Effects of urban-induced mutations on ecology, evolution and health.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Nature Country of Publication: England NLM ID: 101698577 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2397-334X (Electronic) Linking ISSN: 2397334X NLM ISO Abbreviation: Nat Ecol Evol Subsets: MEDLINE
    • Publication Information:
      Original Publication: [London] : Springer Nature
    • Subject Terms:
    • Abstract:
      Increasing evidence suggests that urbanization is associated with higher mutation rates, which can affect the health and evolution of organisms that inhabit cities. Elevated pollution levels in urban areas can induce DNA damage, leading to de novo mutations. Studies on mutations induced by urban pollution are most prevalent in humans and microorganisms, whereas studies of non-human eukaryotes are rare, even though increased mutation rates have the potential to affect organisms and their populations in contemporary time. Our Perspective explores how higher mutation rates in urban environments could impact the fitness, ecology and evolution of populations. Most mutations will be neutral or deleterious, and higher mutation rates associated with elevated pollution in urban populations can increase the risk of cancer in humans and potentially other species. We highlight the potential for urban-driven increased deleterious mutational loads in some organisms, which could lead to a decline in population growth of a wide diversity of organisms. Although beneficial mutations are expected to be rare, we argue that higher mutation rates in urban areas could influence adaptive evolution, especially in organisms with short generation times. Finally, we explore avenues for future research to better understand the effects of urban-induced mutations on the fitness, ecology and evolution of city-dwelling organisms.
      (© 2024. Springer Nature Limited.)
    • References:
      Fenster, C. B. & Murren, C. J. Commentary: mutation: source of variation in evolutionary ecology. Evol. Ecol. 34, 311–314 (2020). (PMID: 10.1007/s10682-020-10049-x)
      MacLean, R. C., Torres-Barceló, C. & Moxon, R. Evaluating evolutionary models of stress-induced mutagenesis in bacteria. Nat. Rev. Genet. 14, 221–227 (2013). (PMID: 2340010210.1038/nrg3415)
      Fitzgerald, D. M., Hastings, P. & Rosenberg, S. M. Stress-induced mutagenesis: implications in cancer and drug resistance. Annu. Rev. Cancer Biol. 1, 119–140 (2017). (PMID: 29399660579403310.1146/annurev-cancerbio-050216-121919)
      Lynch, M. et al. Genetic drift, selection and the evolution of the mutation rate. Nat. Rev. Genet. 17, 704–714 (2016). (PMID: 2773953310.1038/nrg.2016.104)
      Bergeron, L. A. et al. Evolution of the germline mutation rate across vertebrates. Nature 615, 285–291 (2023). (PMID: 36859541999527410.1038/s41586-023-05752-y)
      Somers, C. M., McCarry, B. E., Malek, F. & Quinn, J. S. Reduction of particulate air pollution lowers the risk of heritable mutations in mice. Science 304, 1008–1010 (2004). (PMID: 1514328010.1126/science.1095815)
      Yauk, C. L. & Quinn, J. S. Multilocus DNA fingerprinting reveals high rate of heritable genetic mutation in herring gulls nesting in an industrialized urban site. Proc. Natl Acad. Sci. USA 93, 12137–12141 (1996). (PMID: 89015463795610.1073/pnas.93.22.12137)
      Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease (World Health Organization, 2016).
      Global Assessment of Soil Pollution—Summary for Policy Makers (FAO and UNEP, 2021).
      A Snapshot of the World’s Water Quality: Towards a Global Assessment (UNEP, 2016).
      Filburn, T., Bullard, S. & Bullard, S. G. Three Mile Island, Chernobyl and Fukushima (Springer, 2016).
      Seaton, A., Godden, D., MacNee, W. & Donaldson, K. Particulate air pollution and acute health effects. Lancet 345, 176–178 (1995). (PMID: 774186010.1016/S0140-6736(95)90173-6)
      Seyyednejad, S., Niknejad, M. & Koochak, H. A review of some different effects of air pollution on plants. Res. J. Environ. Sci. 5, 302–309 (2011). (PMID: 10.3923/rjes.2011.302.309)
      Casey, R., Shaw, A., Massal, L. & Snodgrass, J. Stormwater retention ponds in suburban Maryland, USA. Bull. Environ. Contam. Toxicol. 74, 273–280 (2005). (PMID: 1584196710.1007/s00128-004-0580-0)
      Chatelain, M. et al. Urban metal pollution explains variation in reproductive outputs in great tits and blue tits. Sci. Total Environ. 776, 145966 (2021). (PMID: 10.1016/j.scitotenv.2021.145966)
      Claxton, L. D. & Woodall, G. M. Jr A review of the mutagenicity and rodent carcinogenicity of ambient air. Mutat. Res. Rev. Mutat. Res. 636, 36–94 (2007). (PMID: 10.1016/j.mrrev.2007.01.001)
      White, P. A. & Claxton, L. D. Mutagens in contaminated soil: a review. Mutat. Res. Rev. Mutat. Res. 567, 227–345 (2004). (PMID: 10.1016/j.mrrev.2004.09.003)
      IARC Outdoor Air Pollution IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Vol. 109 (WHO Press, 2016).
      Marchetti, F., Douglas, G. R. & Yauk, C. L. A return to the origin of the EMGS: rejuvenating the quest for human germ cell mutagens and determining the risk to future generations. Environ. Mol. Mutagen. 61, 42–54 (2020). (PMID: 3147202610.1002/em.22327)
      Bromham, L., Hua, X., Lanfear, R. & Cowman, P. F. Exploring the relationships between mutation rates, life history, genome size, environment, and species richness in flowering plants. Am. Nat. 185, 507–524 (2015). (PMID: 2581108510.1086/680052)
      Diamond, S. E. & Martin, R. A. Evolution in cities. Annu. Rev. Ecol. Evol. Syst. 52, 519–540 (2021). (PMID: 10.1146/annurev-ecolsys-012021-021402)
      Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, aam8327 (2017). (PMID: 10.1126/science.aam8327)
      Szulkin, M., Munshi-South, J. & Charmantier, A. Urban Evolutionary Biology (Oxford Univ. Press, 2020).
      Verrelli, B. C. et al. A global horizon scan for urban evolutionary ecology. Trends Ecol. Evol. 37, 1006–1019 (2022). (PMID: 3599560610.1016/j.tree.2022.07.012)
      Aronson, M. F. et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B 281, 20133330 (2014). (PMID: 24523278402740010.1098/rspb.2013.3330)
      Knapp, S. et al. Phylogenetic and functional characteristics of household yard floras and their changes along an urbanization gradient. Ecology 93, S83–S98 (2012). (PMID: 10.1890/11-0392.1)
      Rogers, A. M., Yong, R. Q. Y. & Holden, M. H. The house of a thousand species: the untapped potential of comprehensive biodiversity censuses of urban properties. Ecology 105, e4225 (2023). (PMID: 3803823410.1002/ecy.4225)
      Lambert, M. R. & Donihue, C. M. Urban biodiversity management using evolutionary tools. Nat. Ecol. Evol. 4, 903–910 (2020). (PMID: 3239386810.1038/s41559-020-1193-7)
      Leung, D. Y. Outdoor-indoor air pollution in urban environment: challenges and opportunity. Front. Environ. Sci. 2, 69 (2015). (PMID: 10.3389/fenvs.2014.00069)
      Towards a Pollution-Free Planet: Background Report (UNEP, 2017).
      Baensch-Baltruschat, B., Kocher, B., Stock, F. & Reifferscheid, G. Tyre and road wear particles (TRWP)—a review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci. Total Environ. 733, 137823 (2020). (PMID: 3242245710.1016/j.scitotenv.2020.137823)
      Nirmalkar, J., Haswani, D., Singh, A., Kumar, S. & Raman, R. S. Concentrations, transport characteristics, and health risks of PM 2.5 -bound trace elements over a national park in central India. J. Environ. Manage. 293, 112904 (2021). (PMID: 3409835510.1016/j.jenvman.2021.112904)
      IARC Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Vol. 92 (WHO Press, 2010).
      Martínez-Bravo, M. & Martínez-del-Río, J. in Encyclopedia of the UN Sustainable Development Goals: Sustainable Cities and Communities (eds Leal Filho, W. et al.) 905–915 (Springer, 2020).
      Nagy, K., Rácz, G., Matsumoto, T., Ádány, R. & Ádám, B. Evaluation of the genotoxicity of the pyrethroid insecticide phenothrin. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 770, 1–5 (2014). (PMID: 2534415710.1016/j.mrgentox.2014.05.001)
      Annabi, E., Ben Salem, I. & Abid-Essefi, S. Acetamiprid, a neonicotinoid insecticide, induced cytotoxicity and genotoxicity in PC12 cells. Toxicol. Mech. Methods 29, 580–586 (2019). (PMID: 3117086910.1080/15376516.2019.1624907)
      Agudo, A. et al. Polychlorinated Biphenyls and Polybrominated Biphenyls (WHO Press, 2016).
      Chowdhury, J., Mandal, T. K. & Mondal, S. Genotoxic impact of emerging contaminant amoxicillin residue on zebra fish (Danio rerio) embryos. Heliyon 6, E05379 (2020). (PMID: 33163678760945110.1016/j.heliyon.2020.e05379)
      Isidori, M., Lavorgna, M., Nardelli, A., Pascarella, L. & Parrella, A. Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci. Total Environ. 346, 87–98 (2005). (PMID: 1599368510.1016/j.scitotenv.2004.11.017)
      Metzler, M., Kulling, S. E., Pfeiffer, E. & Jacobs, E. Genotoxicity of estrogens. Z. Lebensm. Unters. Forsch. A 206, 367–373 (1998). (PMID: 10.1007/s002170050275)
      Tagorti, G. & Kaya, B. Genotoxic effect of microplastics and COVID-19: the hidden threat. Chemosphere 286, 131898 (2022). (PMID: 3441192910.1016/j.chemosphere.2021.131898)
      Roursgaard, M. et al. Genotoxicity of particles from grinded plastic items in Caco-2 and HepG2 cells. Front. Public Health 10, 906430 (2022). (PMID: 35875006929892510.3389/fpubh.2022.906430)
      Yang, H.-H., Lai, S.-O., Hsieh, L.-T., Hsueh, H.-J. & Chi, T.-W. Profiles of PAH emission from steel and iron industries. Chemosphere 48, 1061–1074 (2002). (PMID: 1222751110.1016/S0045-6535(02)00175-3)
      Hajat, A., Hsia, C. & O’Neill, M. S. Socioeconomic disparities and air pollution exposure: a global review. Curr. Environ. Health Rep. 2, 440–450 (2015). (PMID: 26381684462632710.1007/s40572-015-0069-5)
      Kim, K. et al. Inequalities in urban greenness and epigenetic aging: different associations by race and neighborhood socioeconomic status. Sci. Adv. 9, eadf8140 (2023). (PMID: 373793931030628410.1126/sciadv.adf8140)
      Iafrate, A. J. et al. Detection of large-scale variation in the human genome. Nat. Genet. 36, 949–951 (2004). (PMID: 1528678910.1038/ng1416)
      Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004). (PMID: 1527339610.1126/science.1098918)
      Zhang, F., Gu, W., Hurles, M. E. & Lupski, J. R. Copy number variation in human health, disease, and evolution. Annu. Rev. Genomics Hum. Genet. 10, 451–481 (2009). (PMID: 19715442447230910.1146/annurev.genom.9.081307.164217)
      Brown, T. A. Genomes, 2nd edn (Wiley-Liss, 2002).
      Chu, D. & Wei, L. Nonsynonymous, synonymous and nonsense mutations in human cancer-related genes undergo stronger purifying selections than expectation. BMC Cancer 19, 359 (2019). (PMID: 30991970646920410.1186/s12885-019-5572-x)
      Scacheri, C. A. & Scacheri, P. C. Mutations in the non-coding genome. Curr. Opin. Pediatr. 27, 659–664 (2015). (PMID: 26382709508491310.1097/MOP.0000000000000283)
      Orr, H. A. Somatic mutation favors the evolution of diploidy. Genetics 139, 1441–1447 (1995). (PMID: 7768451120646910.1093/genetics/139.3.1441)
      Otto, S. P. & Gerstein, A. C. The evolution of haploidy and diploidy. Curr. Biol. 18, R1121–R1124 (2008). (PMID: 1910876310.1016/j.cub.2008.09.039)
      Anderson, J. B. et al. Clonal evolution and genome stability in a 2500-year-old fungal individual. Proc. R. Soc. B 285, 20182233 (2018). (PMID: 30963893630404110.1098/rspb.2018.2233)
      Burian, A. Does shoot apical meristem function as the germline in safeguarding against excess of mutations? Front. Plant Sci. 12, 707740 (2021). (PMID: 34421954837495510.3389/fpls.2021.707740)
      Wang, Y. & Obbard, D. J. Experimental estimates of germline mutation rate in eukaryotes: a phylogenetic meta-analysis. Evol. Lett. 7, 216–226 (2023). (PMID: 374757531035518310.1093/evlett/qrad027)
      Otto, S. P. The evolutionary enigma of sex. Am. Nat. 174, S1–S14 (2009). (PMID: 1944196210.1086/599084)
      Charlesworth, B. The effects of deleterious mutations on evolution at linked sites. Genetics 190, 5–22 (2012). (PMID: 22219506324935910.1534/genetics.111.134288)
      Charlesworth, B. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10, 195–205 (2009). (PMID: 1920471710.1038/nrg2526)
      Lanfear, R. Do plants have a segregated germline? PLoS Biol. 16, e2005439 (2018). (PMID: 29768400597362110.1371/journal.pbio.2005439)
      Hecht, S. S. Tobacco smoke carcinogens and lung cancer. J. Natl Cancer Inst. 91, 1194–1210 (1999). (PMID: 1041342110.1093/jnci/91.14.1194)
      Foo, J. & Michor, F. Evolution of acquired resistance to anti-cancer therapy. J. Theor. Biol. 355, 10–20 (2014). (PMID: 2468129810.1016/j.jtbi.2014.02.025)
      Godschalk, R. W., Yauk, C. L., van Benthem, J., Douglas, G. R. & Marchetti, F. In utero exposure to genotoxicants leading to genetic mosaicism: an overlooked window of susceptibility in genetic toxicology testing? Environ. Mol. Mutagen. 61, 55–65 (2020). (PMID: 3174349310.1002/em.22347)
      Whitham, T. G. & Slobodchikoff, C. Evolution by individuals, plant–herbivore interactions, and mosaics of genetic variability: the adaptive significance of somatic mutations in plants. Oecologia 49, 287–292 (1981). (PMID: 2830998510.1007/BF00347587)
      Schumacher, B., Pothof, J., Vijg, J. & Hoeijmakers, J. H. The central role of DNA damage in the ageing process. Nature 592, 695–703 (2021). (PMID: 33911272984415010.1038/s41586-021-03307-7)
      Li, C. & Williams, S. M. Human somatic variation: it’s not just for cancer anymore. Curr. Genet. Med. Rep. 1, 212–218 (2013). (PMID: 10.1007/s40142-013-0029-z)
      Claxton, L. D., de, A., Umbuzeiro, G. & DeMarini, D. M. The Salmonella mutagenicity assay: the stethoscope of genetic toxicology for the 21st century. Environ. Health Perspect. 118, 1515–1522 (2010). (PMID: 20682480297468710.1289/ehp.1002336)
      Claxton, L. D., Matthews, P. P. & Warren, S. H. The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity. Mutat. Res. Rev. Mutat. Res. 567, 347–399 (2004). (PMID: 10.1016/j.mrrev.2004.08.002)
      Chen, G. & White, P. A. The mutagenic hazards of aquatic sediments: a review. Mutat. Res. Rev. Mutat. Res. 567, 151–225 (2004). (PMID: 10.1016/j.mrrev.2004.08.005)
      Olivier, M., Hussain, S. P., Caron de Fromentel, C., Hainaut, P. & Harris, C. C. TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer. IARC Sci. Publ. 157, 247–270 (2004).
      Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020). (PMID: 32025018705421310.1038/s41586-020-1943-3)
      Ferreira, M. I., Domingos, M., Gomes, H. de A., Saldiva, P. H. & De Assuncao, J. V. Evaluation of mutagenic potential of contaminated atmosphere at Ibirapuera Park, São Paulo–SP, Brazil, using the Tradescantia stamen-hair assay. Environ. Pollut. 145, 219–224 (2007). (PMID: 1677729510.1016/j.envpol.2006.03.013)
      DeMarini, D. M. et al. Lung tumor KRAS and TP53 mutations in nonsmokers reflect exposure to PAH-rich coal combustion emissions. Cancer Res. 61, 6679–6681 (2001). (PMID: 11559534)
      Yu, X.-J. et al. Characterization of somatic mutations in air pollution-related lung cancer. eBioMedicine 2, 583–590 (2015). (PMID: 26288819453475710.1016/j.ebiom.2015.04.003)
      Acito, M., Fatigoni, C., Villarini, M. & Moretti, M. Cytogenetic effects in children exposed to air pollutants: a systematic review and meta-analysis. Int. J. Environ. Res. Public Health 19, 6736 (2022). (PMID: 35682315918068910.3390/ijerph19116736)
      León-Mejía, G. et al. Cytotoxic and genotoxic effects in mechanics occupationally exposed to diesel engine exhaust. Ecotoxicol. Environ. Saf. 171, 264–273 (2019). (PMID: 3061201410.1016/j.ecoenv.2018.12.067)
      Hansen, Å. M. et al. Urinary 1-hydroxypyrene and mutagenicity in bus drivers and mail carriers exposed to urban air pollution in Denmark. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 557, 7–17 (2004). (PMID: 10.1016/j.mrgentox.2003.09.007)
      Wong, J. Y. et al. Elevated urinary mutagenicity among those exposed to bituminous coal combustion emissions or diesel engine exhaust. Environ. Mol. Mutagen. 62, 458–470 (2021). (PMID: 34331495851134410.1002/em.22455)
      Principles and Methods for the Risk Assessment of Chemicals in Food Environmental Health Criteria No. 240 (FAO and WHO, 2020).
      Eberwine, J., Sul, J.-Y., Bartfai, T. & Kim, J. The promise of single-cell sequencing. Nat. Methods 11, 25–27 (2014). (PMID: 2452413410.1038/nmeth.2769)
      Kennedy, S. R. et al. Detecting ultralow-frequency mutations by duplex sequencing. Nat. Protoc. 9, 2586–2606 (2014). (PMID: 25299156427154710.1038/nprot.2014.170)
      Cho, E. et al. Error-corrected duplex sequencing enables direct detection and quantification of mutations in human TK6 cells with strong inter-laboratory consistency. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 889, 503649 (2023). (PMID: 3749111410.1016/j.mrgentox.2023.503649)
      Shendure, J. & Akey, J. M. The origins, determinants, and consequences of human mutations. Science 349, 1478–1483 (2015). (PMID: 2640482410.1126/science.aaa9119)
      Ton, N. D. et al. Whole genome sequencing and mutation rate analysis of trios with paternal dioxin exposure. Hum. Mutat. 39, 1384–1392 (2018). (PMID: 2996917010.1002/humu.23585)
      Dubrova, Y. E. et al. Human minisatellite mutation rate after the Chernobyl accident. Nature 380, 683–686 (1996). (PMID: 861446110.1038/380683a0)
      Kovalchuk, I., Kovalchuk, O., Arkhipov, A. & Hohn, B. Transgenic plants are sensitive bioindicators of nuclear pollution caused by the Chernobyl accident. Nat. Biotechnol. 16, 1054–1059 (1998). (PMID: 983103510.1038/3505)
      Ellegren, H., Lindgren, G., Primmer, C. R. & Møller, A. P. Fitness loss and germline mutations in barn swallows breeding in Chernobyl. Nature 389, 593–596 (1997). (PMID: 933549710.1038/39303)
      Yeager, M. et al. Lack of transgenerational effects of ionizing radiation exposure from the Chernobyl accident. Science 372, 725–729 (2021). (PMID: 33888597939853210.1126/science.abg2365)
      Kessler, M. D. et al. De novo mutations across 1,465 diverse genomes reveal mutational insights and reductions in the Amish founder population. Proc. Natl Acad. Sci. USA 117, 2560–2569 (2020). (PMID: 31964835700757710.1073/pnas.1902766117)
      King, L., De Solla, S., Small, J., Sverko, E. & Quinn, J. Microsatellite DNA mutations in double-crested cormorants (Phalacrocorax auritus) associated with exposure to PAH-containing industrial air pollution. Environ. Sci. Technol. 48, 11637–11645 (2014). (PMID: 2515394110.1021/es502720a)
      Somers, C. M., Yauk, C. L., White, P. A., Parfett, C. L. & Quinn, J. S. Air pollution induces heritable DNA mutations. Proc. Natl Acad. Sci. USA 99, 15904–15907 (2002). (PMID: 1247374613853710.1073/pnas.252499499)
      Ely, D. & Hamilton, B. Trends in Fertility and Mother’s Age at First Birth among Rural and Metropolitan Counties: United States, 2007–2017 NCHS Data Brief No. 323 (National Center for Health Statistics, Centers for Disease Control and Prevention, 2018).
      Lerch, M. Fertility decline in urban and rural areas of developing countries. Popul. Dev. Rev. 45, 301–320 (2019). (PMID: 10.1111/padr.12220)
      Goldmann, J. M. et al. Parent-of-origin-specific signatures of de novo mutations. Nat. Genet. 48, 935–939 (2016). (PMID: 2732254410.1038/ng.3597)
      Merckx, T. et al. Body-size shifts in aquatic and terrestrial urban communities. Nature 558, 113–116 (2018). (PMID: 2979535010.1038/s41586-018-0140-0)
      Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610–618 (2007). (PMID: 1763773310.1038/nrg2146)
      Schultz, S. T. & Lynch, M. Mutation and extinction: the role of variable mutational effects, synergistic epistasis, beneficial mutations, and degree of outcrossing. Evolution 51, 1363–1371 (1997). (PMID: 2856863510.2307/2411188)
      Sprouffske, K., Aguilar-Rodriguez, J., Sniegowski, P. & Wagner, A. High mutation rates limit evolutionary adaptation in Escherichia coli. PLoS Genet. 14, e1007324 (2018). (PMID: 29702649594285010.1371/journal.pgen.1007324)
      Keightley, P. D. Rates and fitness consequences of new mutations in humans. Genetics 190, 295–304 (2012). (PMID: 22345605327661710.1534/genetics.111.134668)
      Pineda‐Krch, M. & Lehtilä, K. Costs and benefits of genetic heterogeneity within organisms. J. Evol. Biol. 17, 1167–1177 (2004). (PMID: 1552539610.1111/j.1420-9101.2004.00808.x)
      Doonan, J. H. & Sablowski, R. Walls around tumours—why plants do not develop cancer. Nat. Rev. Cancer 10, 794–802 (2010). (PMID: 2096692310.1038/nrc2942)
      Jiang, X. et al. Impacts of mutation effects and population size on mutation rate in asexual populations: a simulation study. BMC Evol. Biol. 10, 298 (2010). (PMID: 20920286295891810.1186/1471-2148-10-298)
      Sniegowski, P. D., Gerrish, P. J., Johnson, T. & Shaver, A. The evolution of mutation rates: separating causes from consequences. Bioessays 22, 1057–1066 (2000). (PMID: 1108462110.1002/1521-1878(200012)22:12<1057::AID-BIES3>3.0.CO;2-W)
      Wei, W. et al. Rapid evolution of mutation rate and spectrum in response to environmental and population-genetic challenges. Nat. Commun. 13, 4752 (2022). (PMID: 35963846937606310.1038/s41467-022-32353-6)
      Lynch, M. Evolution of the mutation rate. Trends Genet. 26, 345–352 (2010). (PMID: 20594608291083810.1016/j.tig.2010.05.003)
      Carlson, S. M., Cunningham, C. J. & Westley, P. A. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014). (PMID: 2503802310.1016/j.tree.2014.06.005)
      Metzgar, D. & Wills, C. Evidence for the adaptive evolution of mutation rates. Cell 101, 581–584 (2000). (PMID: 1089264410.1016/S0092-8674(00)80869-7)
      Thompson, K. A., Rieseberg, L. H. & Schluter, D. Speciation and the city. Trends Ecol. Evol. 33, 815–826 (2018). (PMID: 3029724510.1016/j.tree.2018.08.007)
      Orr, H. A. & Turelli, M. The evolution of postzygotic isolation: accumulating Dobzhansky–Muller incompatibilities. Evolution 55, 1085–1094 (2001). (PMID: 11475044)
      Van Drunen, W. E. & Johnson, M. T. J. Polyploidy in urban environments. Trends Ecol. Evol. 37, 507–516 (2022). (PMID: 3524632110.1016/j.tree.2022.02.005)
      Guo, H., Chang, Z., Wu, J. & Li, W. Air pollution and lung cancer incidence in China: who are faced with a greater effect? Environ. Int. 132, 105077 (2019). (PMID: 3141596310.1016/j.envint.2019.105077)
      Dey, S. et al. Urban–rural differences in breast cancer incidence in Egypt (1999–2006). Breast 19, 417–423 (2010). (PMID: 2045277110.1016/j.breast.2010.04.005)
      Ayuso-Álvarez, A. et al. Association between proximity to industrial chemical installations and cancer mortality in Spain. Environ. Pollut. 260, 113869 (2020). (PMID: 3199134510.1016/j.envpol.2019.113869)
      Giraudeau, M., Sepp, T., Ujvari, B., Ewald, P. W. & Thomas, F. Human activities might influence oncogenic processes in wild animal populations. Nat. Ecol. Evol. 2, 1065–1070 (2018). (PMID: 2978498110.1038/s41559-018-0558-7)
      Sepp, T., Ujvari, B., Ewald, P. W., Thomas, F. & Giraudeau, M. Urban environment and cancer in wildlife: available evidence and future research avenues. Proc. R. Soc. B 286, 20182434 (2019). (PMID: 30963883636716710.1098/rspb.2018.2434)
      Baines, C. et al. Linking pollution and cancer in aquatic environments: a review. Environ. Int. 149, 106391 (2021). (PMID: 3351595510.1016/j.envint.2021.106391)
      Mulvihill, J. J. Preconception exposure to mutagens: medical and other exposures to radiation and chemicals. J. Community Genet. 3, 205–211 (2012). (PMID: 22752838341928610.1007/s12687-012-0104-2)
      Wang, L. et al. Association of ultra-processed food consumption with colorectal cancer risk among men and women: results from three prospective US cohort studies. BMJ 378, e068921 (2022). (PMID: 38752573943037610.1136/bmj-2021-068921)
      Gámez, S. et al. Downtown diet: a global meta-analysis of increased urbanization on the diets of vertebrate predators. Proc. R. Soc. B 289, 20212487 (2022). (PMID: 35232241888919010.1098/rspb.2021.2487)
      Lyons, J., Mastromonaco, G., Edwards, D. B. & Schulte-Hostedde, A. I. Fat and happy in the city: eastern chipmunks in urban environments. Behav. Ecol. 28, 1464–1471 (2017). (PMID: 10.1093/beheco/arx109)
      Schulte-Hostedde, A. I., Mazal, Z., Jardine, C. M. & Gagnon, J. Enhanced access to anthropogenic food waste is related to hyperglycemia in raccoons (Procyon lotor). Conserv. Physiol. 6, coy026 (2018). (PMID: 29992022602520010.1093/conphys/coy026)
      Kliemann, N. et al. Ultra-processed foods and cancer risk: from global food systems to individual exposures and mechanisms. Br. J. Cancer 127, 14–20 (2022). (PMID: 35236935927665410.1038/s41416-022-01749-y)
      Winglee, K. et al. Recent urbanization in China is correlated with a Westernized microbiome encoding increased virulence and antibiotic resistance genes. Microbiome 5, 121 (2017). (PMID: 28915922560306810.1186/s40168-017-0338-7)
      Schell, C. J. et al. The ecological and evolutionary consequences of systemic racism in urban environments. Science 369, eaay4497 (2020). (PMID: 3279246110.1126/science.aay4497)
      Des Roches, S. et al. Socio‐eco‐evolutionary dynamics in cities. Evol. Appl. 14, 248–267 (2020). (PMID: 33519968781956210.1111/eva.13065)
      Valentine, C. C. III et al. Direct quantification of in vivo mutagenesis and carcinogenesis using duplex sequencing. Proc. Natl Acad. Sci. USA 117, 33414–33425 (2020). (PMID: 33318186777678210.1073/pnas.2013724117)
      Marchetti, F. et al. Error-corrected next-generation sequencing to advance nonclinical genotoxicity and carcinogenicity testing. Nat. Rev. Drug Discov. 22, 165–166 (2023). (PMID: 3664680910.1038/d41573-023-00014-y)
      Frazer, J. et al. Disease variant prediction with deep generative models of evolutionary data. Nature 599, 91–95 (2021). (PMID: 3470728410.1038/s41586-021-04043-8)
      Salk, J. J. & Kennedy, S. R. Next‐generation genotoxicology: using modern sequencing technologies to assess somatic mutagenesis and cancer risk. Environ. Mol. Mutagen. 61, 135–151 (2020). (PMID: 3159555310.1002/em.22342)
      Du Four, V., Janssen, C., Brits, E. & Van Larebeke, N. Genotoxic and mutagenic activity of environmental air samples from different rural, urban and industrial sites in Flanders, Belgium. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 588, 106–117 (2005). (PMID: 10.1016/j.mrgentox.2005.09.007)
      Ceretti, E. et al. Monitoring of volatile and non-volatile urban air genotoxins using bacteria, human cells and plants. Chemosphere 120, 221–229 (2015). (PMID: 2508413610.1016/j.chemosphere.2014.07.004)
      David, E. & Niculescu, V.-C. Volatile organic compounds (VOCs) as environmental pollutants: occurrence and mitigation using nanomaterials. Int. J. Environ. Res. Public Health 18, 13147 (2021). (PMID: 34948756870080510.3390/ijerph182413147)
      Jameson, C. W. in Tumour Site Concordance and Mechanisms of Carcinogenesis (eds Baan, R. A. e al.) Ch. 7 (WHO Press, 2021).
      Ravindra, K., Sokhi, R. & Van Grieken, R. Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos. Environ. 42, 2895–2921 (2008). (PMID: 10.1016/j.atmosenv.2007.12.010)
      Abdel-Shafy, H. I. & Mansour, M. S. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 25, 107–123 (2016). (PMID: 10.1016/j.ejpe.2015.03.011)
      Levy, R. J. Carbon monoxide pollution and neurodevelopment: a public health concern. Neurotoxicol. Teratol. 49, 31–40 (2015). (PMID: 25772154456806110.1016/j.ntt.2015.03.001)
      Brook, J. R. et al. Further interpretation of the acute effect of nitrogen dioxide observed in Canadian time-series studies. J. Expo. Sci. Environ. Epidemiol. 17, S36–S44 (2007). (PMID: 1807976310.1038/sj.jes.7500626)
      Zhang, L. et al. Understanding the industrial NOx and SO 2 pollutant emissions in China from sector linkage perspective. Sci. Total Environ. 770, 145242 (2021). (PMID: 3351701810.1016/j.scitotenv.2021.145242)
      Meftaul, I. M., Venkateswarlu, K., Dharmarajan, R., Annamalai, P. & Megharaj, M. Pesticides in the urban environment: a potential threat that knocks at the door. Sci. Total Environ. 711, 134612 (2020). (PMID: 10.1016/j.scitotenv.2019.134612)
      Li, Z., Liang, Y., Zhou, J. & Sun, X. Impacts of de-icing salt pollution on urban road greenspace: a case study of Beijing. Front. Environ. Sci. Eng. 8, 747–756 (2014). (PMID: 10.1007/s11783-014-0644-2)
      García-Pérez, J., Gómez-Barroso, D., Tamayo-Uria, I. & Ramis, R. Methodological approaches to the study of cancer risk in the vicinity of pollution sources: the experience of a population-based case–control study of childhood cancer. Int. J. Health Geogr. 18, 12 (2019). (PMID: 31138300653717910.1186/s12942-019-0176-x)
      García-Pérez, J. et al. Childhood leukemia and residential proximity to industrial and urban sites. Environ. Res. 140, 542–553 (2015). (PMID: 2602551210.1016/j.envres.2015.05.014)
      García-Pérez, J. et al. Association between residential proximity to environmental pollution sources and childhood renal tumors. Environ. Res. 147, 405–414 (2016). (PMID: 2695002910.1016/j.envres.2016.02.036)
      Chen, X. et al. Long-term exposure to urban air pollution and lung cancer mortality: a 12-year cohort study in Northern China. Sci. Total Environ. 571, 855–861 (2016). (PMID: 2742543610.1016/j.scitotenv.2016.07.064)
      Beeson, W. L., Abbey, D. E. & Knutsen, S. F. Long-term concentrations of ambient air pollutants and incident lung cancer in California adults: results from the AHSMOG study. Environ. Health Perspect. 106, 813–823 (1998). (PMID: 98315421533247)
      Bai, X. et al. Linking urbanization and the environment: conceptual and empirical advances. Annu. Rev. Environ. Resour. 42, 215–240 (2017). (PMID: 10.1146/annurev-environ-102016-061128)
      Gogna, P. et al. Estimates of the current and future burden of lung cancer attributable to PM 2.5 in Canada. Prev. Med. 122, 91–99 (2019). (PMID: 3107817810.1016/j.ypmed.2019.03.010)
      Nyberg, F. et al. Urban air pollution and lung cancer in Stockholm. Epidemiology 11, 487–495 (2000). (PMID: 1095539910.1097/00001648-200009000-00002)
      Fei, X. et al. The association between heavy metal soil pollution and stomach cancer: a case study in Hangzhou City, China. Environ. Geochem. Health 40, 2481–2490 (2018). (PMID: 2967919810.1007/s10653-018-0113-0)
      Cheng, I. et al. Association between ambient air pollution and breast cancer risk: the multiethnic cohort study. Int. J. Cancer 146, 699–711 (2020). (PMID: 3092413810.1002/ijc.32308)
      Ebenstein, A. The consequences of industrialization: evidence from water pollution and digestive cancers in China. Rev. Econ. Stat. 94, 186–201 (2012). (PMID: 10.1162/REST_a_00150)
      Wei, J. & Zhanqing, L. GlobalHighPM2.5: big data gapless 1km global ground-level PM2.5 dataset over land [Data set]. Zenodo https://zenodo.org/records/10081359 (2022).
      Wei, J. et al. First close insight into global daily gapless 1 km PM 2.5 pollution, driving factors, and health impact. Nat. Commun. 14, 8349 (2023). (PMID: 381021171072414410.1038/s41467-023-43862-3)
      Center for International Earth Science Information Network Annual PM 2.5 Concentrations for Countries and Urban Areas, 1998–2016 (Columbia Univ., 2021).
      Wolf, M. J. et al. Country Trends in Major Air Pollutants, v1 (2003–2018) (Socioeconomic Data and Applications Center, 2022).
      Wolf, M. J. et al. New insights for tracking global and local trends in exposure to air pollutants. Environ. Sci. Technol. 56, 3984–3996 (2022). (PMID: 35255208898829410.1021/acs.est.1c08080)
      Figueroa, X. F., Lillo, M. A., Gaete, P. S., Riquelme, M. A. & Sáez, J. C. Diffusion of nitric oxide across cell membranes of the vascular wall requires specific connexin-based channels. Neuropharmacology 75, 471–478 (2013). (PMID: 2349966510.1016/j.neuropharm.2013.02.022)
      Su, R., Jin, X., Li, H., Huang, L. & Li, Z. The mechanisms of PM 2.5 and its main components penetrate into HUVEC cells and effects on cell organelles. Chemosphere 241, 125127 (2020). (PMID: 3168344010.1016/j.chemosphere.2019.125127)
      Yauk, C., Lambert, I., Marchetti, F. & Douglas, G. Adverse Outcome Pathway on Alkylation of DNA in Male Pre-meiotic Germ Cells Leading to Heritable Mutations (OECD, 2016).
      Cho, E. et al. AOP report: development of an adverse outcome pathway for oxidative DNA damage leading to mutations and chromosomal aberrations. Environ. Mol. Mutagen. 63, 118–134 (2022). (PMID: 35315142932244510.1002/em.22479)
      Lakey, P. S. et al. Chemical exposure–response relationship between air pollutants and reactive oxygen species in the human respiratory tract. Sci. Rep. 6, 32916 (2016). (PMID: 27605301501505710.1038/srep32916)
      Sasaki, J. C. et al. Application of the adverse outcome pathway framework to genotoxic modes of action. Environ. Mol. Mutagen. 61, 114–134 (2020). (PMID: 3160399510.1002/em.22339)
      Fucic, A. et al. Genomic damage in children accidentally exposed to ionizing radiation: a review of the literature. Mutat. Res. Rev. Mutat. Res. 658, 111–123 (2008). (PMID: 10.1016/j.mrrev.2007.11.003)
      Chauhan, V., Sherman, S., Said, Z., Yauk, C. L. & Stainforth, R. A case example of a radiation-relevant adverse outcome pathway to lung cancer. Int. J. Radiat. Biol. 97, 68–84 (2021). (PMID: 3184638810.1080/09553002.2019.1704913)
      Ignatov, A. V., Bondarenko, K. & Makarova, A. Non-bulky lesions in human DNA: the ways of formation, repair, and replication. Acta Nat. 9, 12–26 (2017). (PMID: 10.32607/20758251-2017-9-3-12-26)
    • Publication Date:
      Date Created: 20240419 Date Completed: 20240611 Latest Revision: 20240612
    • Publication Date:
      20240612
    • Accession Number:
      10.1038/s41559-024-02401-z
    • Accession Number:
      38641700