Transfer and bioaccumulation of pesticides in terrestrial arthropods and food webs: State of knowledge and perspectives for research.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Elsevier Science Ltd Country of Publication: England NLM ID: 0320657 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1879-1298 (Electronic) Linking ISSN: 00456535 NLM ISO Abbreviation: Chemosphere Subsets: MEDLINE
    • Publication Information:
      Publication: Oxford : Elsevier Science Ltd
      Original Publication: Oxford, New York, : Pergamon Press.
    • Subject Terms:
    • Abstract:
      Arthropods represent an entry point for pesticide transfers in terrestrial food webs, and pesticide accumulation in upper chain organisms, such as predators can have cascading consequences on ecosystems. However, the mechanisms driving pesticide transfer and bioaccumulation in food webs remain poorly understood. Here we review the literature on pesticide transfers mediated by terrestrial arthropods in food webs. The transfer of pesticides and their potential for bioaccumulation and biomagnification are related to the chemical properties and toxicokinetic of the substances, the resistance and detoxification abilities of the contaminated organisms, as well as by their effects on organisms' life history traits. We further identify four critical areas in which knowledge gain would improve future predictions of pesticides impacts on terrestrial food webs. First, efforts should be made regarding the effects of co-formulants and pesticides mixtures that are currently understudied. Second, progress in the sensitivity of analytical methods would allow the detection of low concentrations of pesticides in small individual arthropods. Quantifying pesticides in arthropods preys, their predators, and arthropods or vertebrates at higher trophic level would bring crucial insights into the bioaccumulation and biomagnification potential of pesticides in real-world terrestrial food webs. Finally, quantifying the influence of the trophic structure and complexity of communities on the transfer of pesticides could address several important sources of variability in bioaccumulation and biomagnification across species and food webs. This narrative review will inspire future studies aiming to quantify pesticide transfers in terrestrial food webs to better capture their ecological consequences in natural and cultivated landscapes.
      Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
      (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
    • Contributed Indexing:
      Keywords: Biomagnification; Insects; Natural enemies; Neonicotinoids; Trophic chains
    • Accession Number:
      0 (Pesticides)
      0 (Environmental Pollutants)
    • Publication Date:
      Date Created: 20240414 Date Completed: 20240510 Latest Revision: 20240516
    • Publication Date:
      20240517
    • Accession Number:
      10.1016/j.chemosphere.2024.142036
    • Accession Number:
      38615963