Menu
×
Baxter-Patrick James Island
9 a.m. – 8 p.m.
Phone: (843) 795-6679
West Ashley Library
9 a.m. – 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. – 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. – 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. – 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. – 8 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. – 8 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. – 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
9 a.m. – 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. – 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. – 7 p.m.
Phone: (843) 722-7550
Main Library
9 a.m. – 8 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. – 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
Baxter-Patrick James Island
9 a.m. – 8 p.m.
Phone: (843) 795-6679
West Ashley Library
9 a.m. – 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. – 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. – 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. – 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. – 8 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. – 8 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. – 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
9 a.m. – 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. – 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. – 7 p.m.
Phone: (843) 722-7550
Main Library
9 a.m. – 8 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. – 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Extra-Skeletal Manifestations in Osteogenesis Imperfecta Mouse Models.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Crawford TK;Crawford TK; Lafaver BN; Lafaver BN; Phillips CL; Phillips CL
- Source:
Calcified tissue international [Calcif Tissue Int] 2024 Dec; Vol. 115 (6), pp. 847-862. Date of Electronic Publication: 2024 Apr 19.- Publication Type:
Journal Article; Review- Language:
English - Source:
- Additional Information
- Source: Publisher: Springer Verlag Country of Publication: United States NLM ID: 7905481 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0827 (Electronic) Linking ISSN: 0171967X NLM ISO Abbreviation: Calcif Tissue Int Subsets: MEDLINE
- Publication Information: Publication: New York Ny : Springer Verlag
Original Publication: Berlin, New York, Springer International. - Subject Terms:
- Abstract: Osteogenesis imperfecta (OI) is a rare heritable connective tissue disorder of skeletal fragility with an incidence of roughly 1:15,000. Approximately 85% of the pathogenic variants responsible for OI are in the type I collagen genes, COL1A1 and COL1A2, with the remaining pathogenic OI variants spanning at least 20 additional genetic loci that often involve type I collagen post-translational modification, folding, and intracellular transport as well as matrix incorporation and mineralization. In addition to being the most abundant collagen in the body, type I collagen is an important structural and extracellular matrix signaling molecule in multiple organ systems and tissues. Thus, OI disease-causing variants result not only in skeletal fragility, decreased bone mineral density (BMD), kyphoscoliosis, and short stature, but can also result in hearing loss, dentinogenesis imperfecta, blue gray sclera, cardiopulmonary abnormalities, and muscle weakness. The extensive genetic and clinical heterogeneity in OI has necessitated the generation of multiple mouse models, the growing awareness of non-skeletal organ and tissue involvement, and OI being more broadly recognized as a type I collagenopathy.This has driven the investigation of mutation-specific skeletal and extra-skeletal manifestations and broadened the search of potential mechanistic therapeutic strategies. The purpose of this review is to outline several of the extra-skeletal manifestations that have recently been characterized through the use of genetically and phenotypically heterogeneous mouse models of osteogenesis imperfecta, demonstrating the significant potential impact of OI disease-causing variants as a collagenopathy (affecting multiple organ systems and tissues), and its implications to overall health.
Competing Interests: Declarations. Conflicts of interest: Tara K. Crawford, Brittany N. Lafaver, and Charlotte L. Phillips have declared no conflict of interests.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.) - References: Forlino A, Cabral WA, Barnes AM, Marini JC (2011) New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol 7:540–557. https://doi.org/10.1038/nrendo.2011.81. (PMID: 10.1038/nrendo.2011.81216707573443407)
Charlier P, Perciaccante A, Bianucci R (2017) Oldest medical description of osteogenesis imperfecta (17th Century, France). Clin Anat 30:128–129. https://doi.org/10.1002/ca.22806. (PMID: 10.1002/ca.2280627885708)
Forlino A, Marini JC (2016) Osteogenesis imperfecta. Lancet 387:1657–1671. https://doi.org/10.1016/S0140-6736(15)00728-X. (PMID: 10.1016/S0140-6736(15)00728-X26542481)
Marom R, Rabenhorst BM, Morello R (2020) Osteogenesis imperfecta: an update on clinical features and therapies. Eur J Endocrinol 183:R95–R106. https://doi.org/10.1530/EJE-20-0299. (PMID: 10.1530/EJE-20-0299326215907694877)
Gremminger VL, Phillips CL (2021) Impact of intrinsic muscle weakness on muscle-bone crosstalk in osteogenesis imperfecta. Int J Mol Sci. https://doi.org/10.3390/ijms22094963. (PMID: 10.3390/ijms22094963340669788125032)
Udupa P, Shrikondawar AN, Ranjan A, Ghosh DK (2023) Assessing type I collagen expression and quality in cellular models of osteogenesis imperfecta. Clin Genet 105:329–334. https://doi.org/10.1111/cge.14463. (PMID: 10.1111/cge.1446338014644)
Sillence DO, Senn A, Danks DM (1979) Genetic heterogeneity in osteogenesis imperfecta. J Med Genet 16:101–116. https://doi.org/10.1136/jmg.16.2.101. (PMID: 10.1136/jmg.16.2.1014588281012733)
Zhytnik L, Maasalu K, Pashenko A, Khmyzov S, Reimann E, Prans E, Koks S, Martson A (2019) COL1A1/2 pathogenic variants and phenotype characteristics in Ukrainian osteogenesis imperfecta patients. Front Genet. https://doi.org/10.3389/fgene.2019.00722. (PMID: 10.3389/fgene.2019.00722314478846696896)
Enderli TA, Burtch SR, Templet JN, Carriero A (2016) Animal models of osteogenesis imperfecta: applications in clinical research. Orthop Res Rev 8:41–55. https://doi.org/10.2147/ORR.S85198. (PMID: 10.2147/ORR.S85198307744696209373)
Alcorta-Sevillano N, Infante A, Macias I, Rodriguez CI (2022) Murine animal models in osteogenesis imperfecta: the quest for improving the quality of life. Int J Mol Sci. https://doi.org/10.3390/ijms24010184. (PMID: 10.3390/ijms24010184366136249820162)
Forlino A, Porter FD, Lee EJ, Westphal H, Marini JC (1999) Use of the Cre/lox recombination system to develop a non-lethal knock-in murine model for osteogenesis imperfecta with an alpha1(I) G349C substitution. variability in phenotype in BrtlIV mice. J Biol Chem 274:37923–37931. https://doi.org/10.1074/jbc.274.53.37923. (PMID: 10.1074/jbc.274.53.3792310608859)
Lisse TS, Thiele F, Fuchs H, Hans W, Przemeck GK, Abe K, Rathkolb B, Quintanilla-Martinez L, Hoelzlwimmer G, Helfrich M, Wolf E, Ralston SH, Hrabe de Angelis M (2008) ER stress-mediated apoptosis in a new mouse model of osteogenesis imperfecta. PLoS Genet. https://doi.org/10.1371/journal.pgen.0040007. (PMID: 10.1371/journal.pgen.0040007182480962222924)
Chen F, Guo R, Itoh S, Moreno L, Rosenthal E, Zappitelli T, Zirngibl RA, Flenniken A, Cole W, Grynpas M, Osborne LR, Vogel W, Adamson L, Rossant J, Aubin JE (2014) First mouse model for combined osteogenesis imperfecta and Ehlers-Danlos syndrome. J Bone Miner Res 29:1412–1423. https://doi.org/10.1002/jbmr.2177. (PMID: 10.1002/jbmr.217724443344)
Chipman SD, Sweet HO, McBride DJ Jr, Davisson MT, Marks SC Jr, Shuldiner AR, Wenstrup RJ, Rowe DW, Shapiro JR (1993) Defective pro alpha 2(I) collagen synthesis in a recessive mutation in mice: a model of human osteogenesis imperfecta. Proc Natl Acad Sci U S A 90:1701–1705. https://doi.org/10.1073/pnas.90.5.1701. (PMID: 10.1073/pnas.90.5.1701844658345947)
Saban J, Zussman MA, Havey R, Patwardhan AG, Schneider GB, King D (1996) Heterozygous oim mice exhibit a mild form of osteogenesis imperfecta. Bone 19:575–579. https://doi.org/10.1016/s8756-3282(96)00305-5. (PMID: 10.1016/s8756-3282(96)00305-58968022)
Daley E, Streeten EA, Sorkin JD, Kuznetsova N, Shapses SA, Carleton SM, Shuldiner AR, Marini JC, Phillips CL, Goldstein SA, Leikin S, McBride DJ Jr (2010) Variable bone fragility associated with an Amish COL1A2 variant and a knock-in mouse model. J Bone Miner Res 25:247–261. https://doi.org/10.1359/jbmr.090720. (PMID: 10.1359/jbmr.09072019594296)
Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L, Monticone M, Castagnola P, Rauch F, Glorieux FH, Vranka J, Bachinger HP, Pace JM, Schwarze U, Byers PH, Weis M, Fernandes RJ, Eyre DR, Yao Z, Boyce BF, Lee B (2006) CRTAP is required for prolyl 3- hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127:291–304. https://doi.org/10.1016/j.cell.2006.08.039. (PMID: 10.1016/j.cell.2006.08.03917055431)
Fratzl-Zelman N, Morello R, Lee B, Rauch F, Glorieux FH, Misof BM, Klaushofer K, Roschger P (2010) CRTAP deficiency leads to abnormally high bone matrix mineralization in a murine model and in children with osteogenesis imperfecta type VII. Bone 46:820–826. https://doi.org/10.1016/j.bone.2009.10.037. (PMID: 10.1016/j.bone.2009.10.03719895918)
McAllion SJ, Paterson CR (1996) Causes of death in osteogenesis imperfecta. J Clin Pathol 49:627–630. https://doi.org/10.1136/jcp.49.8.627. (PMID: 10.1136/jcp.49.8.6278881910500603)
Folkestad L, Hald JD, Canudas-Romo V, Gram J, Hermann AP, Langdahl B, Abrahamsen B, Brixen K (2016) Mortality and causes of death in patients with osteogenesis imperfecta: a register-based nationwide cohort study. J Bone Miner Res 31:2159–2166. https://doi.org/10.1002/jbmr.2895. (PMID: 10.1002/jbmr.289527345018)
Khan SI, Yonko EA, Carter EM, Dyer D, Sandhaus RA, Raggio CL (2020) Cardiopulmonary status in adults with osteogenesis imperfecta: intrinsic lung disease may contribute more than scoliosis. Clin Orthop Relat Res 478:2833–2843. https://doi.org/10.1097/CORR.0000000000001400. (PMID: 10.1097/CORR.0000000000001400326493707899416)
Thiele F, Cohrs CM, Flor A, Lisse TS, Przemeck GK, Horsch M, Schrewe A, Gailus-Durner V, Ivandic B, Katus HA, Wurst W, Reisenberg C, Chaney H, Fuchs H, Hans W, Beckers J, Marini JC, Hrabe de Angelis M (2012) Cardiopulmonary dysfunction in the osteogenesis imperfecta mouse model Aga2 and human patients are caused by bone-independent mechanisms. Hum Mol Genet 21:3535–3545. https://doi.org/10.1093/hmg/dds183. (PMID: 10.1093/hmg/dds183225892483406754)
Shapiro JR, Burn VE, Chipman SD, Jacobs JB, Schloo B, Reid L, Larsen N, Louis F (1989) Pulmonary hypoplasia and osteogenesis imperfecta type II with defective synthesis of alpha I(1) procollagen. Bone 10:165–171. https://doi.org/10.1016/8756-3282(89)90049-5. (PMID: 10.1016/8756-3282(89)90049-52803853)
Thibeault DW, Pettett G, Mabry SM, Rezaiekhaligh MM (1995) Osteogenesis imperfecta Type IIA and pulmonary hypoplasia with normal alveolar development. Pediatr Pulmonol 20:301–306. https://doi.org/10.1002/ppul.1950200508. (PMID: 10.1002/ppul.19502005088903902)
Baglole CJ, Liang F, Traboulsi H, Rico de Souza A, Giordano C, Tauer JT, Rauch F, Petrof BJ (2018) Pulmonary and diaphragmatic pathology in collagen type I alpha1 mutant mice with osteogenesis imperfecta. Pediatr Res 83:1165–1171. https://doi.org/10.1038/pr.2018.36. (PMID: 10.1038/pr.2018.3629538357)
Baldridge D, Lennington J, Weis M, Homan EP, Jiang MM, Munivez E, Keene DR, Hogue WR, Pyott S, Byers PH, Krakow D, Cohn DH, Eyre DR, Lee B, Morello R (2010) Generalized connective tissue disease in Crtap-/-mouse. PLoS ONE 5:e10560. https://doi.org/10.1371/journal.pone.0010560. (PMID: 10.1371/journal.pone.0010560204854992868021)
Dimori M, Fett J, Leikin S, Otsuru S, Thostenson JD, Carroll JL, Morello R (2023) Distinct type I collagen alterations cause intrinsic lung and respiratory defects of variable severity in mouse models of osteogenesis imperfecta. J Physiol 601:355–379. https://doi.org/10.1113/JP283452. (PMID: 10.1113/JP28345236285717)
Dimori M, Heard-Lipsmeyer ME, Byrum SD, Mackintosh SG, Kurten RC, Carroll JL, Morello R (2020) Respiratory defects in the CrtapKO mouse model of osteogenesis imperfecta. Am J Physiol Lung Cell Mol Physiol 318:L592–L605. https://doi.org/10.1152/ajplung.00313.2019. (PMID: 10.1152/ajplung.00313.2019320225927191481)
Gentry BA, Ferreira JA, McCambridge AJ, Brown M, Phillips CL (2010) Skeletal muscle weakness in osteogenesis imperfecta mice. Matrix Biol 29:638–644. https://doi.org/10.1016/j.matbio.2010.06.006. (PMID: 10.1016/j.matbio.2010.06.006206193442952678)
Jeong Y, Carleton SM, Gentry BA, Yao X, Ferreira JA, Salamango DJ, Weis M, Oestreich AK, Williams AM, McCray MG, Eyre DR, Brown M, Wang Y, Phillips CL (2015) Hindlimb skeletal muscle function and skeletal quality and strength in +/G610C mice with and without weight-bearing exercise. J Bone Miner Res 30:1874–1886. https://doi.org/10.1002/jbmr.2518. (PMID: 10.1002/jbmr.251825829218)
Hansen B, Jemec GB (2002) The mechanical properties of skin in osteogenesis imperfecta. Arch Dermatol 138:909–911. https://doi.org/10.1001/archderm.138.7.909. (PMID: 10.1001/archderm.138.7.90912071818)
Himakhun W, Rojnueangnit K, Prachukthum S (2012) Perinatal lethal osteogenesis imperfecta in a thai newborn: the autopsy and histopathogical findings. J Med Assoc Thai 95(Suppl 1):S190-194. (PMID: 23964465)
Millington-Sanders C, Meir A, Lawrence L, Stolinski C (1998) Structure of chordae tendineae in the left ventricle of the human heart. J Anat 192(Pt 4):573–581. https://doi.org/10.1046/j.1469-7580.1998.19240573.x. (PMID: 10.1046/j.1469-7580.1998.19240573.x97239841467811)
Migliaccio S, Barbaro G, Fornari R, Di Lorenzo G, Celli M, Lubrano C, Falcone S, Fabbrini E, Greco E, Zambrano A, Brama M, Prossomariti G, Marzano S, Marini M, Conti F, D’Eufemia P, Spera G (2009) Impairment of diastolic function in adult patients affected by osteogenesis imperfecta clinically asymptomatic for cardiac disease: casuality or causality? Int J Cardiol 131:200–203. https://doi.org/10.1016/j.ijcard.2007.10.051. (PMID: 10.1016/j.ijcard.2007.10.05118207586)
Thatcher K, Mattern CR, Chaparro D, Goveas V, McDermott MR, Fulton J, Hutcheson JD, Hoffmann BR, Lincoln J (2023) Temporal progression of aortic valve pathogenesis in a mouse model of osteogenesis imperfecta. J Cardiovasc Dev Dis. https://doi.org/10.3390/jcdd10080355. (PMID: 10.3390/jcdd100803553762336810455328)
Cheek JD, Wirrig EE, Alfieri CM, James JF, Yutzey KE (2012) Differential activation of valvulogenic, chondrogenic, and osteogenic pathways in mouse models of myxomatous and calcific aortic valve disease. J Mol Cell Cardiol 52:689–700. https://doi.org/10.1016/j.yjmcc.2011.12.013. (PMID: 10.1016/j.yjmcc.2011.12.013222485323294059)
Luczak ED, Leinwand LA (2009) Sex-based cardiac physiology. Annu Rev Physiol 71:1–18. https://doi.org/10.1146/annurev.physiol.010908.163156. (PMID: 10.1146/annurev.physiol.010908.16315618828746)
Du XJ (2004) Gender modulates cardiac phenotype development in genetically modified mice. Cardiovasc Res 63:510–519. https://doi.org/10.1016/j.cardiores.2004.03.027. (PMID: 10.1016/j.cardiores.2004.03.02715276476)
Weis SM, Emery JL, Becker KD, McBride DJ Jr, Omens JH, McCulloch AD (2000) Myocardial mechanics and collagen structure in the osteogenesis imperfecta murine (oim). Circ Res 87:663–669. https://doi.org/10.1161/01.res.87.8.663. (PMID: 10.1161/01.res.87.8.66311029401)
Bowers SLK, Meng Q, Kuwabara Y, Huo J, Minerath R, York AJ, Sargent MA, Prasad V, Saviola AJ, Galindo DC, Hansen KC, Vagnozzi RJ, Yutzey KE, Molkentin JD (2023) Col1a2-deleted mice have defective type I collagen and secondary reactive cardiac fibrosis with altered hypertrophic dynamics. Cells. https://doi.org/10.3390/cells12172174. (PMID: 10.3390/cells121721743768190510486458)
Ashournia H, Johansen FT, Folkestad L, Diederichsen AC, Brixen K (2015) Heart disease in patients with osteogenesis imperfecta-A systematic review. Int J Cardiol 196:149–157. https://doi.org/10.1016/j.ijcard.2015.06.001. (PMID: 10.1016/j.ijcard.2015.06.00126100571)
Pinheiro BS, Barrios PM, Souza LT, Felix TM (2020) Echocardiographic study in children with osteogenesis imperfecta. Cardiol Young 30:1490–1495. https://doi.org/10.1017/S1047951120002474. (PMID: 10.1017/S104795112000247432792038)
Verdonk SJE, Storoni S, Micha D, van den Aardweg JG, Versacci P, Celli L, de Vries R, Zhytnik L, Kamp O, Bugiani M, Eekhoff EMW (2024) Is osteogenesis imperfecta associated with cardiovascular abnormalities? A systematic review of the literature. Calcif Tissue Int. https://doi.org/10.1007/s00223-023-01171-3. (PMID: 10.1007/s00223-023-01171-33929445011531448)
Wittig C, Szulcek R (2021) Extracellular matrix protein ratios in the human heart and vessels: how to distinguish pathological from physiological changes? Front Physiol 12:708656. https://doi.org/10.3389/fphys.2021.708656. (PMID: 10.3389/fphys.2021.708656344216508371527)
Kamberi LS, Gorani DR, Hoxha TF, Zahiti BF (2013) Aortic compliance and stiffness among severe longstanding hypertensive and non-hypertensive. Acta Inform Med 21:12–15. https://doi.org/10.5455/AIM.2013.21.12-15. (PMID: 10.5455/AIM.2013.21.12-15235728543610589)
Balasubramanian M, Verschueren A, Kleevens S, Luyckx I, Perik M, Schirwani S, Mortier G, Morisaki H, Rodrigus I, Van Laer L, Verstraeten A, Loeys B (2019) Aortic aneurysm/dissection and osteogenesis imperfecta: four new families and review of the literature. Bone 121:191–195. https://doi.org/10.1016/j.bone.2019.01.022. (PMID: 10.1016/j.bone.2019.01.02230684648)
Hortop J, Tsipouras P, Hanley JA, Maron BJ, Shapiro JR (1986) Cardiovascular involvement in osteogenesis imperfecta. Circulation 73:54–61. https://doi.org/10.1161/01.cir.73.1.54. (PMID: 10.1161/01.cir.73.1.543940669)
Gooijer K, Heidsieck G, Harsevoort A, Bout D, Janus G, Franken A (2024) Bleeding assessment in a large cohort of patients with osteogenesis imperfecta. Orphanet J Rare Dis 19:61. https://doi.org/10.1186/s13023-024-03054-8. (PMID: 10.1186/s13023-024-03054-83834757710860322)
Vouyouka AG, Pfeiffer BJ, Liem TK, Taylor TA, Mudaliar J, Phillips CL (2001) The role of type I collagen in aortic wall strength with a homotrimeric. J Vasc Surg 33:1263–1270. https://doi.org/10.1067/mva.2001.113579. (PMID: 10.1067/mva.2001.11357911389427)
Pfeiffer BJ, Franklin CL, Hsieh FH, Bank RA, Phillips CL (2005) Alpha 2(I) collagen deficient oim mice have altered biomechanical integrity, collagen content, and collagen crosslinking of their thoracic aorta. Matrix Biol 24:451–458. https://doi.org/10.1016/j.matbio.2005.07.001. (PMID: 10.1016/j.matbio.2005.07.00116095890)
Pfeiffer BJ, Phillips CL (2006) Role of Proa(2)I collagen chains and collagen crosslinking in thoracic aortic biochemical integrity during aging using the OIM mouse model. In:University of Missouri-Columbia, Columbia, Mo.
Persiani P, Pesce MV, Martini L, Ranaldi FM, D’Eufemia P, Zambrano A, Celli M, Villani C (2018) Intraoperative bleeding in patients with osteogenesis imperfecta type III treated by Fassier-Duval femoral rodding: analysis of risk factors. J Pediatr Orthop B 27:338–343. https://doi.org/10.1097/BPB.0000000000000483. (PMID: 10.1097/BPB.000000000000048328723699)
Gooijer K, Rondeel JMM, van Dijk FS, Harsevoort AGJ, Janus GJM, Franken AAM (2019) Bleeding and bruising in osteogenesis imperfecta: international society on thrombosis and haemostasis bleeding assessment tool and haemostasis laboratory assessment in 22 individuals. Br J Haematol 187:509–517. https://doi.org/10.1111/bjh.16097. (PMID: 10.1111/bjh.1609731304589)
Jackson SC, Odiaman L, Card RT, van der Bom JG, Poon MC (2013) Suspected collagen disorders in the bleeding disorder clinic: a case-control study. Haemophilia 19:246–250. https://doi.org/10.1111/hae.12020. (PMID: 10.1111/hae.1202023030528)
Ermolayev V, Cohrs CM, Mohajerani P, Ale A, Hrabe de Angelis M, Ntziachristos V (2013) Ex-vivo assessment and non-invasive in vivo imaging of internal hemorrhages in Aga2/+ mutant mice. Biochem Biophys Res Commun 432:389–393. https://doi.org/10.1016/j.bbrc.2013.01.011. (PMID: 10.1016/j.bbrc.2013.01.01123333738)
Yousef H, Alhajj M, Sharma S. Anatomy, Skin (Integument), Epidermis. [Updated 2022 Nov 14]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470464/.
Naffa R, Maidment C, Ahn M, Ingham B, Hinkley S, Norris G (2019) Molecular and structural insights into skin collagen reveals several factors that influence its architecture. Int J Biol Macromol 128:509–520. https://doi.org/10.1016/j.ijbiomac.2019.01.151. (PMID: 10.1016/j.ijbiomac.2019.01.15130703425)
Oxlund H, Pedersen U, Danielsen CC, Oxlund I, Elbroond O (1985) Reduced strength of skin in osteogenesis imperfecta. Eur J Clin Invest 15:408–411. https://doi.org/10.1111/j.1365-2362.1985.tb00293.x. (PMID: 10.1111/j.1365-2362.1985.tb00293.x3938411)
Canuto HC, Fishbein KW, Huang A, Doty SB, Herbert RA, Peckham J, Pleshko N, Spencer RG (2012) Characterization of skin abnormalities in a mouse model of osteogenesis imperfecta using high resolution magnetic resonance imaging and Fourier transform infrared imaging spectroscopy. NMR Biomed 25:169–176. https://doi.org/10.1002/nbm.1732. (PMID: 10.1002/nbm.173221845737)
Forlino A, Kuznetsova NV, Marini JC, Leikin S (2007) Selective retention and degradation of molecules with a single mutant alpha1(I) chain in the Brtl IV mouse model of OI. Matrix Biol 26:604–614. https://doi.org/10.1016/j.matbio.2007.06.005. (PMID: 10.1016/j.matbio.2007.06.00517662583)
Besio R, Iula G, Garibaldi N, Cipolla L, Sabbioneda S, Biggiogera M, Marini JC, Rossi A, Forlino A (2018) 4-PBA ameliorates cellular homeostasis in fibroblasts from osteogenesis imperfecta patients by enhancing autophagy and stimulating protein secretion. Biochim Biophys Acta Mol Basis Dis 1864:1642–1652. https://doi.org/10.1016/j.bbadis.2018.02.002. (PMID: 10.1016/j.bbadis.2018.02.00229432813)
Keegan MT, Whatcott BD, Harrison BA (2002) Osteogenesis imperfecta, perioperative bleeding, and desmopressin. Anesthesiology 97:1011–1013. https://doi.org/10.1097/00000542-200210000-00039. (PMID: 10.1097/00000542-200210000-0003912357173)
Veilleux LN, Lemay M, Pouliot-Laforte A, Cheung MS, Glorieux FH, Rauch F (2014) Muscle anatomy and dynamic muscle function in osteogenesis imperfecta type I. J Clin Endocrinol Metab 99:E356-362. https://doi.org/10.1210/jc.2013-3209. (PMID: 10.1210/jc.2013-320924248189)
Takken T, Terlingen HC, Helders PJ, Pruijs H, Van der Ent CK, Engelbert RH (2004) Cardiopulmonary fitness and muscle strength in patients with osteogenesis imperfecta type I. J Pediatr 145:813–818. https://doi.org/10.1016/j.jpeds.2004.08.003. (PMID: 10.1016/j.jpeds.2004.08.00315580207)
Pouliot-Laforte A, Veilleux LN, Rauch F, Lemay M (2015) Physical activity in youth with osteogenesis imperfecta type I. J Musculoskelet Neuronal Interact 15:171–176. (PMID: 260322095133720)
Moffatt P, Boraschi-Diaz I, Bardai G, Rauch F (2021) Muscle transcriptome in mouse models of osteogenesis imperfecta. Bone 148:115940. https://doi.org/10.1016/j.bone.2021.115940. (PMID: 10.1016/j.bone.2021.11594033812081)
Tauer JT, Abdullah S, Rauch F (2019) Effect of anti-TGF-beta treatment in a mouse model of severe osteogenesis imperfecta. J Bone Miner Res 34:207–214. https://doi.org/10.1002/jbmr.3617. (PMID: 10.1002/jbmr.361730357929)
Abdelaziz DM, Abdullah S, Magnussen C, Ribeiro-da-Silva A, Komarova SV, Rauch F, Stone LS (2015) Behavioral signs of pain and functional impairment in a mouse model of osteogenesis imperfecta. Bone 81:400–406. https://doi.org/10.1016/j.bone.2015.08.001. (PMID: 10.1016/j.bone.2015.08.00126277094)
Veilleux LN, Trejo P, Rauch F (2017) Muscle abnormalities in osteogenesis imperfecta. J Musculoskelet Neuronal Interact 17:1–7. (PMID: 285744065492314)
Caudill A, Flanagan A, Hassani S, Graf A, Bajorunaite R, Harris G, Smith P (2010) Ankle strength and functional limitations in children and adolescents with type I osteogenesis imperfecta. Pediatr Phys Ther 22:288–295. https://doi.org/10.1097/PEP.0b013e3181ea8b8d. (PMID: 10.1097/PEP.0b013e3181ea8b8d20699778)
Gremminger VL, Harrelson EN, Crawford TK, Ohler A, Schulz LC, Rector RS, Phillips CL (2021) Skeletal muscle specific mitochondrial dysfunction and altered energy metabolism in a murine model (oim/oim) of severe osteogenesis imperfecta. Mol Genet Metab 132:244–253. https://doi.org/10.1016/j.ymgme.2021.02.004. (PMID: 10.1016/j.ymgme.2021.02.004336741968135105)
Gremminger VL, Jeong Y, Cunningham RP, Meers GM, Rector RS, Phillips CL (2019) Compromised exercise capacity and mitochondrial dysfunction in the osteogenesis imperfecta murine (oim) mouse model. J Bone Miner Res 34:1646–1659. https://doi.org/10.1002/jbmr.3732. (PMID: 10.1002/jbmr.373230908713)
Grol MW, Haelterman NA, Lim J, Munivez EM, Archer M, Hudson DM, Tufa SF, Keene DR, Lei K, Park D, Kuzawa CD, Ambrose CG, Eyre DR, Lee BH (2021) Tendon and motor phenotypes in the Crtap(-/-) mouse model of recessive osteogenesis imperfecta. Elife. https://doi.org/10.7554/eLife.63488. (PMID: 10.7554/eLife.63488340369378186905)
Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065. https://doi.org/10.1126/science.1219855. (PMID: 10.1126/science.1219855229367704762028)
Gremminger VL, Omosule CL, Crawford TK, Cunningham R, Rector RS, Phillips CL (2022) Skeletal muscle mitochondrial function and whole-body metabolic energetics in the +/G610C mouse model of osteogenesis imperfecta. Mol Genet Metab 136:315–323. https://doi.org/10.1016/j.ymgme.2022.06.004. (PMID: 10.1016/j.ymgme.2022.06.0043572593911587666)
Seirafi M, Kozlov G, Gehring K (2015) Parkin structure and function. FEBS J 282:2076–2088. https://doi.org/10.1111/febs.13249. (PMID: 10.1111/febs.13249257125504672691)
Gorrell L, Makareeva E, Omari S, Otsuru S, Leikin S (2022) ER, Mitochondria, and ISR regulation by mt-HSP70 and ATF5 upon procollagen misfolding in osteoblasts. Adv Sci (Weinh). https://doi.org/10.1002/advs.202201273. (PMID: 10.1002/advs.20220127335988140)
Tresoldi I, Oliva F, Benvenuto M, Fantini M, Masuelli L, Bei R, Modesti A (2013) Tendon’s ultrastructure. Muscles Ligaments Tendons J. https://doi.org/10.11138/mltj/2013.3.1.002. (PMID: 10.11138/mltj/2013.3.1.002238853393676160)
Sinkam L, Boraschi-Diaz I, Svensson RB, Kjaer M, Komarova SV, Bergeron R, Rauch F, Veilleux LN (2023) Tendon properties in a mouse model of severe osteogenesis imperfecta. Connect Tissue Res 64:285–293. https://doi.org/10.1080/03008207.2022.2161376. (PMID: 10.1080/03008207.2022.216137636576243)
Chretien A, Couchot M, Mabilleau G, Behets C (2022) Biomechanical, microstructural and material properties of tendon and bone in the young oim mice model of osteogenesis imperfecta. Int J Mol Sci. https://doi.org/10.3390/ijms23179928. (PMID: 10.3390/ijms23179928360773259456454)
Misof K, Landis WJ, Klaushofer K, Fratzl P (1997) Collagen from the osteogenesis imperfecta mouse model (oim) shows reduced resistance against tensile stress. J Clin Invest 100:40–45. https://doi.org/10.1172/JCI119519. (PMID: 10.1172/JCI1195199202055508163)
McBride DJ Jr, Choe V, Shapiro JR, Brodsky B (1997) Altered collagen structure in mouse tail tendon lacking the alpha 2(I) chain. J Mol Biol 270:275–284. https://doi.org/10.1006/jmbi.1997.1106. (PMID: 10.1006/jmbi.1997.11069236128)
Chretien A, Mabilleau G, Lebacq J, Docquier PL, Behets C (2023) Beneficial effects of zoledronic acid on tendons of the osteogenesis imperfecta mouse (oim). Pharmaceuticals (Basel). https://doi.org/10.3390/ph16060832. (PMID: 10.3390/ph1606083237375779)
Suydam SM, Soulas EM, Elliott DM, Silbernagel KG, Buchanan TS, Cortes DH (2015) Viscoelastic properties of healthy achilles tendon are independent of isometric plantar flexion strength and cross-sectional area. J Orthop Res 33:926–931. https://doi.org/10.1002/jor.22878. (PMID: 10.1002/jor.22878258822094683615)
Zhang ZJ, Fu SN (2013) Shear elastic modulus on patellar tendon captured from supersonic shear imaging: correlation with tangent traction modulus computed from material testing system and test-retest reliability. PLoS ONE 8:e68216. https://doi.org/10.1371/journal.pone.0068216. (PMID: 10.1371/journal.pone.0068216238263783695046)
Berman AG, Organ JM, Allen MR, Wallace JM (2020) Muscle contraction induces osteogenic levels of cortical bone strain despite muscle weakness in a mouse model of osteogenesis imperfecta. Bone 132:115061. https://doi.org/10.1016/j.bone.2019.115061. (PMID: 10.1016/j.bone.2019.11506131805389)
Tosi LL, Floor MK, Dollar CM, Gillies AP, Members of the Brittle Bone Disease C, Hart TS, Cuthbertson DD, Sutton VR, Krischer JP (2019) Assessing disease experience across the life span for individuals with osteogenesis imperfecta: challenges and opportunities for patient-reported outcomes (PROs) measurement: a pilot study. Orphanet J Rare Dis 14:23. https://doi.org/10.1186/s13023-019-1004-x. (PMID: 10.1186/s13023-019-1004-x306964676350324)
Beltran-Sanchez H, Soneji S, Crimmins EM (2015) Past, present, and future of healthy life expectancy. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a025957. (PMID: 10.1101/cshperspect.a025957265254564632858)
Lee KJ, Rambault L, Bou-Gharios G, Clegg PD, Akhtar R, Czanner G et al (2022) Collagen (I) homotrimer potentiates the osteogenesis imperfecta (oim) mutant allele and reduces survival in male mice. Dis Model Mech. https://doi.org/10.1242/dmm.049428. (PMID: 10.1242/dmm.049428362221189672931)
Chohan K, Mittal N, McGillis L, Lopez-Hernandez L, Camacho E, Rachinsky M, Mina DS, Reid WD, Ryan CM, Champagne KA, Orchanian-Cheff A, Clarke H, Rozenberg D (2021) A review of respiratory manifestations and their management in Ehlers-Danlos syndromes and hypermobility spectrum disorders. Chron Respir Dis 18:14799731211025312. https://doi.org/10.1177/14799731211025313. (PMID: 10.1177/14799731211025313342916998312172) - Grant Information: NIH T32 Fellowship T32GM135744 United States GM NIGMS NIH HHS; NIH T32 Fellowship T32GM135744 United States GM NIGMS NIH HHS; NIH/NICHD -R56HD110848 National Institute of Child Health and Development
- Contributed Indexing: Keywords: Cardiac; Collagen; Extra-skeletal; Mouse models; Muscle; Osteogenesis imperfecta
- Accession Number: 0 (Collagen Type I)
- Publication Date: Date Created: 20240419 Date Completed: 20241129 Latest Revision: 20241129
- Publication Date: 20241202
- Accession Number: 10.1007/s00223-024-01213-4
- Accession Number: 38641703
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.