heart regeneration. Development 140:4683–4690. https://doi.org/10.1242/dev.102798. (PMID: 10.1242/dev.102798242550963833428)
Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, Martin JF (2011) Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332:458–461. https://doi.org/10.1126/science.1199010. (PMID: 10.1126/science.1199010215120313133743)
Hein S, Arnon E, Kostin S, Schönburg M, Elsässer A, Polyakova V, Bauer EP, Klövekorn W-P, Schaper J (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107:984–991. https://doi.org/10.1161/01.CIR.0000051865.66123.B7. (PMID: 10.1161/01.CIR.0000051865.66123.B712600911)
Hesse M, Doengi M, Becker A, Kimura K, Voeltz N, Stein V, Fleischmann BK (2018) Midbody positioning and distance between daughter nuclei enable unequivocal identification of cardiomyocyte cell division in mice. Circ Res 123:1039–1052. https://doi.org/10.1161/CIRCRESAHA.118.312792. (PMID: 10.1161/CIRCRESAHA.118.31279230355161)
Hu Y, Jin G, Li B, Chen Y, Zhong L, Chen G, Chen X, Zhong J, Liao W, Liao Y, Wang Y, Bin J (2019) Suppression of miRNA let-7i-5p promotes cardiomyocyte proliferation and repairs heart function post injury by targeting CCND2 and E2F2. Clin Sci 133:425–441. https://doi.org/10.1042/CS20181002. (PMID: 10.1042/CS20181002)
Huang S, Li X, Zheng H, Si X, Li B, Wei G, Li C, Chen Y, Chen Y, Liao W, Liao Y, Bin J (2019) Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation 139:2857–2876. https://doi.org/10.1161/CIRCULATIONAHA.118.038361. (PMID: 10.1161/CIRCULATIONAHA.118.038361309475186629176)
Huang W, Feng Y, Liang J, Yu H, Wang C, Wang B, Wang M, Jiang L, Meng W, Cai W, Medvedovic M, Chen J, Paul C, Davidson WS, Sadayappan S, Stambrook PJ, Yu X-Y, Wang Y (2018) Loss of microRNA-128 promotes cardiomyocyte proliferation and heart regeneration. Nat Commun 9:700. https://doi.org/10.1038/s41467-018-03019-z. (PMID: 10.1038/s41467-018-03019-z294534565816015)
Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong T-T, Shaw RM, Srivastava D (2009) Cardiac fibroblasts regulate myocardial proliferation through β1 integrin signaling. Dev Cell 16:233–244. https://doi.org/10.1016/j.devcel.2008.12.007. (PMID: 10.1016/j.devcel.2008.12.007192174252664087)
Ikenishi A, Okayama H, Iwamoto N, Yoshitome S, Tane S, Nakamura K, Obayashi T, Hayashi T, Takeuchi T (2012) Cell cycle regulation in mouse heart during embryonic and postnatal stages. Dev Growth Differ 54:731–738. https://doi.org/10.1111/j.1440-169X.2012.01373.x. (PMID: 10.1111/j.1440-169X.2012.01373.x22957921)
Ishikawa K, Weber T, Hajjar RJ (2018) Human cardiac gene therapy. Circ Res 123:601–613. https://doi.org/10.1161/CIRCRESAHA.118.311587. (PMID: 10.1161/CIRCRESAHA.118.311587303551386390977)
Jang J, Engleka KA, Liu F, Li L, Song G, Epstein JA, Li D (2020) An engineered mouse to identify proliferating cells and their derivatives. Front Cell Dev Biol 8:388. https://doi.org/10.3389/fcell.2020.00388. (PMID: 10.3389/fcell.2020.00388325239547261916)
Jiang Y-H, Zhu Y, Chen S, Wang H-L, Zhou Y, Tang F-Q, Jian Z, Xiao Y-B (2019) Re-enforcing hypoxia-induced polyploid cardiomyocytes enter cytokinesis through activation of β-catenin. Sci Rep 9:17865. https://doi.org/10.1038/s41598-019-54334-4. (PMID: 10.1038/s41598-019-54334-4317807746883062)
Johnson J, Yang Y, Bian Z, Schena G, Li Y, Zhang X, Eaton DM, Gross P, Angheloiu A, Shaik A, Foster M, Berretta R, Kubo H, Mohsin S, Tian Y, Houser SR (2023) Systemic hypoxemia induces cardiomyocyte hypertrophy and right ventricular specific induction of proliferation. Circ Res 132:723–740. https://doi.org/10.1161/CIRCRESAHA.122.321604. (PMID: 10.1161/CIRCRESAHA.122.3216043679921810023496)
Kang MJ, Koh GY (1997) Differential and dramatic changes of cyclin-dependent kinase activities in cardiomyocytes during the neonatal period. J Mol Cell Cardiol 29:1767–1777. https://doi.org/10.1006/jmcc.1997.0450. (PMID: 10.1006/jmcc.1997.04509236132)
Kastan N, Gnedeva K, Alisch T, Petelski AA, Huggins DJ, Chiaravalli J, Aharanov A, Shakked A, Tzahor E, Nagiel A, Segil N, Hudspeth AJ (2021) Small-molecule inhibition of Lats kinases may promote Yap-dependent proliferation in postmitotic mammalian tissues. Nat Commun 12:3100. https://doi.org/10.1038/s41467-021-23395-3. (PMID: 10.1038/s41467-021-23395-3340352888149661)
Kerkela R, Kockeritz L, MacAulay K, Zhou J, Doble BW, Beahm C, Greytak S, Woulfe K, Trivedi CM, Woodgett JR, Epstein JA, Force T, Huggins GS (2008) Deletion of GSK-3β in mice leads to hypertrophic cardiomyopathy secondary to cardiomyoblast hyperproliferation. J Clin Invest 118:3609–3618. https://doi.org/10.1172/JCI36245. (PMID: 10.1172/JCI36245188304172556242)
Kim H (1992) Human fetal heart development after mid-term: morphometry and ultrastructural study. J Mol Cell Cardiol 24:949–965. https://doi.org/10.1016/0022-2828(92)91862-Y. (PMID: 10.1016/0022-2828(92)91862-Y1433323)
Kim WY, Sharpless NE (2006) The regulation of INK4/ARF in cancer and aging. Cell 127:265–275. https://doi.org/10.1016/j.cell.2006.10.003. (PMID: 10.1016/j.cell.2006.10.00317055429)
Kirillova A, Han L, Liu H, Kühn B (2021) Polyploid cardiomyocytes: implications for heart regeneration. Development 148:dev199401. https://doi.org/10.1242/dev.199401. (PMID: 10.1242/dev.199401348973888326922)
Koh KN, Kang MJ, Frith-Terhune A, Park SK, Kim I, Lee CO, Koh GY (1998) Persistent and heterogenous expression of the cyclin-dependent kinase inhibitor, p27KIP1, in rat hearts during development. J Mol Cell Cardiol 30:463–474. https://doi.org/10.1006/jmcc.1997.0611. (PMID: 10.1006/jmcc.1997.06119515024)
Kou CY-C, Lau SL-Y, Au K-W, Leung P-Y, Chim SS-C, Fung K-P, Waye MM-Y, Tsui SK-W (2010) Epigenetic regulation of neonatal cardiomyocytes differentiation. Biochem Biophys Res Commun 400:278–283. https://doi.org/10.1016/j.bbrc.2010.08.064. (PMID: 10.1016/j.bbrc.2010.08.06420735989)
Kretzschmar K, Post Y, Bannier-Hélaouët M, Mattiotti A, Drost J, Basak O, Li VSW, Van Den Born M, Gunst QD, Versteeg D, Kooijman L, Van Der Elst S, Van Es JH, Van Rooij E, Van Den Hoff MJB, Clevers H (2018) Profiling proliferative cells and their progeny in damaged murine hearts. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1805829115. (PMID: 10.1073/pnas.1805829115305306456310797)
Kühn B, Del Monte F, Hajjar RJ, Chang Y-S, Lebeche D, Arab S, Keating MT (2007) Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med 13:962–969. https://doi.org/10.1038/nm1619. (PMID: 10.1038/nm161917632525)
Kytö V, Saraste A, Saukko P, Véronique H, Pulkki K, Vuorinen T, Voipio-Pulkki L-M (2004) Apoptotic cardiomyocyte death in fatal myocarditis. Am J Cardiol 94:746–750. https://doi.org/10.1016/j.amjcard.2004.05.056. (PMID: 10.1016/j.amjcard.2004.05.05615374778)
Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473:326–335. https://doi.org/10.1038/nature10147. (PMID: 10.1038/nature10147215938654091722)
Lan C, Chen C, Qu S, Cao N, Luo H, Yu C, Wang N, Xue Y, Xia X, Fan C, Ren H, Yang Y, Jose PA, Xu Z, Wu G, Zeng C (2022) Inhibition of DYRK1A, via histone modification, promotes cardiomyocyte cell cycle activation and cardiac repair after myocardial infarction. EBioMedicine 82:104139. https://doi.org/10.1016/j.ebiom.2022.104139. (PMID: 10.1016/j.ebiom.2022.104139358105629278077)
Leblond CP, El-Alfy M (1998) The eleven stages of the cell cycle, with emphasis on the changes in chromosomes and nucleoli during interphase and mitosis. Anat Rec 252:426–443. https://doi.org/10.1002/(SICI)1097-0185(199811)252:3%3c426::AID-AR11%3e3.0.CO;2-3. (PMID: 10.1002/(SICI)1097-0185(199811)252:3<426::AID-AR11>3.0.CO;2-39811221)
Leone M, Engel FB (2019) Advances in heart regeneration based on cardiomyocyte proliferation and regenerative potential of binucleated cardiomyocytes and polyploidization. Clin Sci 133:1229–1253. https://doi.org/10.1042/CS20180560. (PMID: 10.1042/CS20180560)
Leone M, Magadum A, Engel FB (2015) Cardiomyocyte proliferation in cardiac development and regeneration: a guide to methodologies and interpretations. Am J Physiol-Heart Circ Physiol 309:H1237–H1250. https://doi.org/10.1152/ajpheart.00559.2015. (PMID: 10.1152/ajpheart.00559.201526342071)
Li B, Li M, Li X, Li H, Lai Y, Huang S, He X, Si X, Zheng H, Liao W, Liao Y, Bin J (2019) Sirt1-inducible deacetylation of p21 promotes cardiomyocyte proliferation. Aging 11:12546–12567. https://doi.org/10.18632/aging.102587. (PMID: 10.18632/aging.102587318810096949046)
Li F (1996) Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 28:1737–1746. https://doi.org/10.1006/jmcc.1996.0163. (PMID: 10.1006/jmcc.1996.01638877783)
Li J, Liang C, Yang KY, Huang X, Han MY, Li X, Chan VW, Chan KS, Liu D, Huang Z-P, Zhou B, Lui KO (2020) Specific ablation of CD4 + T-cells promotes heart regeneration in juvenile mice. Theranostics 10:8018–8035. https://doi.org/10.7150/thno.42943. (PMID: 10.7150/thno.42943327244557381734)
Li L, Xu N, Liu J, Chen Z, Liu X, Wang J (2022) m6A methylation in cardiovascular diseases: from mechanisms to therapeutic potential. Front Genet 13:908976. https://doi.org/10.3389/fgene.2022.908976. (PMID: 10.3389/fgene.2022.908976358365719274458)
Li M, Izpisua Belmonte JC (2016) Mending a faltering heart. Circ Res 118:344–351. https://doi.org/10.1161/CIRCRESAHA.115.306820. (PMID: 10.1161/CIRCRESAHA.115.30682026838318)
Li X, Wang J, Jia Z, Cui Q, Zhang C, Wang W, Chen P, Ma K, Zhou C (2013) MiR-499 regulates cell proliferation and apoptosis during late-stage cardiac differentiation via Sox6 and cyclin D1. PLoS ONE 8:e74504. https://doi.org/10.1371/journal.pone.0074504. (PMID: 10.1371/journal.pone.0074504240402633770584)
Li X, Wu F, Günther S, Looso M, Kuenne C, Zhang T, Wiesnet M, Klatt S, Zukunft S, Fleming I, Poschet G, Wietelmann A, Atzberger A, Potente M, Yuan X, Braun T (2023) Inhibition of fatty acid oxidation enables heart regeneration in adult mice. Nature 622:619–626. https://doi.org/10.1038/s41586-023-06585-5. (PMID: 10.1038/s41586-023-06585-53775895010584682)
Li Y, Feng J, Song S, Li H, Yang H, Zhou B, Li Y, Yue Z, Lian H, Liu L, Hu S, Nie Y (2020) gp130 controls cardiomyocyte proliferation and heart regeneration. Circulation 142:967–982. https://doi.org/10.1161/CIRCULATIONAHA.119.044484. (PMID: 10.1161/CIRCULATIONAHA.119.04448432600062)
Li Y, Wei T, Fan Y, Shan T, Sun J, Chen B, Wang Z, Gu L, Yang T, Liu L, Du C, Ma Y, Wang H, Sun R, Wei Y, Chen F, Guo X, Kong X, Wang L (2021) Serine/threonine-protein kinase 3 facilitates myocardial repair after cardiac injury possibly through the glycogen synthase kinase-3β/β-catenin pathway. JAHA 10:e022802. https://doi.org/10.1161/JAHA.121.022802. (PMID: 10.1161/JAHA.121.022802347264698751936)
Li Y, Yang M, Tan J, Shen C, Deng S, Fu X, Gao S, Li H, Zhang X, Cai W (2022) Targeting ACSL1 promotes cardiomyocyte proliferation and cardiac regeneration. Life Sci 294:120371. https://doi.org/10.1016/j.lfs.2022.120371. (PMID: 10.1016/j.lfs.2022.12037135122795)
Liang D, Li J, Wu Y, Zhen L, Li C, Qi M, Wang L, Deng F, Huang J, Lv F, Liu Y, Ma X, Yu Z, Zhang Y, Chen Y-H (2015) miRNA-204 drives cardiomyocyte proliferation via targeting Jarid2. Int J Cardiol 201:38–48. https://doi.org/10.1016/j.ijcard.2015.06.163. (PMID: 10.1016/j.ijcard.2015.06.16326298346)
Liao H-S, Kang PM, Nagashima H, Yamasaki N, Usheva A, Ding B, Lorell BH, Izumo S (2001) Cardiac-specific overexpression of cyclin-dependent kinase 2 increases smaller mononuclear cardiomyocytes. Circ Res 88:443–450. https://doi.org/10.1161/01.RES.88.4.443. (PMID: 10.1161/01.RES.88.4.44311230113)
Liao S, Dong W, Lv L, Guo H, Yang J, Zhao H, Huang R, Yuan Z, Chen Y, Feng S, Zheng X, Huang J, Huang W, Qi X, Cai D (2017) Heart regeneration in adult Xenopus tropicalis after apical resection. Cell Biosci 7:70. https://doi.org/10.1186/s13578-017-0199-6. (PMID: 10.1186/s13578-017-0199-6292555925727962)
Lin Z, Von Gise A, Zhou P, Gu F, Ma Q, Jiang J, Yau AL, Buck JN, Gouin KA, Van Gorp PRR, Zhou B, Chen J, Seidman JG, Wang D-Z, Pu WT (2014) Cardiac-specific YAP activation improves cardiac function and survival in an experimental murine mi model. Circ Res 115:354–363. https://doi.org/10.1161/CIRCRESAHA.115.303632. (PMID: 10.1161/CIRCRESAHA.115.303632248336604104149)
Lin Z, Zhou P, Von Gise A, Gu F, Ma Q, Chen J, Guo H, Van Gorp PRR, Wang D-Z, Pu WT (2015) Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival. Circ Res 116:35–45. https://doi.org/10.1161/CIRCRESAHA.115.304457. (PMID: 10.1161/CIRCRESAHA.115.30445725249570)
Liu S, Li K, Wagner Florencio L, Tang L, Heallen TR, Leach JP, Wang Y, Grisanti F, Willerson JT, Perin EC, Zhang S, Martin JF (2021) Gene therapy knockdown of Hippo signaling induces cardiomyocyte renewal in pigs after myocardial infarction. Sci Transl Med 13:eabd6892. https://doi.org/10.1126/scitranslmed.abd6892. (PMID: 10.1126/scitranslmed.abd6892341936139476348)
Lopaschuk GD, Collins-Nakai RL, Itoi T (1992) Developmental changes in energy substrate use by the heart. Cardiovasc Res 26:1172–1180. https://doi.org/10.1093/cvr/26.12.1172. (PMID: 10.1093/cvr/26.12.11721288863)
Lorts A, Schwanekamp JA, Elrod JW, Sargent MA, Molkentin JD (2009) Genetic manipulation of periostin expression in the heart does not affect myocyte content, cell cycle activity, or cardiac repair. Circ Res. https://doi.org/10.1161/CIRCRESAHA.108.188649. (PMID: 10.1161/CIRCRESAHA.108.18864919038863)
Ma W, Wang X, Sun H, Xu B, Song R, Tian Y, Zhao L, Xu Y, Zhao Y, Yang F, Chen H, Gong R, Yu Y, Li X, Li S, Zhang W, Zhang T, Ne J, Cai B (2022) Oxidant stress-sensitive circRNA Mdc1 controls cardiomyocyte chromosome stability and cell cycle re-entry during heart regeneration. Pharmacol Res 184:106422. https://doi.org/10.1016/j.phrs.2022.106422. (PMID: 10.1016/j.phrs.2022.10642236058431)
Maddika S, Ande SR, Wiechec E, Hansen LL, Wesselborg S, Los M (2008) Akt-mediated phosphorylation of CDK2 regulates its dual role in cell cycle progression and apoptosis. J Cell Sci 121:979–988. https://doi.org/10.1242/jcs.009530. (PMID: 10.1242/jcs.00953018354084)
Magadum A, Singh N, Kurian AA, Munir I, Mehmood T, Brown K, Sharkar MTK, Chepurko E, Sassi Y, Oh JG, Lee P, Santos CXC, Gaziel-Sovran A, Zhang G, Cai C-L, Kho C, Mayr M, Shah AM, Hajjar RJ, Zangi L (2020) Pkm2 regulates cardiomyocyte cell cycle and promotes cardiac regeneration. Circulation 141:1249–1265. https://doi.org/10.1161/CIRCULATIONAHA.119.043067. (PMID: 10.1161/CIRCULATIONAHA.119.043067320783877241614)
Mahiny-Shahmohammady D, Hauck L, Billia F (2022) Defining the molecular underpinnings controlling cardiomyocyte proliferation. Clin Sci 136:911–934. https://doi.org/10.1042/CS20211180. (PMID: 10.1042/CS20211180)
McDevitt TC, Laflamme MA, Murry CE (2005) Proliferation of cardiomyocytes derived from human embryonic stem cells is mediated via the IGF/PI 3-kinase/Akt signaling pathway. J Mol Cell Cardiol 39:865–873. https://doi.org/10.1016/j.yjmcc.2005.09.007. (PMID: 10.1016/j.yjmcc.2005.09.007162421463505759)
Medema RH, Kops GJPL, Bos JL, Burgering BMT (2000) AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404:782–787. https://doi.org/10.1038/35008115. (PMID: 10.1038/3500811510783894)
Menendez-Montes I, Abdisalaam S, Xiao F, Lam NT, Mukherjee S, Szweda LI, Asaithamby A, Sadek HA (2021) Mitochondrial fatty acid utilization increases chromatin oxidative stress in cardiomyocytes. Proc Natl Acad Sci USA 118:e2101674118. https://doi.org/10.1073/pnas.2101674118. (PMID: 10.1073/pnas.2101674118344173148403954)
Mohamed TMA, Ang Y-S, Radzinsky E, Zhou P, Huang Y, Elfenbein A, Foley A, Magnitsky S, Srivastava D (2018) Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell 173:104-116.e12. https://doi.org/10.1016/j.cell.2018.02.014. (PMID: 10.1016/j.cell.2018.02.014295029715973786)
Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562. https://doi.org/10.1038/nature01262. (PMID: 10.1038/nature01262)
Nakada Y, Canseco DC, Thet S, Abdisalaam S, Asaithamby A, Santos CX, Shah AM, Zhang H, Faber JE, Kinter MT, Szweda LI, Xing C, Hu Z, Deberardinis RJ, Schiattarella G, Hill JA, Oz O, Lu Z, Zhang CC, Kimura W, Sadek HA (2017) Hypoxia induces heart regeneration in adult mice. Nature 541:222–227. https://doi.org/10.1038/nature20173. (PMID: 10.1038/nature2017327798600)
Nguyen NUN, Canseco DC, Xiao F, Nakada Y, Li S, Lam NT, Muralidhar SA, Savla JJ, Hill JA, Le V, Zidan KA, El-Feky HW, Wang Z, Ahmed MS, Hubbi ME, Menendez-Montes I, Moon J, Ali SR, Le V, Villalobos E, Mohamed MS, Elhelaly WM, Thet S, Anene-Nzelu CG, Tan WLW, Foo RS, Meng X, Kanchwala M, Xing C, Roy J, Cyert MS, Rothermel BA, Sadek HA (2020) A calcineurin–Hoxb13 axis regulates growth mode of mammalian cardiomyocytes. Nature 582:271–276. https://doi.org/10.1038/s41586-020-2228-6. (PMID: 10.1038/s41586-020-2228-6324996407670845)
Notari M, Ventura-Rubio A, Bedford-Guaus SJ, Jorba I, Mulero L, Navajas D, Martí M, Raya Á (2018) The local microenvironment limits the regenerative potential of the mouse neonatal heart. Sci Adv 4:eaao5553. https://doi.org/10.1126/sciadv.aao5553. (PMID: 10.1126/sciadv.aao5553297324025931766)
Paddock SJ, Swift SK, Alencar-Almeida V, Kenarsary A, Alvarez-Argote S, Flinn MA, Patterson M, O’Meara CC (2021) IL4Rα signaling promotes neonatal cardiac regeneration and cardiomyocyte cell cycle activity. J Mol Cell Cardiol 161:62–74. https://doi.org/10.1016/j.yjmcc.2021.07.012. (PMID: 10.1016/j.yjmcc.2021.07.012343435408629844)
Pan D (2010) The Hippo signaling pathway in development and cancer. Dev Cell 19:491–505. https://doi.org/10.1016/j.devcel.2010.09.011. (PMID: 10.1016/j.devcel.2010.09.011209513423124840)
Pandey R, Velasquez S, Durrani S, Jiang M, Neiman M, Crocker JS, Benoit JB, Rubinstein J, Paul A, Ahmed RP (2017) MicroRNA-1825 induces proliferation of adult cardiomyocytes and promotes cardiac regeneration post ischemic injury. Am J Transl Res 9:3120–3137. (PMID: 286703985489910)
Parekh P, Motiwale L, Naik N, Rao KVK (2011) Downregulation of cyclin D1 is associated with decreased levels of p38 MAP kinases, Akt/PKB and Pak1 during chemopreventive effects of resveratrol in liver cancer cells. Exp Toxicol Pathol 63:167–173. https://doi.org/10.1016/j.etp.2009.11.005. (PMID: 10.1016/j.etp.2009.11.00520133117)
Pasumarthi KBS, Nakajima H, Nakajima HO, Soonpaa MH, Field LJ (2005) Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res 96:110–118. https://doi.org/10.1161/01.RES.0000152326.91223.4F. (PMID: 10.1161/01.RES.0000152326.91223.4F15576649)
Patterson M, Swift SK (2019) Residual diploidy in polyploid tissues: a cellular state with enhanced proliferative capacity for tissue regeneration? Stem Cells Dev 28:1527–1539. https://doi.org/10.1089/scd.2019.0193. (PMID: 10.1089/scd.2019.01933160878211001963)
Piórkowska K, Ropka-Molik K (2021) Pig genomics and genetics. Genes 12:1692. https://doi.org/10.3390/genes12111692. (PMID: 10.3390/genes12111692348282988623580)
Ponnusamy M, Liu F, Zhang Y-H, Li R-B, Zhai M, Liu F, Zhou L-Y, Liu C-Y, Yan K-W, Dong Y-H, Wang M, Qian L-L, Shan C, Xu S, Wang Q, Zhang Y-H, Li P-F, Zhang J, Wang K (2019) Long noncoding RNA CPR (cardiomyocyte proliferation regulator) regulates cardiomyocyte proliferation and cardiac repair. Circulation 139:2668–2684. https://doi.org/10.1161/CIRCULATIONAHA.118.035832. (PMID: 10.1161/CIRCULATIONAHA.118.03583230832495)
Poolman RA, Gilchrist R, Brooks G (1998) Cell cycle profiles and expressions of p21CIP1 and p27KIP1 during myocyte development. Int J Cardiol 67:133–142. https://doi.org/10.1016/S0167-5273(98)00320-9. (PMID: 10.1016/S0167-5273(98)00320-99891946)
Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam Y-J, Matkovich SJ, Dorn GW, Van Rooij E, Olson EN (2011) miR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res 109:670–679. https://doi.org/10.1161/CIRCRESAHA.111.248880. (PMID: 10.1161/CIRCRESAHA.111.248880217784303167208)
Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, Mammen PP, Rothermel BA, Olson EN, Sadek HA (2013) Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci USA 110:187–192. https://doi.org/10.1073/pnas.1208863110. (PMID: 10.1073/pnas.120886311023248315)
Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298:2188–2190. https://doi.org/10.1126/science.1077857. (PMID: 10.1126/science.107785712481136)
Prabhu SD, Frangogiannis NG (2016) The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res 119:91–112. https://doi.org/10.1161/CIRCRESAHA.116.303577. (PMID: 10.1161/CIRCRESAHA.116.303577273402704922528)
Przybyt E, Krenning G, Brinker MG, Harmsen MC (2013) Adipose stromal cells primed with hypoxia and inflammation enhance cardiomyocyte proliferation rate in vitro through STAT3 and Erk1/2. J Transl Med 11:39. https://doi.org/10.1186/1479-5876-11-39. (PMID: 10.1186/1479-5876-11-39234063163586350)
Puck TT, Steffen J (1963) Life cycle analysis of mammalian cells. Biophys J 3:379–397. https://doi.org/10.1016/S0006-3495(63)86828-9. (PMID: 10.1016/S0006-3495(63)86828-9140624571366456)
Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, Grinsfelder D, Rothermel BA, Chen R, Garcia JA, Santos CX, Thet S, Mori E, Kinter MT, Rindler PM, Zacchigna S, Mukherjee S, Chen DJ, Mahmoud AI, Giacca M, Rabinovitch PS, Asaithamby A, Shah AM, Szweda LI, Sadek HA (2014) The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 157:565–579. https://doi.org/10.1016/j.cell.2014.03.032. (PMID: 10.1016/j.cell.2014.03.032247668064104514)
Quelle DE, Ashmun RA, Shurtleff SA, Kato JY, Bar-Sagi D, Roussel MF, Sherr CJ (1993) Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev 7:1559–1571. https://doi.org/10.1101/gad.7.8.1559. (PMID: 10.1101/gad.7.8.15598339933)
Raso A, Dirkx E, Sampaio-Pinto V, El Azzouzi H, Cubero RJ, Sorensen DW, Ottaviani L, Olieslagers S, Huibers MM, De Weger R, Siddiqi S, Moimas S, Torrini C, Zentillin L, Braga L, Nascimento DS, Da Costa Martins PA, Van Berlo JH, Zacchigna S, Giacca M, De Windt LJ (2021) A microRNA program regulates the balance between cardiomyocyte hyperplasia and hypertrophy and stimulates cardiac regeneration. Nat Commun 12:4808. https://doi.org/10.1038/s41467-021-25211-4. (PMID: 10.1038/s41467-021-25211-4343766838355162)
Raulf A, Horder H, Tarnawski L, Geisen C, Ottersbach A, Röll W, Jovinge S, Fleischmann BK, Hesse M (2015) Transgenic systems for unequivocal identification of cardiac myocyte nuclei and analysis of cardiomyocyte cell cycle status. Basic Res Cardiol 110:33. https://doi.org/10.1007/s00395-015-0489-2. (PMID: 10.1007/s00395-015-0489-2259259894414935)
Redgrave RE, Dookun E, Booth LK, Camacho Encina M, Folaranmi O, Tual-Chalot S, Gill JH, Owens WA, Spyridopoulos I, Passos JF, Richardson GD (2023) Senescent cardiomyocytes contribute to cardiac dysfunction following myocardial infarction. NPJ Aging 9:15. https://doi.org/10.1038/s41514-023-00113-5. (PMID: 10.1038/s41514-023-00113-53731651610267185)
Reichart D, Newby GA, Wakimoto H, Lun M, Gorham JM, Curran JJ, Raguram A, DeLaughter DM, Conner DA, Marsiglia JDC, Kohli S, Chmatal L, Page DC, Zabaleta N, Vandenberghe L, Liu DR, Seidman JG, Seidman C (2023) Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice. Nat Med 29:412–421. https://doi.org/10.1038/s41591-022-02190-7. (PMID: 10.1038/s41591-022-02190-7367974839941048)
Rigaud VOC, Hoy RC, Kurian J, Zarka C, Behanan M, Brosious I, Pennise J, Patel T, Wang T, Johnson J, Kraus LM, Mohsin S, Houser SR, Khan M (2023) RNA-binding protein LIN28a regulates new myocyte formation in the heart through long noncoding RNA-H19. Circulation 147:324–337. https://doi.org/10.1161/CIRCULATIONAHA.122.059346. (PMID: 10.1161/CIRCULATIONAHA.122.05934636314132)
Rota M, Boni A, Urbanek K, Padin-Iruegas ME, Kajstura TJ, Fiore G, Kubo H, Sonnenblick EH, Musso E, Houser SR, Leri A, Sussman MA, Anversa P (2005) Nuclear targeting of Akt enhances ventricular function and myocyte contractility. Circ Res 97:1332–1341. https://doi.org/10.1161/01.RES.0000196568.11624.ae. (PMID: 10.1161/01.RES.0000196568.11624.ae16293788)
Rotem I, Konfino T, Caller T, Schary Y, Shaihov-Teper O, Palevski D, Lewis N, Lendengolts D, Naftali-Shani N, Leor J (2022) Osteopontin promotes infarct repair. Basic Res Cardiol 117:51. https://doi.org/10.1007/s00395-022-00957-0. (PMID: 10.1007/s00395-022-00957-036239866)
Secco I, Giacca M (2023) Regulation of endogenous cardiomyocyte proliferation: the known unknowns. J Mol Cell Cardiol 179:80–89. https://doi.org/10.1016/j.yjmcc.2023.04.001. (PMID: 10.1016/j.yjmcc.2023.04.0013703048710390341)
Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu T-D, Guerquin-Kern J-L, Lechene CP, Lee RT (2013) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493:433–436. https://doi.org/10.1038/nature11682. (PMID: 10.1038/nature1168223222518)
Shafei S, Khanmohammadi M, Ghanbari H, Nooshabadi VT, Tafti SHA, Rabbani S, Kasaiyan M, Basiri M, Tavoosidana G (2022) Effectiveness of exosome mediated miR-126 and miR-146a delivery on cardiac tissue regeneration. Cell Tissue Res 390:71–92. https://doi.org/10.1007/s00441-022-03663-4. (PMID: 10.1007/s00441-022-03663-435788900)
Shah A, Goerlich CE, Pasrija C, Hirsch J, Fisher S, Odonkor P, Strauss E, Ayares D, Mohiuddin MM, Griffith BP (2022) Anatomical differences between human and pig hearts and their relevance for cardiac xenotransplantation surgical technique. JACC Case Rep 4:1049–1052. https://doi.org/10.1016/j.jaccas.2022.06.011. (PMID: 10.1016/j.jaccas.2022.06.011360620519434648)
Shapiro SD, Ranjan AK, Kawase Y, Cheng RK, Kara RJ, Bhattacharya R, Guzman-Martinez G, Sanz J, Garcia MJ, Chaudhry HW (2014) Cyclin A2 induces cardiac regeneration after myocardial infarction through cytokinesis of adult cardiomyocytes. Sci Transl Med. https://doi.org/10.1126/scitranslmed.3007668. (PMID: 10.1126/scitranslmed.3007668248482584165339)
Shernan SK (2003) Perioperative myocardial ischemia reperfusion injury. Anesthesiol Clin North Am 21:465–485. https://doi.org/10.1016/S0889-8537(03)00038-5. (PMID: 10.1016/S0889-8537(03)00038-514562561)
Shiojima I, Walsh K (2006) Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev 20:3347–3365. https://doi.org/10.1101/gad.1492806. (PMID: 10.1101/gad.149280617182864)
Sidney S, Sorel ME, Quesenberry CP, Jaffe MG, Solomon MD, Nguyen-Huynh MN, Go AS, Rana JS (2018) Comparative trends in heart disease, stroke, and all-cause mortality in the United States and a large integrated healthcare delivery system. Am J Med 131:829-836.e1. https://doi.org/10.1016/j.amjmed.2018.02.014. (PMID: 10.1016/j.amjmed.2018.02.014296250836005733)
Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ (1996) Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physio-Heart Circ Physiol 271:H2183–H2189. https://doi.org/10.1152/ajpheart.1996.271.5.H2183. (PMID: 10.1152/ajpheart.1996.271.5.H2183)
Soonpaa MH, Koh GY, Pajak L, Jing S, Wang H, Franklin MT, Kim KK, Field LJ (1997) Cyclin D1 overexpression promotes cardiomyocyte DNA synthesis and multinucleation in transgenic mice. J Clin Invest 99:2644–2654. https://doi.org/10.1172/JCI119453. (PMID: 10.1172/JCI1194539169494508110)
Stark GR, Taylor WR (2004) Analyzing the G2/M checkpoint. Checkpoint controls and cancer. Humana Press, New Jersey, pp 051–082. (PMID: 10.1385/1-59259-788-2:051)
Sun J, Peterson EA, Wang AZ, Ou J, Smith KE, Poss KD, Wang J (2022) hapln1 defines an epicardial cell subpopulation required for cardiomyocyte expansion during heart morphogenesis and regeneration. Circulation 146:48–63. https://doi.org/10.1161/CIRCULATIONAHA.121.055468. (PMID: 10.1161/CIRCULATIONAHA.121.055468356523549308751)
Sun J, Wang L, Matthews RC, Walcott GP, Lu Y-A, Wei Y, Zhou Y, Zangi L, Zhang J (2023) CCND2 modified mRNA activates cell cycle of cardiomyocytes in hearts with myocardial infarction in mice and pigs. Circ Res 133:484–504. https://doi.org/10.1161/CIRCRESAHA.123.322929. (PMID: 10.1161/CIRCRESAHA.123.32292937565345)
Sun J, Yang T, Wei T, Zhou L, Shan T, Chen J, Gu L, Chen B, Liu L, Jiang Q, Du C, Ma Y, Wang H, Chen F, Guo X, Ji Y, Wang L (2022) CDK9 binds and activates SGK3 to promote cardiac repair after injury via the GSK-3β/β-catenin pathway. Front Cardiovasc Med 9:970745. https://doi.org/10.3389/fcvm.2022.970745. (PMID: 10.3389/fcvm.2022.970745360821299445272)
Sun J, Zhou L, Yang T, Deng B, Bao Y, Gu L, Wang H, Wang L (2023) P16INK4a regulates ros-related autophagy and CDK4/6-mediated proliferation: a new target of myocardial regeneration therapy. Oxid Med Cell Longev 2023:1–23. https://doi.org/10.1155/2023/1696190. (PMID: 10.1155/2023/1696190)
Sun Y, Jiang C, Hong H, Liu J, Qiu L, Huang Y, Ye L (2019) Effects of hypoxia on cardiomyocyte proliferation and association with stage of development. Biomed Pharmacother 118:109391. https://doi.org/10.1016/j.biopha.2019.109391. (PMID: 10.1016/j.biopha.2019.10939131545287)
Swift SK, Purdy AL, Kolell ME, Andresen KG, Lahue C, Buddell T, Akins KA, Rau CD, O’Meara CC, Patterson M (2023) Cardiomyocyte ploidy is dynamic during postnatal development and varies across genetic backgrounds. Development 150:dev201318. https://doi.org/10.1242/dev.201318. (PMID: 10.1242/dev.2013183691224010113957)
Tane S, Ikenishi A, Okayama H, Iwamoto N, Nakayama KI, Takeuchi T (2014) CDK inhibitors, p21Cip1 and p27Kip1, participate in cell cycle exit of mammalian cardiomyocytes. Biochem Biophys Res Commun 443:1105–1109. https://doi.org/10.1016/j.bbrc.2013.12.109. (PMID: 10.1016/j.bbrc.2013.12.10924380855)
Tane S, Kubota M, Okayama H, Ikenishi A, Yoshitome S, Iwamoto N, Satoh Y, Kusakabe A, Ogawa S, Kanai A, Molkentin JD, Nakamura K, Ohbayashi T, Takeuchi T (2014) Repression of cyclin D1 expression is necessary for the maintenance of cell cycle exit in adult mammalian cardiomyocytes. J Biol Chem 289:18033–18044. https://doi.org/10.1074/jbc.M113.541953. (PMID: 10.1074/jbc.M113.541953248217224140299)
Tong W, Xiong F, Li Y, Zhang L (2013) Hypoxia inhibits cardiomyocyte proliferation in fetal rat hearts via upregulating TIMP-4. Am J Physiol-Regul Integr Comp Physiol 304:R613–R620. https://doi.org/10.1152/ajpregu.00515.2012. (PMID: 10.1152/ajpregu.00515.2012234270853627956)
Tong W, Xue Q, Li Y, Zhang L (2011) Maternal hypoxia alters matrix metalloproteinase expression patterns and causes cardiac remodeling in fetal and neonatal rats. Am J Physiol-Heart Circ Physiol 301:H2113–H2121. https://doi.org/10.1152/ajpheart.00356.2011. (PMID: 10.1152/ajpheart.00356.2011218569223213965)
Torrini C, Cubero RJ, Dirkx E, Braga L, Ali H, Prosdocimo G, Gutierrez MI, Collesi C, Licastro D, Zentilin L, Mano M, Zacchigna S, Vendruscolo M, Marsili M, Samal A, Giacca M (2019) Common regulatory pathways mediate activity of MicroRNAs inducing cardiomyocyte proliferation. Cell Rep 27:2759-2771.e5. https://doi.org/10.1016/j.celrep.2019.05.005. (PMID: 10.1016/j.celrep.2019.05.005311416976547019)
Tzahor E (2007) Wnt/β-catenin signaling and cardiogenesis: timing does matter. Dev Cell 13:10–13. https://doi.org/10.1016/j.devcel.2007.06.006. (PMID: 10.1016/j.devcel.2007.06.00617609106)
Valussi M, Besser J, Wystub-Lis K, Zukunft S, Richter M, Kubin T, Boettger T, Braun T (2021) Repression of Osmr and Fgfr1 by miR-1/133a prevents cardiomyocyte dedifferentiation and cell cycle entry in the adult heart. Sci Adv 7:eabi6648. https://doi.org/10.1126/sciadv.abi6648. (PMID: 10.1126/sciadv.abi6648346441078514096)
Velayutham N, Calderon MU, Alfieri CM, Padula SL, van Leeuwen FN, Scheijen B, Yutzey KE (2023) Btg1 and Btg2 regulate neonatal cardiomyocyte cell cycle arrest. J Mol Cell Cardiol 179:30–41. https://doi.org/10.1016/j.yjmcc.2023.03.016. (PMID: 10.1016/j.yjmcc.2023.03.01637062247)
Velayutham N, Yutzey KE (2022) Porcine models of heart regeneration. JCDD 9:93. https://doi.org/10.3390/jcdd9040093. (PMID: 10.3390/jcdd9040093354480699025077)
Von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, Ma Q, Ishiwata T, Zhou B, Camargo FD, Pu WT (2012) YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci USA 109:2394–2399. https://doi.org/10.1073/pnas.1116136109. (PMID: 10.1073/pnas.1116136109)
Wang B, Xu M, Li M, Wu F, Hu S, Chen X, Zhao L, Huang Z, Lan F, Liu D, Wang Y (2020) miR-25 promotes cardiomyocyte proliferation by targeting FBXW7. Mol Ther Nucleic Acids 19:1299–1308. https://doi.org/10.1016/j.omtn.2020.01.013. (PMID: 10.1016/j.omtn.2020.01.013321607027044498)
Wang RM, Mesfin JM, Hunter J, Cattaneo P, Guimarães-Camboa N, Braden RL, Luo C, Hill RC, Dzieciatkowska M, Hansen KC, Evans S, Christman KL (2022) Myocardial matrix hydrogel acts as a reactive oxygen species scavenger and supports a proliferative microenvironment for cardiomyocytes. Acta Biomater 152:47–59. https://doi.org/10.1016/j.actbio.2022.08.050. (PMID: 10.1016/j.actbio.2022.08.05036041648)
Wang T, Zhou L-Y, Li X-M, Liu F, Liang L, Chen X-Z, Ju J, Ponnusamy M, Wang K, Liu C-Y, Yan K-W, Wang K (2023) ABRO1 arrests cardiomyocyte proliferation and myocardial repair by suppressing PSPH. Mol Ther 31:847–865. https://doi.org/10.1016/j.ymthe.2023.01.011. (PMID: 10.1016/j.ymthe.2023.01.0113663986910014284)
Wang X, Senapati S, Akinbote A, Gnanasambandam B, Park PS-H, Senyo SE (2020) Microenvironment stiffness requires decellularized cardiac extracellular matrix to promote heart regeneration in the neonatal mouse heart. Acta Biomater 113:380–392. https://doi.org/10.1016/j.actbio.2020.06.032. (PMID: 10.1016/j.actbio.2020.06.032325901727428869)
Wang X, Wan TC, Lauth A, Purdy AL, Kulik KR, Patterson M, Lough JW, Auchampach JA (2022) Conditional depletion of the acetyltransferase Tip60 protects against the damaging effects of myocardial infarction. J Mol Cell Cardiol 163:9–19. https://doi.org/10.1016/j.yjmcc.2021.09.012. (PMID: 10.1016/j.yjmcc.2021.09.01234610340)
Wang Z (2022) Cell cycle progression and synchronization: an overview. In: Wang Z (ed) Cell-cycle synchronization. Springer, US, New York, NY, pp 3–23. (PMID: 10.1007/978-1-0716-2736-5_1)
Windmueller R, Leach JP, Babu A, Zhou S, Morley MP, Wakabayashi A, Petrenko NB, Viatour P, Morrisey EE (2020) Direct comparison of mononucleated and binucleated cardiomyocytes reveals molecular mechanisms underlying distinct proliferative competencies. Cell Rep 30:3105-3116.e4. https://doi.org/10.1016/j.celrep.2020.02.034. (PMID: 10.1016/j.celrep.2020.02.034321309107194103)
Wodsedalek DJ, Paddock SJ, Wan TC, Auchampach JA, Kenarsary A, Tsaih S-W, Flister MJ, O’Meara CC (2019) IL-13 promotes in vivo neonatal cardiomyocyte cell cycle activity and heart regeneration. Am J Physiol-Heart Circ Physiol 316:H24–H34. https://doi.org/10.1152/ajpheart.00521.2018. (PMID: 10.1152/ajpheart.00521.201830339498)
Woo RA, Poon RYC (2003) Cyclin-dependent kinases and S phase control in mammalian cells. Cell Cycle 2:316–324. (PMID: 10.4161/cc.2.4.46812851482)
Woo YJ, Panlilio CM, Cheng RK, Liao GP, Atluri P, Hsu VM, Cohen JE, Chaudhry HW (2006) Therapeutic delivery of cyclin A2 induces myocardial regeneration and enhances cardiac function in ischemic heart failure. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.105.000455. (PMID: 10.1161/CIRCULATIONAHA.105.00045516820573)
Wu C-C, Jeratsch S, Graumann J, Stainier DYR (2020) Modulation of mammalian cardiomyocyte cytokinesis by the extracellular matrix. Circ Res 127:896–907. https://doi.org/10.1161/CIRCRESAHA.119.316303. (PMID: 10.1161/CIRCRESAHA.119.31630332564729)
Wu Y, Zhou L, Liu H, Duan R, Zhou H, Zhang F, He X, Lu D, Xiong K, Xiong M, Zhuang J, Liu Y, Li L, Liang D, Chen Y-H (2021) LRP6 downregulation promotes cardiomyocyte proliferation and heart regeneration. Cell Res 31:450–462. https://doi.org/10.1038/s41422-020-00411-7. (PMID: 10.1038/s41422-020-00411-732973339)
Xiang F, Guo M, Yutzey KE (2016) Overexpression of Tbx20 in adult cardiomyocytes promotes proliferation and improves cardiac function after myocardial infarction. Circulation 133:1081–1092. https://doi.org/10.1161/CIRCULATIONAHA.115.019357. (PMID: 10.1161/CIRCULATIONAHA.115.019357268418084792775)
Xin M, Kim Y, Sutherland LB, Murakami M, Qi X, McAnally J, Porrello ER, Mahmoud AI, Tan W, Shelton JM, Richardson JA, Sadek HA, Bassel-Duby R, Olson EN (2013) Hippo pathway effector yap promotes cardiac regeneration. Proc Natl Acad Sci USA 110:13839–13844. https://doi.org/10.1073/pnas.1313192110. (PMID: 10.1073/pnas.1313192110239183883752208)
Yahalom-Ronen Y, Rajchman D, Sarig R, Geiger B, Tzahor E (2015) Reduced matrix rigidity promotes neonatal cardiomyocyte dedifferentiation, proliferation and clonal expansion. Elife 4:e07455. https://doi.org/10.7554/eLife.07455. (PMID: 10.7554/eLife.07455262673074558647)
Yang Q, Wu F, Mi Y, Wang F, Cai K, Yang X, Zhang R, Liu L, Zhang Y, Wang Y, Wang X, Xu M, Gui Y, Li Q (2020) Aberrant expression of miR-29b-3p influences heart development and cardiomyocyte proliferation by targeting NOTCH2. Cell Prolif 53:e12764. https://doi.org/10.1111/cpr.12764. (PMID: 10.1111/cpr.12764320771687106969)
Yang Y, Cheng H-W, Qiu Y, Dupee D, Noonan M, Lin Y-D, Fisch S, Unno K, Sereti K-I, Liao R (2015) MicroRNA-34a plays a key role in cardiac repair and regeneration following myocardial infarction. Circ Res 117:450–459. https://doi.org/10.1161/CIRCRESAHA.117.305962. (PMID: 10.1161/CIRCRESAHA.117.305962260825574769861)
Ye L, Qiu L, Feng B, Jiang C, Huang Y, Zhang H, Zhang H, Hong H, Liu J (2020) Role of blood oxygen saturation during post-natal human cardiomyocyte cell cycle activities. JACC Basic Transl Sci 5:447–460. https://doi.org/10.1016/j.jacbts.2020.02.008. (PMID: 10.1016/j.jacbts.2020.02.008324782077251192)
Yekelchyk M, Guenther S, Preussner J, Braun T (2019) Mono- and multi-nucleated ventricular cardiomyocytes constitute a transcriptionally homogenous cell population. Basic Res Cardiol 114:36. https://doi.org/10.1007/s00395-019-0744-z. (PMID: 10.1007/s00395-019-0744-z313998046689038)
Yu F-X, Zhao B, Guan K-L (2015) Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163:811–828. https://doi.org/10.1016/j.cell.2015.10.044. (PMID: 10.1016/j.cell.2015.10.044265449354638384)
Yuan T, Annamalai K, Naik S, Lupse B, Geravandi S, Pal A, Dobrowolski A, Ghawali J, Ruhlandt M, Gorrepati KDD, Azizi Z, Lim D-S, Maedler K, Ardestani A (2021) The Hippo kinase LATS2 impairs pancreatic β-cell survival in diabetes through the mTORC1-autophagy axis. Nat Commun 12:4928. https://doi.org/10.1038/s41467-021-25145-x. (PMID: 10.1038/s41467-021-25145-x343897208363615)
Yuan T, Krishnan J (2021) Non-coding RNAs in cardiac regeneration. Front Physiol 12:650566. https://doi.org/10.3389/fphys.2021.650566. (PMID: 10.3389/fphys.2021.650566338411858024481)
Yusuf AM, Qaisar R, Al-Tamimi AO, Jayakumar MN, Woodgett JR, Koch WJ, Ahmad F (2022) Cardiomyocyte-GSK-3β deficiency induces cardiac progenitor cell proliferation in the ischemic heart through paracrine mechanisms. J Cell Physiol 237:1804–1817. https://doi.org/10.1002/jcp.30644. (PMID: 10.1002/jcp.3064434812500)
Zhang L, Sun Z, Ren P, You M, Zhang J, Fang L, Wang J, Chen Y, Yan F, Zheng H, Xie M (2017) Localized Delivery of shRNA against PHD2 Protects the Heart from Acute Myocardial Infarction through Ultrasound-Targeted Cationic Microbubble Destruction. Theranostics 7:51–66. https://doi.org/10.7150/thno.16074. (PMID: 10.7150/thno.16074280423165196885)
Zhao L, Borikova AL, Ben-Yair R, Guner-Ataman B, MacRae CA, Lee RT, Burns CG, Burns CE (2014) Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc Natl Acad Sci USA 111:1403–1408. https://doi.org/10.1073/pnas.1311705111. (PMID: 10.1073/pnas.1311705111244747653910613)
Zhao Y, Sawyer DR, Baliga RR, Opel DJ, Han X, Marchionni MA, Kelly RA (1998) Neuregulins promote survival and growth of cardiac myocytes. J Biol Chem 273:10261–10269. https://doi.org/10.1074/jbc.273.17.10261. (PMID: 10.1074/jbc.273.17.102619553078)
Zhou H, Zhang F, Wu Y, Liu H, Duan R, Liu Y, Wang Y, He X, Zhang Y, Ma X, Guan Y, Liu Y, Liang D, Zhou L, Chen Y (2022) LRP5 regulates cardiomyocyte proliferation and neonatal heart regeneration by the AKT/P21 pathway. J Cell Mol Medi 26:2981–2994. https://doi.org/10.1111/jcmm.17311. (PMID: 10.1111/jcmm.17311)
Zhu B, Gong Y, Shen L, Li J, Han J, Song B, Hu L, Wang Q, Wang Z (2020) Total panax notoginseng saponin inhibits vascular smooth muscle cell proliferation and migration and intimal hyperplasia by regulating WTAP/p16 signals via m6A modulation. Biomed Pharmacother 124:109935. https://doi.org/10.1016/j.biopha.2020.109935. (PMID: 10.1016/j.biopha.2020.10993531986407)
Zong H, Espinosa JS, Su HH, Muzumdar MD, Luo L (2005) Mosaic analysis with double markers in mice. Cell 121:479–492. https://doi.org/10.1016/j.cell.2005.02.012. (PMID: 10.1016/j.cell.2005.02.01215882628) - Grant Information: 822455 European Innovation Council; SFB/TR267 Deutsche Forschungsgemeinschaft
- Contributed Indexing: Keywords: Cardiomyocyte proliferation; Cell cycle; Heart failure
- Publication Date: Date Created: 20240429 Date Completed: 20240531 Latest Revision: 20241010
- Publication Date: 20241011
- Accession Number: PMC11142990
- Accession Number: 10.1007/s00395-024-01049-x
- Accession Number: 38683371
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.