Pharmacokinetic control of orally dosed cyclosporine A with mucosal drug delivery system.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: England NLM ID: 7911226 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1099-081X (Electronic) Linking ISSN: 01422782 NLM ISO Abbreviation: Biopharm Drug Dispos Subsets: MEDLINE
    • Publication Information:
      Publication: Chichester : Wiley
      Original Publication: Chichester [Eng.] Wiley.
    • Subject Terms:
    • Abstract:
      This study aimed to control the oral absorption of cyclosporine A (CsA) with the use of a mucosal drug delivery system (mDDS). Mucopenetrating nanocarriers (MP/NCs) and mucoadhesive nanocarriers (MA/NCs) were prepared by flash nanoprecipitation employing polystyrene-block-poly(ethylene glycol) and polystyrene-block-poly(N,N-dimethyl aminoethyl methacrylate), respectively. Their particle distribution in the rat gastrointestinal tract were visualized by fluorescent imaging. Plasma concentrations were monitored after oral administration of CsA-loaded MP/NCs (MP/CsA) and MA/NCs (MA/CsA) to rats. MP/NCs and MA/NCs had a particle size below 200 nm and ζ-potentials of 4 and 40 mV, respectively. The results from in vitro experiments demonstrated mucopenetration of MP/NCs and mucoadhesion of MA/NCs. Confocal laser scanning microscopic images showed diffusion of MP/NCs in the gastrointestinal mucus towards epithelial cells and localization of MA/NCs on the surface of the gastrointestinal mucus layer. In a pH 6.8 solution, rapid and sustained release of CsA were observed for MP/CsA and MA/CsA, respectively. After oral dosing (10 mg-CsA/kg) to rats, amorphous CsA powder exhibited a time to maximum plasma concentration (T max ) of 3.4 h, maximum plasma concentration (C max ) of 0.12 μg/mL, and bioavailability of 0.7%. Compared with amorphous CsA powder, MP/CsA shortened T max by 1.1 to 2.3 h and increased the bioavailability by 43-fold to 30.1%, while MA/CsA prolonged T max by 3.4 to 6.8 h with C max and bioavailability of 0.65 μg/mL and 11.7%, respectively. These pharmacokinetic behaviors would be explained by their diffusion and release properties modulated by polymeric surface modification. The mDDS approach is a promising strategy for the pharmacokinetic control of orally administered CsA.
      (© 2024 John Wiley & Sons Ltd.)
    • References:
      Atuma, C., Strugala, V., Allen, A., & Holm, L. (2001). The adherent gastrointestinal mucus gel layer: Thickness and physical state in vivo. American Journal of Physiology ‐ Gastrointestinal and Liver Physiology, 280(5), G922–G929. https://doi.org/10.1152/ajpgi.2001.280.5.G922.
      Craparo, E. F., Porsio, B., Sardo, C., Giammona, G., & Cavallaro, G. (2016). Pegylated polyaspartamide‐polylactide‐based nanoparticles penetrating cystic fibrosis artificial mucus. Biomacromolecules, 17(3), 767–777. https://doi.org/10.1021/acs.biomac.5b01480.
      Da Silva, F. L. O., Marques, M. B. F., Kato, K. C., & Carneiro, G. (2020). Nanonization techniques to overcome poor water‐solubility with drugs. Expert Opinion on Drug Discovery, 15(7), 853–864. https://doi.org/10.1080/17460441.2020.1750591.
      Ensign, L. M., Henning, A., Schneider, C. S., Maisel, K., Wang, Y. Y., Porosoff, M. D., Cone, R., & Hanes, J. (2013). Ex vivo characterization of particle transport in mucus secretions coating freshly excised mucosal tissues. Molecular Pharmaceutics, 10(6), 2176–2182. https://doi.org/10.1021/mp400087y.
      Flechner, S. M. (1983). Cyclosporine: A new and promising immunosuppressive agent. Urologic Clinics of North America, 10(2), 263–275. https://doi.org/10.1016/s0094‐0143(21)01437‐3.
      Hu, X., Zhang, J., Yu, Z., Xie, Y., He, H., Qi, J., Dong, X., Lu, Y., Zhao, W., & Wu, W. (2015). Environment‐responsive aza‐BODIPY dyes quenching in water as potential probes to visualize the in vivo fate of lipid‐based nanocarriers. Nanomedicine, 11(8), 1939–1948. https://doi.org/10.1016/j.nano.2015.06.013.
      Hwang, T. L., Aljuffali, I. A., Lin, C. F., Chang, Y. T., & Fang, J. Y. (2015). Cationic additives in nanosystems activate cytotoxicity and inflammatory response of human neutrophils: Lipid nanoparticles versus polymeric nanoparticles. International Journal of Nanomedicine, 10, 371–385. https://doi.org/10.2147/IJN.S73017.
      Ina, K., Kusugami, K., Shimada, M., Tsuzuki, T., Nishio, Y., Binion, D. G., Imada, A., & Ando, T. (2002). Suppressive effects of cyclosporine A on neutrophils and T cells may be related to therapeutic benefits in patients with steroid‐resistant ulcerative colitis. Inflammatory Bowel Diseases, 8(1), 1–9. https://doi.org/10.1097/00054725‐200201000‐00001.
      Johnson, B. K., & Prud'homme, R. K. (2003). Flash NanoPrecipitation of organic actives and block copolymers using a confined impinging jets mixer. Australian Journal of Chemistry, 56(10), 1021–1024. https://doi.org/10.1071/ch03115.
      Kawabata, Y., Wada, K., Nakatani, M., Yamada, S., & Onoue, S. (2011). Formulation design for poorly water‐soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. International Journal of Pharmacy, 420(1), 1–10. https://doi.org/10.1016/j.ijpharm.2011.08.032.
      Lai, S. K., O'Hanlon, D. E., Harrold, S., Man, S. T., Wang, Y. Y., Cone, R., & Hanes, J. (2007). Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proceedings of the National Academy of Sciences of the United States of America, 104(5), 1482–1487. https://doi.org/10.1073/pnas.0608611104.
      Laine, A. L., Gravier, J., Henry, M., Sancey, L., Bejaud, J., Pancani, E., Wiber, M., Texier, I., Coll, J. L., Benoit, J. P., & Passirani, C. (2014). Conventional versus stealth lipid nanoparticles: Formulation and in vivo fate prediction through FRET monitoring. Journal of Controlled Release, 188, 1–8. https://doi.org/10.1016/j.jconrel.2014.05.042.
      Leal, J., Smyth, H. D. C., & Ghosh, D. (2017). Physicochemical properties of mucus and their impact on transmucosal drug delivery. International Journal of Pharmacy, 532(1), 555–572. https://doi.org/10.1016/j.ijpharm.2017.09.018.
      Lee, S. S., Tan, A. W., & Giam, Y. C. (2004). Cyclosporin in the treatment of severe atopic dermatitis: A retrospective study. Annals Academy of Medicine Singapore, 33(3), 311–313. https://doi.org/10.47102/annals‐acadmedsg.v33n3p311.
      Lehr, C.‐M., Poelma Fred, G. J., Junginger, H. E., & Tukker, J. J. (1991). An estimate of turnover time of intestinal mucus gel layer in the rat in situ loop. International Journal of Pharmacy, 70(3), 235–240. https://doi.org/10.1016/0378‐5173(91)90287‐x.
      Lin, W., Zhang, W., Liu, S., Li, Z., Hu, X., Xie, Z., Duan, C., & Han, G. (2019). Engineering pH‐responsive BODIPY nanoparticles for tumor selective multimodal imaging and phototherapy. ACS Applied Materials & Interfaces, 11(47), 43928–43935. https://doi.org/10.1021/acsami.9b16403.
      Liu, Y., Cheng, C. Y., Liu, Y., Prud'homme, R. K., & Fox, R. O. (2008). Mixing in a multi‐inlet vortex mixer (MIVM) for flash nano‐precipitation. Chemical Engineering and Science, 63(11), 2829–2842. https://doi.org/10.1016/j.ces.2007.10.020.
      Ma, Y., He, H., Xia, F., Li, Y., Lu, Y., Chen, D., Qi, J., Zhang, W., & Wu, W. (2017). In vivo fate of lipid‐silybin conjugate nanoparticles: Implications on enhanced oral bioavailability. Nanomedicine, 13(8), 2643–2654. https://doi.org/10.1016/j.nano.2017.07.014.
      Netsomboon, K., & Bernkop‐Schnurch, A. (2016). Mucoadhesive vs. mucopenetrating particulate drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 98, 76–89. https://doi.org/10.1016/j.ejpb.2015.11.003.
      Norris, D. A., & Sinko, P. J. (1997). Effect of size, surface charge, and hydrophobicity on the translocation of polystyrene microspheres through gastrointestinal mucin. Journal of Applied Polymer Science, 63(11), 1481–1492. https://doi.org/10.1002/(sici)1097‐4628(19970314)63:11<1481::aid‐app10>3.0.co;2‐5.
      Onoue, S., Sato, H., Kawabata, Y., Mizumoto, T., Hashimoto, N., & Yamada, S. (2009). In vitro and in vivo characterization on amorphous solid dispersion of cyclosporine A for inhalation therapy. Journal of Controlled Release, 138(1), 16–23. https://doi.org/10.1016/j.jconrel.2009.04.014.
      Pagels, R. F., Edelstein, J., Tang, C., & Prud'homme, R. K. (2018). Controlling and predicting nanoparticle formation by block copolymer directed rapid precipitations. Nano Letters, 18(2), 1139–1144. https://doi.org/10.1021/acs.nanolett.7b04674.
      Ponchel, G., Montisci, M.‐J., Dembri, A., Durrer, C., & Duchêne, D. (1997). Mucoadhesion of colloidal particulate systems in the gastro‐intestinal tract. European Journal of Pharmaceutics and Biopharmaceutics, 44(1), 25–31. https://doi.org/10.1016/s0939‐6411(97)00098‐2.
      Sato, H., Kaneko, Y., Yamada, K., Ristroph, K. D., Lu, H. D., Seto, Y., Chan, H. K., Prud’homme, R. K., & Onoue, S. (2020). Polymeric nanocarriers with mucus‐diffusive and mucus‐adhesive properties to control pharmacokinetic behavior of orally dosed cyclosporine A. Journal of Pharmaceutical Sciences, 109(2), 1079–1085. https://doi.org/10.1016/j.xphs.2019.10.043.
      Shen, C., Yang, Y., Shen, B., Xie, Y., Qi, J., Dong, X., Zhao, W., Zhu, W., Wu, W., Yuan, H., & Lu, Y. (2017). Self‐discriminating fluorescent hybrid nanocrystals: Efficient and accurate tracking of translocation via oral delivery. Nanoscale, 10(1), 436–450. https://doi.org/10.1039/c7nr06052a.
      Stalder, T., Zaiter, T., El‐Basset, W., Cornu, R., Martin, H., Diab‐Assaf, M., & Beduneau, A. (2022). Interaction and toxicity of ingested nanoparticles on the intestinal barrier. Toxicology, 481, 153353. https://doi.org/10.1016/j.tox.2022.153353.
      Subramanian, D. A., Langer, R., & Traverso, G. (2022). Mucus interaction to improve gastrointestinal retention and pharmacokinetics of orally administered nano‐drug delivery systems. Journal of Nanobiotechnology, 20(1), 362. https://doi.org/10.1186/s12951‐022‐01539‐x.
      Suwannateep, N., Banlunara, W., Wanichwecharungruang, S. P., Chiablaem, K., Lirdprapamongkol, K., & Svasti, J. (2011). Mucoadhesive curcumin nanospheres: Biological activity, adhesion to stomach mucosa and release of curcumin into the circulation. Journal of Controlled Release, 151(2), 176–182. https://doi.org/10.1016/j.jconrel.2011.01.011.
      Suzuki, H., Hamao, S., Seto, Y., Sato, H., Wong, J., Prud'homme, R. K., Chan, H. K., & Onoue, S. (2017). New nano‐matrix oral formulation of nanoprecipitated cyclosporine A prepared with multi‐inlet vortex mixer. International Journal of Pharmacy, 516(1–2), 116–119. https://doi.org/10.1016/j.ijpharm.2016.11.031.
      Wei, X., Shao, B., He, Z., Ye, T., Luo, M., Sang, Y., Liang, X., Wang, W., Luo, S., Yang, S., Zhang, S., Gong, C., Gou, M., Deng, H., Zhao, Y., Yang, H., Deng, S., Zhao, C., Yang, L., … Zhang, Z. (2015). Cationic nanocarriers induce cell necrosis through impairment of Na(+)/K(+)‐ATPase and cause subsequent inflammatory response. Cell Research, 25(2), 237–253. https://doi.org/10.1038/cr.2015.9.
      Xia, F., Fan, W., Jiang, S., Ma, Y., Lu, Y., Qi, J., Ahmad, E., Dong, X., Zhao, W., & Wu, W. (2017). Size‐dependent translocation of nanoemulsions via oral delivery. ACS Applied Materials & Interfaces, 9(26), 21660–21672. https://doi.org/10.1021/acsami.7b04916.
      Xie, Y., Shi, B., Xia, F., Qi, J., Dong, X., Zhao, W., Wu, W., & Lu, Y. (2018). Epithelia transmembrane transport of orally administered ultrafine drug particles evidenced by environment sensitive fluorophores in cellular and animal studies. Journal of Controlled Release, 270, 65–75. https://doi.org/10.1016/j.jconrel.2017.11.046.
      Yamada, K., Ristroph, K. D., Kaneko, Y., Lu, H. D., Sato, H., Prud’homme, R. K., & Onoue, S. (2021). Clofazimine‐loaded mucoadhesive nanoparticles prepared by flash nanoprecipitation for strategic intestinal delivery. Pharmaceutical Research, 38(12), 2109–2118. https://doi.org/10.1007/s11095‐021‐03144‐3.
    • Grant Information:
      20K07158 Japan Society for the Promotion of Science; 20K07180 Japan Society for the Promotion of Science; 20J22872 Japan Society for the Promotion of Science
    • Contributed Indexing:
      Keywords: absorption; cyclosporine A; flash nanoprecipitation; mucosal drug delivery system; pharmacokinetic control
    • Accession Number:
      83HN0GTJ6D (Cyclosporine)
      0 (Immunosuppressive Agents)
      0 (Drug Carriers)
    • Publication Date:
      Date Created: 20240422 Date Completed: 20240626 Latest Revision: 20240626
    • Publication Date:
      20240627
    • Accession Number:
      10.1002/bdd.2388
    • Accession Number:
      38646776