Plastic vasomotion entrainment.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: eLife Sciences Publications, Ltd Country of Publication: England NLM ID: 101579614 Publication Model: Electronic Cited Medium: Internet ISSN: 2050-084X (Electronic) Linking ISSN: 2050084X NLM ISO Abbreviation: Elife Subsets: MEDLINE
    • Publication Information:
      Original Publication: Cambridge, UK : eLife Sciences Publications, Ltd., 2012-
    • Subject Terms:
    • Abstract:
      The presence of global synchronization of vasomotion induced by oscillating visual stimuli was identified in the mouse brain. Endogenous autofluorescence was used and the vessel 'shadow' was quantified to evaluate the magnitude of the frequency-locked vasomotion. This method allows vasomotion to be easily quantified in non-transgenic wild-type mice using either the wide-field macro-zoom microscopy or the deep-brain fiber photometry methods. Vertical stripes horizontally oscillating at a low temporal frequency (0.25 Hz) were presented to the awake mouse, and oscillatory vasomotion locked to the temporal frequency of the visual stimulation was induced not only in the primary visual cortex but across a wide surface area of the cortex and the cerebellum. The visually induced vasomotion adapted to a wide range of stimulation parameters. Repeated trials of the visual stimulus presentations resulted in the plastic entrainment of vasomotion. Horizontally oscillating visual stimulus is known to induce horizontal optokinetic response (HOKR). The amplitude of the eye movement is known to increase with repeated training sessions, and the flocculus region of the cerebellum is known to be essential for this learning to occur. Here, we show a strong correlation between the average HOKR performance gain and the vasomotion entrainment magnitude in the cerebellar flocculus. Therefore, the plasticity of vasomotion and neuronal circuits appeared to occur in parallel. Efficient energy delivery by the entrained vasomotion may contribute to meeting the energy demand for increased coordinated neuronal activity and the subsequent neuronal circuit reorganization.
      Competing Interests: DS, KI, YI, KM No competing interests declared
      (© 2024, Sasaki et al.)
    • References:
      Glia. 2023 Oct;71(10):2401-2417. (PMID: 37364894)
      STAR Protoc. 2020 Dec 04;1(3):100194. (PMID: 33377088)
      Int J Mol Sci. 2023 Sep 02;24(17):. (PMID: 37686396)
      Circ Res. 2001 Apr 27;88(8):810-5. (PMID: 11325873)
      Mol Interv. 2003 Mar;3(2):79-89, 51. (PMID: 14993429)
      Neuron. 2017 Nov 15;96(4):936-948.e3. (PMID: 29107517)
      Neuroscientist. 2018 Feb;24(1):73-83. (PMID: 28403673)
      Front Aging Neurosci. 2019 Jan 23;11:1. (PMID: 30740048)
      Nat Neurosci. 2022 Nov;25(11):1458-1469. (PMID: 36319770)
      Neurobiol Dis. 2016 Sep;93:215-25. (PMID: 27234656)
      Am J Physiol Heart Circ Physiol. 2001 Mar;280(3):H1088-96. (PMID: 11179051)
      Nat Methods. 2010 Dec;7(12):981-4. (PMID: 20966916)
      Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20720-5. (PMID: 23185019)
      Nature. 2016 Dec 7;540(7632):230-235. (PMID: 27929004)
      J Cereb Blood Flow Metab. 2001 Oct;21(10):1133-45. (PMID: 11598490)
      Cereb Cortex. 2004 Aug;14(8):881-91. (PMID: 15084493)
      Science. 2019 Jul 19;365(6450):. (PMID: 31221773)
      Science. 2005 Aug 5;309(5736):948-51. (PMID: 16081740)
      Neuron. 2020 Feb 5;105(3):549-561.e5. (PMID: 31810839)
      J Appl Physiol (1985). 2002 Feb;92(2):888-9. (PMID: 11838438)
      Exp Brain Res. 1977 Apr 21;27(5):523-38. (PMID: 404173)
      Elife. 2024 Apr 17;13:. (PMID: 38629828)
      Brain. 2022 Jul 29;145(7):2276-2292. (PMID: 35551356)
      Int J Mol Sci. 2013 Jan 18;14(1):1952-63. (PMID: 23334475)
      Nature. 2006 Oct 12;443(7112):700-4. (PMID: 17036005)
      Annu Rev Neurosci. 1982;5:275-96. (PMID: 6803651)
      Brain. 2017 Jul 1;140(7):1829-1850. (PMID: 28334869)
      Biophys J. 2002 May;82(5):2811-25. (PMID: 11964266)
      Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):E194-202. (PMID: 24367076)
      Cerebrovasc Brain Metab Rev. 1995 Fall;7(3):240-76. (PMID: 8519605)
      J Physiol. 2002 Dec 1;545(2):615-27. (PMID: 12456838)
      J Cereb Blood Flow Metab. 1986 Feb;6(1):34-41. (PMID: 3080442)
      J Physiol. 2021 Apr;599(7):2085-2102. (PMID: 33527421)
      Neuroscience. 2019 Apr 1;403:54-69. (PMID: 29580963)
      Nat Neurosci. 2023 Apr;26(4):570-578. (PMID: 36879142)
      Neuron. 2019 Jun 5;102(5):929-943.e8. (PMID: 31076275)
      J Physiol. 1999 Dec 1;521 Pt 2:507-16. (PMID: 10581319)
      Cell Rep. 2021 Aug 3;36(5):109405. (PMID: 34348138)
      PLoS One. 2011;6(12):e28746. (PMID: 22174886)
      J Cereb Blood Flow Metab. 2012 Jul;32(7):1222-32. (PMID: 22434069)
      Neuron. 2003 Dec 18;40(6):1173-83. (PMID: 14687551)
      Brain. 2023 Jun 1;146(6):2431-2442. (PMID: 36866512)
      Am J Physiol. 1988 Jan;254(1 Pt 2):H67-71. (PMID: 3337261)
      J Neurosci. 2004 Oct 13;24(41):8932-9. (PMID: 15483112)
      Nat Neurosci. 2018 Sep;21(9):1281-1289. (PMID: 30127430)
      Nat Neurosci. 2016 Feb;19(2):182-9. (PMID: 26814587)
      J Neurosci. 2005 Aug 17;25(33):7538-47. (PMID: 16107641)
      Nat Commun. 2021 May 27;12(1):3190. (PMID: 34045465)
      Eur J Histochem. 2015 Nov 10;59(4):2576. (PMID: 26708187)
      Curr Protoc Mouse Biol. 2011 Mar 1;1:123-139. (PMID: 21743842)
      Neuron. 2014 Jan 22;81(2):314-20. (PMID: 24462096)
      Cell Rep. 2012 Aug 30;2(2):397-406. (PMID: 22854021)
      J Pharmacol Toxicol Methods. 1993 Dec;30(4):209-15. (PMID: 8123902)
      Proc Natl Acad Sci U S A. 1990 Dec;87(24):9868-72. (PMID: 2124706)
      Brain. 2023 Feb 13;146(2):576-586. (PMID: 36423658)
      Neurosci Res. 2004 May;49(1):123-31. (PMID: 15099710)
      Neurosurg Clin N Am. 2011 Apr;22(2):133-9, vii. (PMID: 21435566)
      Cell Rep. 2014 Jul 10;8(1):311-8. (PMID: 24981861)
      Neuroimage. 2004 Apr;21(4):1652-64. (PMID: 15050588)
      Am J Physiol Heart Circ Physiol. 2006 Nov;291(5):H2047-56. (PMID: 16815985)
      Am J Physiol. 1990 Jun;258(6 Pt 2):H1829-34. (PMID: 2360673)
      Edinb Med Surg J. 1853 Apr 1;79(195):367-373. (PMID: 30331241)
      Cell. 2019 Apr 4;177(2):256-271.e22. (PMID: 30879788)
      J Cereb Blood Flow Metab. 2023 Jul;43(7):1142-1152. (PMID: 36688515)
      Nat Neurosci. 2000 Jul;3(7):631-3. (PMID: 10862687)
      J Neurophysiol. 2009 Jan;101(1):491-502. (PMID: 19005004)
      Med Biol Eng Comput. 1998 May;36(3):315-22. (PMID: 9747571)
    • Grant Information:
      22KJ0262 Japan Society for the Promotion of Science; 22K15218 Japan Society for the Promotion of Science; 20H05896 Japan Society for the Promotion of Science; 23H04659 Japan Society for the Promotion of Science; 18H05110 Japan Society for the Promotion of Science; 20H05046 Japan Society for the Promotion of Science; 19H03338 Japan Society for the Promotion of Science; 22H02713 Japan Society for the Promotion of Science
    • Contributed Indexing:
      Keywords: brain; horizontal optokinetic response; hyperemia; motor learning; mouse; neuroscience; vasomotion; visual stimulation
    • Molecular Sequence:
      Dryad 10.5061/dryad.15dv41p4f
    • Publication Date:
      Date Created: 20240417 Date Completed: 20240418 Latest Revision: 20240425
    • Publication Date:
      20240425
    • Accession Number:
      PMC11023696
    • Accession Number:
      10.7554/eLife.93721
    • Accession Number:
      38629828